
A Additional definitions and assumptions

Here we describe some of the formal assumptions which were previously skipped.

A.1 Assumptions in the nonconvex setting

We define the standard notion of smoothness.
Assumption 3 (L-smoothness). f is L-smooth, i.e. there exist positive constants L such that ∀x, y,
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2 .

Note that we only need the smoothness assumption for non-convex functions.

A.2 Assumptions in the strongly convex setting

For strongly-convex optimization, instead of bounding the noise, we assume that the stochastic oracle
has bounded moment.
Assumption 4 (bounded α moment). There exists positive real numbers α ∈ (1, 2] and G > 0 such
that for all x, E[‖g(x)‖α] ≤ Gα.

Note that the above assumption implies a uniform bound on gradient norm. Such bound is necessary
for nonsmooth strongly convex problems, as one can no longer factor out the gradient norm using the
smoothness assumption. See for example, [22].
Assumption 5 (µ-strong-convexity). f is µ-strongly convex, if there exist positive constants µ such
that ∀x, y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

The strong convexity assumption and the bounded gradient assumption implies that the domain is
bounded, which we state explicitly below,
Assumption 6 (bounded domain). We look for a solution x within a bounded convex set X .

We didn’t upper bound the domain diameter as it is not used explicitly in the proof. To ensure all
updates are within a domain, we use the projected version of (GClip) defined as follows:

xk+1 = projX {xk − ηk min
{

τk
‖gk‖ , 1

}
gk , τk ∈ R≥0]} (proj-GClip)

The projection operator x = projX (y) finds the point x ∈ X that has the least distance to y.

B Effect of global clipping on variance and bias

We focus on (GClip) under stochastic gradients which satisfy Assumption 1.
Lemma 9. For any g(x) suppose that assumption 1 holds with α ∈ (1, 2]. If E[‖g(x)‖α] ≤ Gα, then
the estimator ĝ := min

{
τk
‖gk‖ , 1

}
gk from (GClip) with clipping parameter τ ≥ 0 satisfies:

E
[
‖ĝ(x)‖2

]
≤ Gατ2−α and ‖E[ĝ(x)]−∇f(x)‖2 ≤ G2ατ−2(α−1) .

Proof. First, we bound the variance.
E[‖ĝ(x)‖2] = E[‖ĝ(x)‖α‖ĝ(x)‖2−α]

By the fact that ĝ(x) ≤ τ , we get

E[‖ĝ(x)‖2] = E[‖ĝ(x)‖ατ2−α] ≤ Gατ2−α.

Next, we bound the bias,
‖E[ĝ(x)]−∇f(x)‖ = ‖E[ĝ(x)− g(x)]‖
≤ E[‖ĝ(x)− g(x)‖] = E[‖ĝ(x)− g(x)‖1{|g(x)|≥τ}]

≤ E
[
‖g(x)‖1{|g(x)|≥τ}

]
≤ E

[
‖g(x)‖α1{|g(x)|≥τ}

]
/τα−1.
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The first inequality follows by Jenson’s inequality. The second inequality follows by definition of ĝ.
The third inequality follows by ‖g(x)‖α1{|g(x)|≥τ} ≥ ‖g(x)‖τα−1

1{|g(x)|≥τ}.

As we increase the clipping parameter τ , note that the variance (the first term in Lemma 9) increases
while the bias (which is the second term) decreases. This way, we can carefully trade-off the variance
of our estimator against its bias, thereby ensuring convergence of the algorithm.

C Non-convex Rates (Proof of Theorem 2)

The lemma in the previous section can be readily used in the nonsmooth strongly convex setting.
However, we need a variant of Lemma 9 in the smooth case.
Lemma 10. For any g(x) suppose that assumption 1 holds with α ∈ (1, 2]. If ‖∇f(x)‖ ≤ τ/2, then
the estimator ĝ := min{1, τ/‖gk‖}gk from (GClip) with global clipping parameter τ ≥ 0 satisfies:

E
[
‖ĝ(x)‖2

]
≤ 2‖∇f(x)‖2 + 4σατ2−α and ‖E[ĝ(x)]−∇f(x)‖2 ≤ 4σ2ατ−2(α−1) .

