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Abstract

Developing learning methods which do not discriminate subgroups in the popu-
lation is a central goal of algorithmic fairness. One way to reach this goal is by
modifying the data representation in order to meet certain fairness constraints. In
this work we measure fairness according to demographic parity. This requires
the probability of the possible model decisions to be independent of the sensitive
information. We argue that the goal of imposing demographic parity can be sub-
stantially facilitated within a multitask learning setting. We present a method for
learning a shared fair representation across multiple tasks, by means of different
new constraints based on MMD and Sinkhorn Divergences. We derive learning
bounds establishing that the learned representation transfers well to novel tasks.
We present experiments on three real world datasets, showing that the proposed
method outperforms state-of-the-art approaches by a significant margin.

1 Introduction

During the last decade, the widespread distribution of automatic systems for decision making is
raising concerns about their potential for unfair behaviour [3, 7, 37]. As a consequence, machine
learning models have often to meet fairness requirements, ensuring the correction and limitation of
– for example – racist or sexist decisions. In literature, it is possible to find a plethora of different
methods to generate fair models with respect to one or more sensitive attributes (e.g. gender, ethnic
group, age). These methods can be mainly divided into three families: (i) methods in the first family
change a pre-trained model in order to make it more fair (while trying to maintain the classification
performance, i.e., post-processing of the model) [14, 19, 34]; (ii) in the second family, we can find
methods that enforce fairness directly during the training phase, e.g. [1, 12, 41, 42]; (iii) the third
family of methods implements fairness by modifying the data representation (i.e., pre-processing of
the data), and then employs standard machine learning methods [9, 43].

All methods in the previous three families have in common the goal of creating a fair and accurate
model from scratch on the specific task at hand. This solution may work well in specific cases, but in
a large number of real world applications, using the same model (or at least part of it) over different
tasks is helpful if not mandatory. For example, it is common to perform a fine tuning over pre-trained
models [11], keeping fixed the internal representation. Indeed, most modern machine learning
frameworks (especially the deep learning ones) offer a set of pre-trained models that are distributed in

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



so-called model zoos1. Unfortunately, fine tuning pre-trained models on novel previously unseen tasks
could lead to an unexpected unfairness behaviour, even starting from an apparently fair model for
previous tasks (e.g. discriminatory transfer [24] or negative legacy [22]), due to missing generalization
guarantees concerning the fairness property of the model over new tasks.

In order to overcome the above problem, in this paper we follow the framework of multitask learning.
We aim to leverage task similarities to learn a fair representation that provably generalizes well
to unseen tasks. By this we mean that when the representation is used to learn novel tasks, it is
guaranteed to learn a model that has both a small error and meets the fairness requirements. We
measure fairness according to demographic parity [8] (for an extended analysis of different fairness
definitions see [39, 42]). It requires the probability of possible model decisions to be independent
of the sensitive information. We argue that multitask methods are well suited to learn a shared
fair representation according to demographic parity. The fairness of the representation is enforced
by imposing the distributions of the different subgroups to be close with respect to three different
distances, respectively between their: (i) average value (AVG) [32], (ii) Maximum Mean Discrepancy
(MMD) [35, 38], and (iii) Sinkhorn Divergences (SNK) [10].

Contributions. We propose a method for learning a shared fair representation across the multiple
tasks, by incorporating novel constraints based on MMD and Sinkhorn Divergences on the represen-
tation. We show empirically and theoretically that the representation learned by the method transfers
well to novel tasks in the sense that whenever the empirical unfairness is small on the training tasks
then the unfairness on a future task will likely be small as well. An important implication of our
results is that the learned representation can be used as is to learn models for new unseen tasks, that
are provably fair, without the need of imposing any further fairness constraint on the model.

Organization. The paper is organized as follows. In Section 2, we discuss previous related work
aimed at learning fair representations. In Section 3, we introduce the proposed method. In Section 4,
we study the generalization properties of our method. In Section 5, we experimentally compare
the proposed method against different baselines and state-of-the-art approaches on three real world
datasets. Finally, in Section 6 we discuss directions of future research.

