
Appendix

In this appendix we first present some auxiliary results and then give the proofs of the results stated
in the main body of the paper, which we restate here for the convenience of the reader.

The following lemma gives a bound on the Lipschitz constant of the MMD2 estimator, that we use in
the proof of Corollary 2.

Lemma 4. The MMD estimator (3) has Lipschitz constant 8LK/
√
n w.r.t. the Euclidean norm,

where LK is the Lipschitz constant of the kernel function.

Proof. We only consider one term in the computation of the Lipschitz constant, the other terms being
conceptually identical. We have

1

n(n−1)

∑
i 6=j

K(xi, xj)−
1

n(n−1)

∑
i 6=j

K(x′i, x
′
j) =

1

n(n−1)

∑
i 6=j

(
K(xi, xj)−K(x′i, x

′
j)
)
.

We add and subtract K(xi, x
′
j) inside the sum and rearrange the terms, so that

K(xi, xj)−K(x′i, x
′
j) = K(xi, xj)−K(xi, x

′
j) +K(xi, x

′
j)−K(x′i, x

′
j)

≤ LK‖xj − x′j‖+ LK‖xi − x′i‖.

Thus

1

n(n−1)

∑
i 6=j

(
K(xi, xj)−K(x′i, x

′
j)
)
≤ LK

n(n−1)
((n−1)

n∑
j=1

‖xj − x′j‖+ (n−1)

n∑
i=1

‖xi − x′i‖)

=
2LK
n

n∑
i=1

‖xi − x′i‖ ≤
2LK√
n
‖x− x′‖.

We then repeat the argument for the other two terms in (3), contributing for 2LK/
√
n and 4LK/

√
n,

respectively.

We note that the same result holds for the V -statistic estimator of MMD2 mentioned below equation
(3). As noted this estimator has an O(1/n) bias, so it is less appealing in the context of Theorem 1
and Corollary 2.

Proposition 5 (Rademacher bound for linear representations). Let X = {x ∈ Rd : ‖x‖ ≤ B}.
Consider the class of representations H = {h : X → Rr, h(x) = σ(Wx) : ‖W‖F ≤ 1}, where
the activation function σ : R → R is Lipschitz with constant Lσ. Let H(X) = {h(xti) : t ∈
{1, . . . , T}, i ∈ {1, . . . , n}}. Then

R(H(X)) = Eε sup
h∈H

T∑
t=1

n∑
i=1

r∑
k=1

εt,i,khk(xt,i) = LσB
√
rnT .
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Proof. We have

(12)

R(H(X)) = Eε sup
‖A‖F≤1

T∑
t=1

n∑
i=1

r∑
k=1

εt,i,kσ(〈ak, xt,i〉)

≤ EεLσ sup
‖A‖F≤1

T∑
t=1

n∑
i=1

r∑
k=1

εt,i,k〈ak, xt,i〉

= EεLσ sup
‖A‖F≤1

r∑
k=1

〈ak,
T∑
t=1

n∑
i=1

εt,i,kxt,i〉

≤ EεLσ

√√√√ r∑
k=1

∥∥∥ T∑
t=1

n∑
i=1

εt,i,kxt,i

∥∥∥2

≤ Lσ

√√√√Eε
r∑

k=1

∥∥∥ T∑
t=1

n∑
i=1

εt,i,kxt,i

∥∥∥2

= Lσ

√√√√ r∑
k=1

T∑
t=1

n∑
i=1

‖xt,i‖2 ≤ LσB
√
rTn

where the first inequality follows by the standard contraction inequality, the second inequality by
Cauchy-Schwarz’s inequality, and the third inequality uses Jensen’s inequality.

Theorem 1. Let d be the unbiased MMD2 estimator (3). Let (P1, Q1), . . . , (PT , QT ) be indepen-
dently sampled from ρ and, for every t ∈ {1, . . . , T}, let xt ∼ Pnt and zt ∼ Qnt . Then it holds with
probability at least 1− δ in the draw of the multi-sample (X,Z) = (xt, zt)

T
t=1, that

sup
h∈H

{
E(P,Q)∼ρd(h]P, h]Q)− 1

T

T∑
t=1

d(h(xt), h(zt))
}
≤ C1

Ld
T
R(H(X,Z))+C2

√
log 1/δ

T
(10)

where Ld is the Lipschitz constant of the mapping (x, z) 7→ d(x, z) w.r.t. the Euclidean norm and C1

and C2 are small positive numerical constants.