Proof. First, we bound the variance.

E[‖ĝ(x)‖2] ≤ E[2‖∇f(x)‖2 + 2‖∇f(x)− ĝ(x)‖2]

= E[2‖∇f(x)‖2 + 2‖∇f(x)− ĝ(x)‖α‖∇f(x)− ĝ(x)‖2−α]

≤ E[2‖∇f(x)‖2 + 2‖∇f(x)− ĝ(x)‖α(2τ)2−α]

≤ 2‖∇f(x)‖2 + 4τ2−αE[‖∇f(x)− g(x)‖α]

≤ 2‖∇f(x)‖2 + 4τ2−ασα

The expectation is taken with respect to the randomness in noise. The second last inequality follows
by the fact that ‖∇f(x)− ĝ(x)‖ < 2τ .

Next, we bound the bias,

‖E[ĝ(x)]−∇f(x)‖ = ‖E[ĝ(x)− g(x)]‖
= E[|‖g(x)‖ − τ |1{‖g(x)‖>τ}]

≤ E[‖g(x)−∇f(x)‖1{‖g(x)‖>τ}]

≤ E[‖g(x)−∇f(x)‖1{‖g(x)−∇f(x)‖>τ/2}]

≤ E[‖g(x)−∇f(x)‖α](τ/2)1−α ≤ 2σατ1−α

The last line follows by

‖g(x)−∇f(x)‖1{‖g(x)−∇f(x)‖>τ/2} ≤
‖g(x)−∇f(x)‖α

(τ/2)α−1
1{‖g(x)−∇f(x)‖>τ/2}.

Next, we need a subprocedure at the end proof of Lemma 2 from [7].

Lemma 11 (Lemma 2 in [7]). For any vector v ∈ Rd, 〈v/‖v‖,∇f(x)〉 ≥ ‖∇f(x)‖
3 − 8‖v−∇f(x)‖

3 .

Finally, we are ready to show the proof.

Proof. At each iteration, we consider two cases, either ‖∇f(xk)‖ < τ/2 or ‖∇f(xk)‖ ≥ τ/2.

Case 1: ‖∇f(xk)‖ < τ/2 For simplicity, we denote ĝk = min{1, τ/‖gk‖}gk and the bias
bk = E[ĝk]−∇f(xk). By Assumption 3, we have

f(xk) ≤ f(xk−1) + 〈∇f(xk−1),−ηkĝk−1〉+
η2
k−1L

2
‖ĝk−1‖2

≤ f(xk−1)− ηk−1‖∇f(xk−1)‖2 − ηk−1〈∇f(xk−1), bk−1〉+
η2
k−1L

2
‖ĝk−1‖2

≤ f(xk−1)− ηk−1‖∇f(xk−1)‖2 +
ηk−1

2
‖∇f(xk−1)‖2 +

ηk−1

2
‖bk−1‖2 +

η2
k−1L

2
‖ĝk−1‖2 .
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Here the last step used the Cauch Schwarz and the AM-GM inequalities. Then, taking expectation in
both sides and using Lemma 10 gives

E[f(xk)|xk−1] ≤ f(xk−1)− (
ηk−1

2
− η2

k−1L)‖∇f(xk−1)‖2 + 2η2
k−1Lσ

ατ2−α +
2ηkσ

2α

τ2α−2

≤ f(xk−1)− ηk−1

8
‖∇f(xk−1)‖2 + 2η2

k−1Lσ
ατ2−α +

2ηk−1σ
2α

τ2α−2
.

In the last step we used {ηk = η ≤ 1
4L}.