2 Related work

In this work – and more generally in the current literature [6, 13, 21, 25, 26, 30, 31, 40, 43] – with
fair representation we refer to the concept of learning a function mapping the raw input into a
set of features that do not discriminate subgroups in the data, in the sense that the transformed
input is conditionally independent of subgroup membership. This approach is different from most
commonly used approaches [12, 19, 41], in which the focus is to solve a task (or a set of tasks)
without discriminating subgroups in the data, regardless of the fairness of the representation itself.
In the previously mentioned papers, a fair model is learned directly from the raw data, without
performing any explicit representation extraction.

In particular, in [6, 13, 25, 26, 30, 31, 40], the authors propose different neural networks (NN)
architectures together with modified learning strategies able to learn a representation that obscures or
removes the sensitive variable. In the general case, all these methods have an input, a target variable
(i.e. the task at hand) and a binary sensitive variable. The objective is to learn a representation
that: (i) preserves information about the input space; (ii) is useful for predicting the target; (iii) is
approximately independent of the sensitive variable. In practice, these methods pursue the goal of
making the generated model act randomly when the internal representation is exploited to predict the
sensitive variable. In this sense, no actual constraint is directly imposed on the internal representation,
but only on the output of the model.

A different direction is taken in [21], where the authors show how to formulate the problem of
counterfactual inference as a domain adaptation problem, and more specifically a covariate shift
problem [36]. The authors derive two new families of representation algorithms for counterfactual
inference. The first one is based on linear models and variable selection, and the other one on deep
learning. The authors show that learning representations that encourage similarity (i.e., balance)
between the treatment and control populations leads to better counterfactual inference; this is in
contrast to many methods which attempt to create balance by re-weighting samples.

Finally, in [43], the authors learn a representation of the data that is a probability distribution over
clusters, where the cluster of a datapoint contains no-information about the sensitive variable, namely

1See for example the Caffe Model Zoo: github.com/BVLC/caffe/wiki/Model-Zoo
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fair clustering. In this sense, the clustering is learned to be fair and also discriminative for the
prediction task at hand.

3 Method

In this section, we present our method to learn a shared fair representation within a general multitask
learning setting. We consider T supervised learning tasks (i.e. binary classification or regression
problems). Each task t ∈ {1, . . . , T} is identified by a probability distribution µt on X × S × Y ,
where X ⊂ Rd is the set of non-sensitive input variables, S = {1, 2} is the set of values of a binary
sensitive variable2 and Y is the output space, which is either {−1, 1} for binary classification or
Y ⊂ R for regression. We let Dt = (xt,i, st,i, yt,i)

m
i=1 ∈ (X ×S ×Y)m be the training sequence for

task t, which is sampled independently from µt. For each s ∈ {1, 2} we also let xt = (xt,i : si = 1)
and zt = (xt,i : si = 2) be the set of inputs in the first and second group, respectively. We consider
compositional models with a shared representation, that is ft(x) = gt(h(x)), where for a prescribed
positive integer r,

h : X → Rr

is a representation function and the functions gt : Rr → Y are task specific3.

We require the model to satisfy the demographic parity fairness constraint [16, 39] at the repre-
sentation level. That is, we demand that the conditional distribution of h(x) is the same across
the two subgroups. Formally this means, for every measurable subset C ⊂ Rr, and for every task
t ∈ {1, . . . , T}, that

Prob(h(X) ∈ C |S = 1) = Prob(h(X) ∈ C |S = 2). (1)

Notice that if demographic parity is satisfied at the representation level – i.e., Eq. (1) holds true –
then every model built from such representation will satisfy demographic parity as well, that is, the
distribution of the predicted output is the same for each of the subgroups. In the next section we will
show that, if the tasks are randomly observed, then demographic parity will also be satisfied on future
tasks with high probability. In this sense our method can be interpreted as learning a fair transferable
representation.

The constraint (1) is difficult to handle, therefore we relax it by requiring that for every t ∈ {1, . . . , T},
the corresponding distributions are close to each other according to a suitable metric on probability
distributions d : P(X )× P(X ), where P(X ) is the set of probability measures on X . We consider
two well established metrics, maximum mean discrepancy (MMD) and Sinkhorn divergence.