Proof. We add and subtract the term

E(P,Q)∼ρE(x,z)∼(P×Q)nd(h(x), h(z)) (13)

inside the supremum in the l.h.s. of (10) and decompose it as the sum of two terms, suphAh +
suphBh, where

Ah = E(P,Q)∼ρE(x,z)∼(P×Q)n [d(h#P, h#Q)− d(h(x), h(z))]

and

Bh = E(P,Q)∼ρE(x,z)∼(P×Q)nd(h(x), h(z))− 1

T

T∑
t=1

d(h(xt), h(zt)).

For a fixed representation h, Ah measures the average bias of the estimator over the draw of the
distributions from the environment and their samples from the environment. For the MMD2 estimator
(3) this term is zero, since the estimator is unbiased. Indeed

E(x,z)∼(P×Q)nd(h(x), h(z)) = Ex,x′∼P 2K(x, x′) + Ey,y′∼Q2K(y, y′)− 2Ex∼P,y∼QK(x, y)

= Ex,x′∼P 2Ey,y′∼Q2〈Ψ(x)−Ψ(y),Ψ(x′)−Ψ(y′)〉H
= 〈Ex∼PΨ(x)− Ey∼QΨ(y),Ex′∼PΨ(x′)− Ey′∼QΨ(y′)〉H
= MMD2(P,Q).
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The term suphBh can be bounded with a uniform Rademacher bound, see e.g., [4]. Specifically,
noting the term (13) can be interpreted as the expectation over the random variable (x, z) ∼ ρ̂, where
the probability measure ρ̂ models the draw of a random sample from the environment, we have that

sup
h∈H

Bh ≤
2

T
Eε sup

h∈H

T∑
t=1

εtd(h(xt), h(zt)) +

√
log 1/δ

2T

where ε1, . . . , εT are i.i.d. Rademacher. The first term in the r.h.s. of the above inequality is the
Rademacher complexity of the set{(

d(h(x1), h(z1)), . . . , d(h(xT ), h(zT ))
)

: h ∈ H
}
.

Using the vector contraction inequality [27, Ineq. (1)] we can factor out the Lipschitz constant of the
function d and consider the Rademacher complexity of the setH(X,Z). That is,

Eε sup
h∈H

T∑
t=1

εtd(h(xt), h(zt)) ≤ LdR
(
H(X,Z)

)
.

The result follows.

Corollary 2. Consider the class of representations (7), assume that the activation function is Lipschitz
with constant Lσ and that the matrix W of parameters has Frobenius norm bounded by 1. Assume
further that ‖x‖ ≤ B a.s. over the environment ρ. Then under the same assumptions in Theorem 1 it
holds that

E(P,Q)∼ρd(h]P, h]Q)− 1

T

T∑
t=1

d(h(xt), h(zt)) ≤ C1LσB

√
r

T
+ C2

√
log 1/δ

T
.

Proof. The proof follows by combing Theorem 1 with Lemma 4 and Proposition 5.

Lemma 3. Let h̄ be the representation learned by method (8) and let with some abuse of notation
P̄ , Q̄ ∈ P(Rr) be the probability distributions associated to the two sensitive groups after the raw
input is preprocessed with h̄. Let the MMD distance at the representation level be measured w.r.t.
kernel K : Rr × Rr → R and the MMD on the output be measured w.r.t. kernel G : R× R→ R.
Then, for every v ∈ Rr we have

MMDG(v#P̄ , v#Q̄) ≤ sup
‖g‖G≤1

‖g(〈v, ·〉)‖KMMDK(P̄ , Q̄).

Proof. We have

MMDG(v#P̄ , v#Q̄) =

∥∥∥∥∫ G(ξ, ·) d(v#P̄ )(ξ)−
∫
G(ξ, ·) d(v#Q̄)(ξ)

∥∥∥∥
G

(14)

=

∥∥∥∥∫ G(〈v, z〉, ·) dP̄ (z)−
∫
G(〈v, z〉, ·) dQ̄(z)

∥∥∥∥
G

. (15)

Hence, using the formula ‖f‖G = sup‖g‖G≤1〈g, f〉G,

MMDG(v#P̄ , v#Q̄) = sup
‖g‖G≤1

〈g,
∫
G(〈v, z〉, ·) dP̄ (z)−

∫
G(〈v, z〉, ·) dQ̄(z)〉G (16)

= sup
‖g‖G≤1

∫
g(〈v, z〉) d(P̄ − Q̄)(z) (17)

≤ sup
‖g‖G≤1

‖g ◦ v‖KMMDK(P̄ , Q̄). (18)

The result follows.