Case 2: ‖∇f(xk)‖ > τ/2 Recall ĝk = min{1, τ/‖gk‖}gk and parameter choices ηk = η =

min{ 1
4L ,

1
Lτα ,

1
24Lτ } and τk = τ = max{2, 481/(α−1)σα/(α−1), 48σ, σK

1
3α−2 }. We use ∇f as a

shorthand for∇f(xk) and p := E[1{‖gk‖≤τ}] :

E[〈∇f, gk〉1{‖gk‖≤τ}] ≥ E[(‖∇f‖2 − ‖∇f‖‖gk −∇f‖)1{‖gk‖≤τ}]
≥E[‖∇f‖21{‖gk‖≤τ} − 1

4‖∇f‖
2
1{‖gk‖≤τ,‖gk−∇f‖≤τ/8} − ‖∇f‖‖gk −∇f‖1{‖gk‖≤τ,‖gk−∇f‖≥τ/4}]

≥ 3p
4 ‖∇f‖

2 − ‖∇f‖E[‖gk −∇f‖1{‖gk−∇f‖≥τ/8}]
≥ 3p

4 ‖∇f‖
2 − ‖∇f‖ σα

(τ/8)α−1 (2)

The first inequality uses
〈∇f, gk〉 = ‖∇f‖2 + 〈∇f, gk −∇f〉.

The second line follows by

‖∇f‖ > τ/2 and ‖gk −∇f‖ < τ/8 =⇒ −‖∇f‖‖gk −∇f‖ ≥ −‖∇f‖2/4.

The last inequality follows by σα ≥ E[‖gk −∇f‖α] ≥ E[‖gk −∇f‖( τ4 )α−1
1‖gk−∇f‖≥τ/4}] . We

further notice that

E[〈∇f, τgk/‖gk‖〉1{‖gk‖≥τ}]
≥τ((1− p)‖∇f‖/3− 8

3E[‖∇f − gk‖])

≥τ( 1−p
3 ‖∇f(x)‖ − 8σ

3 ) ≥ τ( 1−p
3 ‖∇f(x)‖ − 2‖∇f‖

9 ) (3)

The last inequality follows by ‖∇f(x)‖ ≥ τ/2 ≥ 12σ. With the above, we get

E[〈∇f, ĝk〉] = E[〈∇f, gk〉1{‖gk‖ ≤ τ}] + τE[〈∇f, gk/‖gk‖〉1{‖gk‖ ≥ τ}]

≥ p
2‖∇f‖

2 − ‖∇f‖ σα

(τ/4)α−1 + τ( 1−p
3 ‖∇f(x)‖ − 2‖∇f‖

9 )

≥ 2τ
9 ‖∇f(x)‖ − 1

12‖∇f(x)‖ ≥ ‖∇f‖/12

The second line follows by Lemma 11 and (2). The third line follows by that τ ≥ 2, and ‖∇f‖ ≥ τ/2
imply p

2‖∇f‖
2 ≥ p‖∇f‖/3. Then, by τ ≥ 481/(α−1)σα/(α−1), we have σα

(τ/4)α−1 ≤ 1
12 . By

τ ≥ 48σ, 8
3σ ≤ τ/12 ≤ ‖∇f‖/6.

E[f(xk)] ≤ f(xk−1) + E[〈∇f(xk−1),−ηk−1ĝk〉] +
η2
k−1L

2
τ2

≤ f(xk−1)− ηk−1‖∇f(xk−1)‖/12 + η2
k−1Lτ‖∇f(xk−1)‖

≤ f(xk−1)− ηk−1‖∇f(xk−1)‖/24

The last inequality above follows by ηk ≤ 1
24Lτ .

Combine the two cases we have

E[f(xk)|xk−1] ≤ f(xk−1)− η

24
min{‖∇f(xk−1)‖2, ‖∇f(xk−1)‖}+ 2η2Lσατ2−α +

2ησ2α

τ2α−2
.
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Rearrange and sum the terms above for some fixed step-size and threshold {τk = τ} to get

1

K

K∑
k=1

E
[
min{‖∇f(xk−1)‖2, ‖∇f(xk−1)‖}

]
≤ 24

ηK
(f(x0)− E[f(xK)]) + 48ηLσατ2−α + 48

σ2α

τ2α−2

≤ 24

ηK
(f(x0)− f?)︸ ︷︷ ︸

T1

+ 48ηLσατ2−α +
48σ2α

τ2α−2︸ ︷︷ ︸
T2

.