Maximum mean discrepancy. Let K : X ×X → R be a positive definite kernel and let Ψ : X →
H a corresponding feature map, that is, for every x, y ∈ X , we have K (x, y) = 〈Ψ(x),Ψ(y)〉H,
where H is a Hilbert space with inner product 〈·, ·〉H. If P,Q ∈ P(X ), their squared maximum mean
discrepancy (MMD2) relative to the kernel K is defined as

MMD2(P,Q) = ‖EX∼QΨ (X)− EX∼QΨ (X)‖2H . (2)

Moreover if x=(xi)
n
i=1 and z=(zi)

m
i=1 are two independent samples from P and Q, respectively,

their MMD2 is defined as the MMD2 between the corresponding empirical distributions P̂ =
1
n

∑n
i=1 δ(xi − ·) and Q̂ = 1

m

∑m
i=1 δ(zi − ·). This (V-statistic) estimator has a bias of order

O(1/min(n,m)). A slightly different unbiased estimator is given by4

MMD2(P̂ , Q̂) =
1

n(n− 1)

∑
i 6=j

K (xi, xj) +
1

m(m− 1)

∑
i6=j

K (zi, zj)−
2

nm

∑
i,j

K (xi, zj) . (3)

Our experiments below use this estimator.

2Our method naturally extends to multiple sensitive variables but to ease the presentation we consider only
the binary case in the paper.

3Depending on the application at hand, the representation may include also the sensitive feature in its
functional form. In this case we just add two more components to x, representing the one-hot encoding of s and
proceed with our analysis as in the paper. However, for simplicity throughout we consider the case that X = Rd.

4In contrast the biased estimator is obtained by including the diagonal terms in the first two sums in (3) and
renormalizing by n2 and m2, respectively.
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Sinkhorn divergence. For any P,Q ∈ P(X ), the Optimal Transport problem with entropic regu-
larization is defined as [33]

OTε(P,Q) = min
π∈Π(P,Q)

∫
X 2

‖x− y‖2 dπ(x, y) + εKL(π|P ⊗Q), ε ≥ 0 (4)

where KL(π|P ⊗Q) is the Kullback-Leibler divergence between the candidate transport plan π and
the product distribution P ⊗ Q, and Π(P,Q) = {π ∈ P(X × X ) : π1 = P, π2 = Q}, with π1

and π2 the marginals of π. The case ε = 0 corresponds to the classic Optimal Transport problem
introduced by Kantorovich [23]. Sinkhorn divergence is defined as

Sε(P,Q) = OTε(P,Q)− 1

2
OTε(P, P )− 1

2
OTε(Q,Q) (5)

and was shown in [15] to be nonnegative, biconvex and to metrize the convergence in law under mild
assumptions.

Below, for every x ∼ Pn and z ∼ Qn, with some abuse of notation, we denote with d(x, z) either
the MMD2 or Sinkhorn divergence estimator. Furthermore, we use the notation h(x) = (h(xi))

n
i=1

and h(z) = (h(zi))
n
i=1, so that d(h(x), h(z)) is the MMD2 or Sinkhorn divergence estimator of the

transformed samples.

3.1 Algorithm

Our method is based on regularized empirical risk minimization, in which the empirical risk is an
average multitask objective combining a prediction error term and an unfairness term. Specifically,
we consider the problem

min
h∈H,g1,...,gT∈G

1

T

T∑
t=1

{
m∑
i=1

`
(
yt,i, gt(h(xt,i)

)
+ γd

(
h(xt), h(zt)

)}
(6)

where `(·, ·) is a loss function, e.g. the squared loss or logistic, and γ is positive parameter trading off
the desiderata of having small error and small unfairness.

The optimization in (6) is over classesH and G of possible representations and task specific functions.
In our empirical study below, we focus on 1-hidden layer networks models, that is we choose

h(x) = σ(Wx) (7)

where W is an r × d matrix of bounded Frobenious norm, σ : R → R is an activation function
(e.g., sigmoid) and gt are linear functions, that is gt(·) = 〈vt, ·〉, with vt ∈ Rr a vector of parameters
of bounded euclidean norm. The corresponding version of (6), written in an easier to optimize
unconstrained way, is

min
W,V

1

T

T∑
t=1

{
m∑
i=1

`
(
yt,i, 〈vt, σ(Wxt,i)〉

)
+ γd(σ(Wxt), σ(Wzt)

)}
+ λ
(
‖W‖2F + ‖V ‖2F

)
(8)

where W ∈ Rd×r, V = [v1 . . . vT ] ∈ Rr×T , ‖ · ‖F is the Frobenius norm, and λ is a positive
regularization parameter. We solve Problem (8) by gradient descent. For the fairness measure, we
optimize Sinkhorn divergence using automatic differentiation [17], while for MMD2 the computation
is direct by the chain rule (assuming the kernel to be differentiable).