A full analysis for Sinkhorn divergence rather than MMD distance is left for future work. Here we
provide preliminary tools that we plan to use to develop the analogous of the results above in the case
of Optimal Transport distances. In particular, the proposition below appears as the counterpart of
Lemma 3. In this case, the dependency on the action of the pushforward seems to be neater and more
explicit than in MMD case.
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Proposition 6. Let X ⊂ Rd and P,Q ∈ P(X ). Let T : X → X a Lipschitz map with Lipschitz
constant L. Then

OT(T#P, T#Q) ≤ max(L2, 1)OT(P,Q). (19)

To prove the proposition above we need the following lemma. We introduce some notation first,
writing explicitly the dependence on the cost function:

OTε,‖·‖2(P,Q) = min
π∈Π(P,Q)

∫
X 2

‖x− y‖2 dπ(x, y) + εKL(π|P ⊗Q)

and

OTε,‖T (·)‖2(P,Q) = min
π∈Π(P,Q)

∫
X 2

‖T (x)− T (y)‖2 dπ(x, y) + εKL(π|P ⊗Q). (20)

Also, for a general cost function c, recall that OTε,c has a dual formulation which reads as [15]

OTε,c(P,Q) = sup
f,g∈C(X )

∫
f dP +

∫
g dQ− ε

∫
e

f(x)+g(y)−c(x,y)
ε dP (x) dQ(y)

where C(X ) is the set of continuous functions on X .
Lemma 7. Let P,Q ∈ P(X ) and T : X → X be a continuous map. Then,

OTε,‖·‖2(T#P, T#Q) = OTε,‖T (·)‖2(P,Q). (21)

Proof. Let F (P,Q, f, g, ‖·‖2) be defined as

F (P,Q, f, g, ‖·‖2) =

∫
X
f(x) dP (x) +

∫
X
g(y) dQ(y)− ε

∫
e

f(x)+g(y)−‖x−y‖2
ε dP (x)dQ(y).

By the dual definition of OTε,‖·‖2 and the property of pushforward measures (see [2, Sec 5.2], we
have

OTε,‖·‖2(T#P, T#Q) = sup
(f,g)∈C(X )×C(X )

F (T#Q,T#Q, f, g, ‖·‖2) (22)

= sup
(f,g)∈C(X )×C(X )

F (P,Q, f ◦ T, g ◦ T, ‖T (·)‖2) (23)

= sup
(f̃ ,g̃)∈(C(X )◦T )×(C(X )◦T )

F (P,Q, f̃ , g̃, ‖T (·)‖2) (24)

where C(X ) ◦ T := {u ◦ T : u ∈ C(X )}. Now, consider

OTε,‖·‖2(P,Q) = sup
(f̃ ,g̃)∈C(X )×C(X )

∫
X
f̃(x) dP (x) +

∫
X
g̃(y) dQ(y)+ (25)

−ε
∫
e

f(x)+g(y)−‖T (x)−T (y)‖2
ε dP (x)dQ(y).

We note that the optimal potentials f̃ , g̃ of OTε,‖T (·)‖2 have the form [15]

f̃(x) = − log

∫
X
eg̃(y)−‖T (x)−T (y)‖2 dQ(y).

We note that f̃ and g̃ are functions of the form u ◦ T and v ◦ T . Hence the supremum in (25) can
be restricted to be on the set C(X ) ◦ T . Thus, the quantity in (24) equals OTε,‖T (·)‖2 , showing the
desired result.

We now prove Proposition 6.
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Proof of Proposition 6. Thanks to Lemma 7, we have that OTε,‖·‖2(T#P, T#Q) =
OTε,‖T (·)‖2(P,Q). Using this fact together with the definition of OTε,‖T (·)‖2 recalled in (20) and
the Lipschitz property of T , we have

OTε,‖·‖2(T#P, T#Q) = OTε,‖T (·)‖2(P,Q)

= min
π∈Π(P,Q)

∫
X 2

‖T (x)− T (y)‖2 dπ(x, y) + εKL(π|P ⊗Q)

≤ min
π∈Π(P,Q)

∫
X 2

L2‖x− y‖2 dπ(x, y) + εKL(π|P ⊗Q)

≤ max(L2, 1) min
π∈Π(P,Q)

∫
X 2

‖x− y‖2 dπ(x, y) + εKL(π|P ⊗Q)

= max(L2, 1)OTε,‖·‖2(P,Q).
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