Since we use a stepsize η ≤ 1
Lτα , we can simplify T2 as

ηLσατ2−α +
σ2α

τ2α−2
≤ σ2α + σα

τ2α−2
.

Denote F0 = f(x0) − f? to ease notation. Then, adding T2 back to T1 and using a threshold
τ ≥ σK

1
3α−2 we get

T1 + T2 ≤
24F0

K
(Lτα + 4L+ 24Lτ) + 48

σ2α + σα

τ2α−2

≤ 48(σ2 + σ2−α)K
−2α+2
3α−1

+ 24F0LK
−1(4 + max{4, 48α/(α−1)σα

2/(α−1), 64σα, σαK
α

3α−2 })

+ 24F0LK
−1(max{2, 481/(α−1)σα/(α−1), 8σ, σK

1
3α−2 })

= O(K
−2α+2
3α−1 )

This proves the statement of the theorem.

D Strongly-Convex Rates (Proof of Theorem 4)

For simplicity, we denote ĝk = min
{

τk
‖gk‖ , 1

}
gk and the bias bk = E[ĝk]−∇f(xk).

‖xk − x∗‖2 = ‖projX (xk−1 − ηk−1ĝk−1 − x∗)‖2

≤ ‖(xk−1 − ηk−1ĝk−1 − x∗)‖2

= ‖xk−1 − x∗‖2 − 2ηk−1〈xk−1 − x∗,∇f(xk−1)〉
− 2ηk−1〈xk−1 − x∗, bk−1〉+ η2

k−1‖ĝk−1‖2

≤ (1− µηk−1)‖xk−1 − x∗‖2 − 2ηk−1(f(xk−1)− f∗))

+ 2ηk−1(
µ

4
‖xk−1 − x∗‖2 +

4

µ
‖bk‖2) + η2

k−1‖ĝk−1‖2.

The first inequality follows by the nonexpansivity of projections onto convex sets.

Rearrange and we get

f(xk−1)− f∗ ≤
η−1
k−1 − µ/2

2
‖xk−1 − x∗‖2 −

η−1
k−1

2
‖xk − x∗‖2 +

4

µ
‖bk‖2 +

ηk−1

2
‖ĝk−1‖2.

After taking expectation and apply the inequality from Lemma 9, we get

E[f(xk−1)]− f∗ ≤ E

[
η−1
k−1 − µ/2

2
‖xk−1 − x∗‖2 −

η−1
k−1

2
‖xk − x∗‖2

]
+ 4G2ατ2−2αµ−1 + ηk−1G

ατ2−α/2.

Then take ηk−1 = 4
µ(k+1) , τk = Gk

1
α and multiply both side by k, we get

kE[f(xk−1)]− f∗ ≤ µ

8
E
[
k(k − 1)‖xk−1 − x∗‖2 − k(k + 1)‖xk − x∗‖2

]
+ 8G2k

2−α
α µ−1.
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Notice that
∑K
k=1 k

2−α
α ≤

∫K+1

0
k

2−α
α dk ≤ (K + 1)2/α. Sum over k and we get∑K

k=1 kE[f(xk−1)]− f∗ ≤ µ

8
E
[
−T (T + 1)‖xT − x∗‖2

]
+ 8G2(K + 1)

2
αµ−1.

Devide both side by K(K+1)
2 and we get

2

K(K + 1)

∑K
k=1 kE[f(xk−1)]− f∗ ≤ 8G2K−1(K + 1)

2−α
α µ−1.

Notice that for K ≥ 1, K−1 ≤ 2(K + 1)−1. We have
2

K(K + 1)

∑K
k=1 kE[f(xk−1)]− f∗ ≤ 16G2(K + 1)

2−2α
α µ−1.