4 Learning bounds for MMD

In this section we present learning bounds for the proposed method. We focus on fairness guarantees,
since risk bounds are well established, see, e.g. [5, 28, 29] and references therein. Particularly,
bounds for 1-hidden layer networks of the form considered here, are presented in [29, Thm. 5].

We consider the setting of learning-to-learn [5], in which the tasks are random realizations from
a meta-distribution ρ over the set of possible tasks (also called the environment in the learning-to-
learn literature). For our purpose it is enough to regard a task as a pair of distributions (P,Q) ∈
P(X )× P(X ) associated to the two sensitive groups. For simplicity in our analysis we assume that
we draw samples of equal size form each distribution.5

5This assumption is made to simplify the presentation but is not a restriction to our analysis. In the general
case our bound will be governed by the smallest sample size and have a similar flavour.
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Let h : X → Rr. For any probability measure P ∈ P(X ), the pushforward measure of P via h
is the probability measure h#P ∈ P(Rr) defined for any Borel subset V or Rr as (h#P )(V ) =
P (h−1(V )). Our goal is to bound the unfairness of the representation h̄ found by solving problem
(8) on a future random task in terms of the average empirical unfairness on the training tasks, that is

E(P,Q)∼ρd(h̄]P, h̄]Q) ≤ 1

T

T∑
t=1

d(h̄(xt), h̄(zt)) + Gap(T, n, δ).

Notice the the l.h.s. in the above bound measures the average unfairness of the representation at the
population level, that is using the true distributions of a task rather that their empirical counterpart.
This is the quantity that we wish to be small in order for the demographic parity constraint (1) to
be approximately satisfied. The bound holds with probability larger than 1 − δ in the draw of the
training tasks and their samples, where δ ∈ (0, 1) is a small confidence parameter that increases the
bound only logarithmically. Since the multitask empirical unfairness of the representation h̄ found by
our method is expected to be small, if Gap(T, n, δ) decreases in n and T then the bound guarantees
that the unfairness of h̄ on future tasks will likely remain small.
Of course h̄ is not known in advance, so we bound the uniform deviation between expected and
empirical multitask unfairness over the class of possible representationsH. Our bound is expressed
in terms of the Rademacher average of the setH(X,Z)) = {(h(x1), h(z1), . . . , h(xt), h(zt)) : h ∈
H} ⊆ R2nrT , which is defined as

R(H(X,Z)) = Eε sup
h∈H

T∑
t=1

n∑
i=1

r∑
k=1

{
εt,i,khk(xt,i) + ε′t,i,khk(zt,i)

}
(9)

where εt,i,k and ε′t,i,k are i.i.d. Rademacher random variables.

Theorem 1. Let d be the unbiased MMD2 estimator (3). Let (P1, Q1), . . . , (PT , QT ) be indepen-
dently sampled from ρ and, for every t ∈ {1, . . . , T}, let xt ∼ Pnt and zt ∼ Qnt . Then it holds with
probability at least 1− δ in the draw of the multi-sample (X,Z) = (xt, zt)

T
t=1, that

sup
h∈H

{
E(P,Q)∼ρd(h]P, h]Q)− 1

T

T∑
t=1

d(h(xt), h(zt))
}
≤ C1

Ld
T
R(H(X,Z))+C2

√
log 1/δ

T
(10)

where Ld is the Lipschitz constant of the mapping (x, z) 7→ d(x, z) w.r.t. the Euclidean norm and C1

and C2 are small positive numerical constants.

Proof sketch. We add and subtract the term E(P,Q)∼ρE(x,z)∼(P×Q)nd(h(x), h(z)) inside the supre-
mum in the l.h.s. of (10) and decompose it as the sum of two terms, suphAh + suphBh, where

Ah = E(P,Q)∼ρE(x,z)∼(P×Q)n [d(h#P, h#Q)− d(h(x), h(z))] and

Bh = E(P,Q)∼ρE(x,z)∼(P×Q)nd(h(x), h(z))− 1

T

T∑
t=1

d(h(xt), h(zt)).

For a fixed h, the quantity Ah measures the average bias of the estimator over the draw of the
distributions from the environment. For the MMD2 estimator (3) this term is zero. The term suphBh
can be bounded with a uniform Rademacher bound, with leading term

2

T
Eε sup

h∈H

T∑
t=1

εtd(h(xt), h(zt)) (11)

plus the last term in the r.h.s. of (10), where ε1, . . . , εT are i.i.d. Rademacher. We then appeal to [27,
Ineq. (1)] to bound (11) by Ld times the Rademacher average of the setH(X,Z).

We note that the same proof of Theorem 1 applies to the V-statistic MMD2 estimator mentioned
after equation (3). In this case the bias term A is of order O(1/n), whereas the Lipschitz constant
remains the same – see the discussion in the appendix. On the other hand in order to extent Theorem
1 to Sinkhorn divergence, we would need to find a formula for both the bias term and the Lipschitz
constant of the empirical Sinkhorn divergence w.r.t. the euclidean norm.

In the case of linear representations composed with an activation function in Eq. (7) and matrix W
with bounded Frobenius norm (below for simplicity bounded by 1) the Rademacher average is of
order Lσ

√
rnT where Lσ is the Lipschitz constant of the activation function.

5



Corollary 2. Consider the class of representations (7), assume that the activation function is Lipschitz
with constant Lσ and that the matrix W of parameters has Frobenius norm bounded by 1. Assume
further that ‖x‖ ≤ B a.s. over the environment ρ. Then under the same assumptions in Theorem 1 it
holds that

E(P,Q)∼ρd(h]P, h]Q)− 1

T

T∑
t=1

d(h(xt), h(zt)) ≤ C1LσB

√
r

T
+ C2

√
log 1/δ

T
.

The proof uses standard techniques for bounding the Rademacher average of linear function classes,
see Proposition 5 together with Lemma 4, bounding the Lipschitz constant of the MMD2 estimator
by O(1/

√
n). Both results can be found in the appendix. The above corollary tell us that if T is

significantly greater than the size of the representation then the empirical MMD on the training tasks
predicts well the MMD on a new task, on average. On the contrary if the representation is learned
independently on any new task the generalization bound will be of order

√
r
n which may be much

larger than the order of
√

r
T for our method, since in practical applications T may be much larger

than n.

At last, now that we have bounded the MMD at the representation level, we discuss how we can then
derive a bound on the fairness of at the output level.

Lemma 3. Let h̄ be the representation learned by method (8) and let with some abuse of notation
P̄ , Q̄ ∈ P(Rr) be the probability distributions associated to the two sensitive groups after the raw
input is preprocessed with h̄. Let the MMD distance at the representation level be measured w.r.t.
kernel K : Rr × Rr → R and the MMD on the output be measured w.r.t. kernel G : R× R→ R.
Then, for every v ∈ Rr we have

MMDG(v#P̄ , v#Q̄) ≤ sup
‖g‖G≤1

‖g(〈v, ·〉)‖KMMDK(P̄ , Q̄).

This result shows that if we have a class of possible output weight vectors v, say a ball of radius 1, then
provided sup‖v‖≤1 sup‖g‖G≤1 ‖g(〈v, ·〉)‖K is bounded, then the MMD at the representation level
controls the unfairness of any regression or classification function used on top of this representation.

5 Empirical Study

In this section, we compare our proposal against different baselines and state-of-the-art techniques.

Setting. To study the performance of our method, we perform two sets of experiments, one in the
linear setting and one in the non-linear setting. The first set of experiments (Table 1 and Figure 1)
compares: a single layered feed-forward NN (FFNN) with linear activation and no fairness constraints
(UNC), constraining the output of each task with [12] (M [12]), the fair shared representation methods
presented in [26] (M [26]) and in [13] (M [13]) – both providing also the code – and the fair shared
representation proposed in this work using three different constraints: Mean Matching MAVG (i.e.
MMD with linear kernel), Maximum Mean Discrepancy with Gaussian kernel MMMD, and Sinkhorn
Divergence MSNK. In the second set of experiments (Table 2 and Figure 2), we report the equivalent
results of Table 1 and Figure 1 when, in the representation layer, a sigmoidal non-linear activation
functions is added. This new table represents the non-linear scenario.
We test each method either on the same tasks exploited during the training phase, or on novel tasks.
Concerning the experiments on the same task setting, we train the model with all the tasks and then
we measure results on an independent test set of the same tasks. In the case of novel task experiments,
we train the model with all the tasks minus one (randomly selected). Then, we fix the representation
and we use a subset of the data (70%) of the excluded task to train the last layer, maintaining fixed
the representation layer. The remaining data (30%) of the novel task is used to measure error and
fairness. We consider both the case where the sensitive feature is present, or not in the functional
form of the model (i.e., the sensitive feature is known or not in the testing phase).
We validate the hyperparameters using a grid search with λ ∈ {10−6.0, 10−5.8, . . . , 10+4.0}, γ ∈
{10−1.0, 10−0.5, . . . , 102}, and r ∈ {2jd | j = −4,−3, . . . , 10}, following the validation procedure
in [12]. Firstly, the classical 10-fold CV error for each of the combination of the hyperparameters
is computed. Then, we shortlist all the hyperparameters’ combinations with error close to the best
one (above 90% of the smallest error). From this list, we select the hyperparameters with the
smallest fairness risk. Concerning the error (ERR) we used the percentage of misclassifications,
and concerning the fairness measure of our model (DDP), we compute the absolute value of the
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Table 1: Feed Forward Single Layered NN with Linear Activation Functions. Comparison of (UNC)
no fairness constraints, (M [12]) constraining the output fairness of each task with [12], (M [26])
the fair shared representation method in [26], (M [13]) the fair shared representation method in [13],
and the fair shared representation proposed in this work using different constraints (Mean Matching
MAVG, Maximum Mean Discrepancy MMMD, and Sinkhorn Divergence MSNK).

UNC M [12] M [26] M [13] MAVG MMMD MSNK

Data ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP

Sa
m

e
Ta

sk
s

Sensitive feature not in the functional form of the model

SCH 10.7±.6 .077±.003 12.3±.8 .013±.001 13.4±1.0 .017±.002 12.9±.8 .018±.002 11.8±.8 .011±.001 11.9±.7 .009±.002 11.5±.7 .008±.001

UNI 13.7±.5 .070±.003 18.1±.9 .012±.001 21.2±1.3 .021±.004 26.2±2. .027±.004 15.0±.5 .010±.001 14.3±.6 .009±.001 15.4±.5 .008±.001

MOV 15.1±.6 .112±.008 17.1±.7 .009±.001 19.2±0.9 .014±.002 18.0±.8 .012±.002 17.3±.8 .007±.001 16.6±.4 .005±.002 16.9±.7 .005±.002

Sensitive feature in the functional form of the model

SCH 9.6±.4 .085±.004 11.0±.9 .020±.001 12.0±1.0 .022±.002 13.3±1. .025±.002 10.7±.5 .019±.001 10.5±.6 .013±.002 10.2±.5 .014±.002

UNI 12.3±.7 .077±.004 13.8±.8 .017±.001 20.1±1.2 .029±.005 25.9±2. .032±.006 13.7±.8 .017±.001 13.2±.7 .013±.001 13.9±.9 .017±.001

MOV 13.0±.5 .123±.007 15.7±.7 .010±.001 18.9±0.7 .017±.004 17.1±.9 .015±.003 15.2±.7 .011±.001 15.1±.6 .009±.001 14.3±.8 .008±.002

N
ew

Ta
sk

s

Sensitive feature not in the functional form of the model

SCH 13.8±.5 .088±.003 15.6±0.8 .032±.002 16.4±1.1 .044±.004 17.2±1. .041±.004 14.8±.7 .022±.001 14.9±.8 .020±.002 14.8±.6 .017±.001

UNI 15.6±.8 .075±.003 16.2±0.9 .021±.002 22.0±1.5 .029±.004 27.3±1. .033±.005 17.0±.7 .015±.001 16.5±.7 .011±.001 16.0±.6 .009±.002

MOV 18.2±.8 .128±.007 19.2±0.9 .025±.002 21.2±1.4 .031±.004 20.1±1. .030±.003 20.3±1. .016±.001 20.9±.9 .016±.001 18.9±.8 .011±.001

Sensitive feature in the functional form of the model

SCH 12.7±.5 .096±.005 14.7±0.9 .038±.002 18.0±1.1 .042±.003 17.9±.9 .056±.003 13.8±.8 .030±.002 13.5±.8 .024±.002 13.1±.7 .018±.002

UNI 14.2±.7 .082±.001 15.9±0.7 .029±.002 19.2±1.0 .035±.005 25.9±1. .038±.006 15.6±.6 .022±.001 15.1±.6 .017±.001 15.0±.6 .017±.001

MOV 16.1±.9 .139±.011 20.1±0.7 .038±.002 20.1±1.1 .037±.003 19.9±1. .038±.004 18.2±.8 .027±.001 18.0±.7 .018±.002 18.1±.8 .020±.001
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Figure 1: Graphical representation of the results in Table 1 for new tasks when the sensitive feature is
not included in the functional form of the model.

difference of demographic parity as 1
|Y|
∑
y∈Y |P(f(x(, s)) = y|s = 1)− P(f(x(, s)) = y|s = 2)|,

since in our datasets the output space is finite. For all the experiments, we report performance over
30 repetitions with standard deviation.

Datasets. In our comparisons we used three datasets. The first one is the School dataset [18]
(SCH) – by the Inner London Education Authority (ILEA) – with examination records of 15362
students from 139 secondary schools in years 1985 – 1987. The goal is to predict exam scores for
students in one school, based on eight inputs. Four inputs (year of the exam, gender, VR band, and
ethnic group) are student-dependent, and four others (percentage of students eligible for free school
meals, percentage of students in VR band one, school gender – mixed or single-gender – and school
denomination) are school-dependent. The categorical variables were one-hot encoded, making a total
of 22 inputs.We scaled each covariate and output to have zero mean and unit variance. The second
dataset we propose has been collected at the University of Genoa6 (UNI). This dataset is a proprietary
and highly sensitive dataset containing all the data about the past and present students enrolled at the
UNIV. In this study we take into consideration students who enrolled in the academic year 2017-2018.
The dataset contains 5000 instances with 35 attributes each (both numeric and categorical) about
ethnicity, gender, financial status, and previous school experience. The tasks are to predict the grades
of the 10 exams of the first semester. Finally, the third dataset is Movielens [20] (MOV) – specifically
Movielens 100k (ml100k) – which consists of ratings (1 to 5) provided by 943 users for a set of 1682
movies, with 100,000 ratings available. The tasks are to predict the preference of a user over the
movies. Additional features for each movie, such as the year of release or its genre, are provided. In
all datasets, the sensitive attribute is the gender.

6The data and the research are related to the project DROP@UNIGE of the University of Genoa.
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Table 2: Feed Forward Single Layered NN with Sigmoidal Activation Functions. Comparison of
(UNC) no fairness constraints, (M [12]) constraining the output fairness of each task with [12],
(M [26]) the fair shared representation method in [26], (M [13]) the fair shared representation method
in [13], and the fair shared representation proposed in this work using different constraints (Mean
Matching MAVG, Maximum Mean Discrepancy MMMD, and Sinkhorn Divergence MSNK).

UNC M [12] M [26] M [13] MAVG MMMD MSNK

Data ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP ERR DDP

Sa
m

e
Ta

sk
s

Sensitive feature not in the functional form of the model

SCH 6.8±.8 .068±.013 9.9±.3 .015±.001 10.1±.4 .016±.001 9.9±.4 .010±.001 7.9±.4 .009±.001 7.5±.5 .007±.003 7.1±.5 .006±.003

UNI 8.9±.7 .151±.003 10.9±.6 .091±.005 11.1±.6 .099±.006 12.4±.5 .101±.007 10.4±.6 .091±.005 10.2±.6 .072±.007 10.0±.6 .074±.005

MOV 7.7±.8 .091±.008 9.1±.4 .001±.001 9.4±.4 .002±.002 9.9±.4 .003±.002 8.7±.4 .001±.001 8.3±.7 .002±.001 8.9±.6 .004±.002

Sensitive feature in the functional form of the model

SCH 6.6±.6 .073±.004 9.4±.3 .021±.001 9.2±.5 .019±.003 8.9±.4 .019±.002 7.2±.4 .015±.001 7.3±.4 .011±.003 7.1±.6 .009±.001

UNI 8.8±.7 .197±.004 9.2±.4 .120±.011 10.7±.4 .154±.014 10.3±.4 .161±.013 9.5±.4 .155±.010 9.3±.5 .117±.010 9.1±.5 .088±.008

MOV 7.6±.7 .101±.007 8.1±.3 .009±.001 7.0±.2 .007±.001 7.3±.2 .008±.001 7.7±.3 .008±.001 7.5±.3 .005±.001 7.0±.5 .004±.002

N
ew

Ta
sk

s

Sensitive feature not in the functional form of the model

SCH 7.7±.8 .088±.003 13.5±.3 .026±.001 12.9±.5 .023±.001 13.4±.4 .032±.002 9.9±.4 .018±.001 10.1±.5 .017±.002 10.2±.5 .017±.003

UNI 9.1±.8 .175±.003 12.1±.7 .142±.007 12.9±.8 .160±.011 11.0±.6 .101±.003 11.7±.6 .136±.007 11.9±.6 .126±.009 11.6±.6 .115±.009

MOV 7.9±.6 .128±.007 10.8±.4 .012±.001 11.4±.5 .018±.002 11.5±.5 .022±.003 10.3±.4 .012±.001 10.1±.5 .009±.001 9.8±.5 .008±.001

Sensitive feature in the functional form of the model

SCH 7.6±.5 .096±.005 12.1±.4 .032±.001 11.9±.4 .034±.002 11.5±.5 .025±.001 9.2±.4 .024±.001 9.0±.4 .018±.002 8.8±.5 .016±.002

UNI 8.9±.6 .212±.001 11.9±.7 .241±.014 10.3±.4 .191±.009 11.1±.6 .221±.012 10.8±.4 .200±.011 10.8±.5 .162±.010 10.8±.4 .135±.010

MOV 7.8±.7 .139±.011 9.9±.5 .022±.001 10.2±.7 .028±.003 10.1±.6 .024±.003 9.2±.4 .020±.001 9.3±.4 .018±.003 9.9±.5 .019±.002
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Figure 2: Graphical representation of the results in Table 2 for new tasks when the sensitive feature is
not included in the functional form of the model.

Discussion. Our experimental results offer several interesting aspects and comparisons. Unsurpris-
ingly, the lowest error (ERR) is reached using the unconstrained method (UNC), where we obtain very
unfair models, i.e., with high DDP among all the datasets (UNC can be considered as gold standard
for minimum error). Concerning the constrained methods, it is possible to note how – in general –
learning a fair shared representation slightly increases the final error but brings a large decrease of the
unfairness. In particular, we observe that this benefit is maintained also by tackling new and unseen
(during the training of the shared representation) tasks. The same analysis of the results applies to
both having and not having the sensitive feature in the functional form of the model. Comparing our
methodology with other state-of-the-art techniques, we note how our proposals (MAVG, MMMD, and
MSNK), in all the settings, obtain better or comparable performance. In fact, our methods are able to
maintain a larger accuracy and simultaneously a smaller fairness risk. In particular, MMMD and MSNK
seem to produce better models than MAVG, and all three perform better than state-of-the-art methods.

6 Conclusion

We have presented a method to learn a fair shared representation among different tasks in a MTL
setting. Our method provides good generalization performance both in accuracy and fairness over
novel and unseen tasks. We studied the learning ability of our method and we analyzed the perfor-
mance over several experimental scenarios. The obtained results corroborate our theoretical findings
and proved that our approach overcomes common benchmark algorithms and current state-of-the-art
methods. Our next step will be to study (explicit) fair representation learning in the context of deep
neural networks, with particular attention to the interpretability and transparency of the learned
representation.
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Broader impact

Algorithmic fairness has a potential high social importance. The goal is to make safer the application
of automatic agents as decision makers in our society. We think that learning a fair representation
can be a practical way to pursue the goal of generating unbiased machine learning. A fair machine
learning is needed in our society, especially after several discoveries of unfair biases in the current
standard machine learning models. With less biased and more fair machine learning models, we can
increase the trust of people in automatic agents – and we can also spread awareness of the possible
issue of bias in machine learning models among colleagues in our research community. We have the
possibility to enhance the benefits that using machine learning can provide to society and we need to
avoid translating the negative human biases to the learned models.

We are aware that statistical measures of fairness (such as statistical parity or equal opportunity)
cannot be considered as the unique definitions for bias. In fact, many others have been presented,
exploring areas like – for example – causality. Indeed, we know that the choice of a definition of
fairness for the task at hand has to be carefully understood by the user (i.e., a human) and not selected
by an automatic agent. In this sense, it is well known that different definitions of fairness are even in
contrast one each other. Consequently, enforcing one definition, we are simultaneously forcing other
definitions to be violated. The choice of the right definition is fundamental but it is out of the scope
of our proposal, and requires a careful human-in-the-loop approach.
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