The theorem then follows by Jensen’s inequality.

E Effect of coordinate-wise moment bound

We now examine how the rates would change if we replace Assumption 4 with Assumption 2.

E.1 Convergence of GClip (proof of Corollary 7)

We now look at(GClip) under assumption 2.

The proof of both the convex and non-convex rates following directly from the following Lemma.
Lemma 12. For any g(x) suppose that assumption 2 with α ∈ (1, 2]. Then suppose we have a
constant upper-bound

E[‖g(x)‖α] ≤ D .

Then D satisfies
d
α
2−1‖B‖αα ≤ D ≤ dα/2‖B‖αα.

Proof. Note that the function (·)α/2 is concave for α ∈ (1, 2]. Using Jensen’s inequality we can
rewrite as:

D ≥ E[‖g(x)‖α] = dα/2E

(1

d

d∑
i=1

|g(x)(i)|2
)α/2 ≥ dα/2−1E

[
d∑
i=1

|g(x)(i)|α
]
.

Since the right hand-side can be as large as d
α
2−1‖B‖αα, we have our first inequality. On the other

hand, we also have an upper bound below:

E[‖g(x)‖α] = E

( d∑
i=1

|g(x)(i)|2
)α/2 ≤ E

[(
d(

d
max
i=1

g(x)(i))2
)α/2]

≤ E
[
dα/2(

d
max
i=1

g(x)(i))α
]
≤ E

[
dα/2

d∑
i=1

(g(x)(i))α

]
≤ dα/2

d∑
i=1

Bαi

where ‖B‖αα =
∑d
i=1B

α
i . Thus, we have shown that

d
α
2−1‖B‖αα ≤ E[‖g(x)‖α] ≤ dα/2‖B‖αα .

We know that Jensen’s inequality is tight when all the co-ordinates have equal values. This means
that if the noise across the coordinates is linearly correlated the lower bound is tighter, whereas the
upper bound is tighter if the coordinates depend upon each other in a more complicated manner or
are independent of each other.

Substituting this bound on G in Theorems 4 and 2 gives us our corollaries.
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E.2 Convergence of CClip (Proof of Theorem 8)

The proof relies on the key lemma which captures the bias-variance trade off under the new noise-
assumption and coordinate-wise clipping.
Lemma 13. For any g(x) suppose that assumption 2 with α ∈ (1, 2] holds. Denote gi to be ith
component of g(x),∇f(x)i to be ith component of∇f(x). Then the estimator ĝ(x) = [ĝ1; · · · ; ĝd]
from (CClip) with clipping parameter τ = [τ1; τ2; · · · ; τd] satisfies:

E
[
‖ĝi‖2

]
≤ Bαi τ2−α

i and ‖E[ĝi]−∇f(x)i‖2 ≤ B2α
i τ
−2(α−1)
i .

Proof. Apply Lemma 9 to the one dimensional case in each coordinate.

Proof of Theorem 8. Theorem 4 For simplicity, we denote ĝk = ηk−1ĝ(xk) and the bias bk =
E[ĝk]−∇f(xk).

‖xk − x∗‖2 = ‖xk−1 − ηk−1ĝk−1 − x∗‖2

= ‖xk−1 − x∗‖2 − 2ηk−1〈xk−1 − x∗,∇f(xk−1)〉
− 2ηk〈xk−1 − x∗, bk−1〉+ η2

k‖ĝk−1‖2

≤ (1− µηk)‖xk−1 − x∗‖2 − 2ηk(f(xk−1)− f∗))

+ 2ηk(
µ

4
‖xk−1 − x∗‖2 +

4

µ
‖bk‖2) + η2

k‖ĝk−1‖2.

Rearrange and we get

f(xk−1)− f∗ ≤
η−1
k − µ/2

2
‖xk−1 − x∗‖2 −

η−1
k

2
‖xk − x∗‖2 +

4

µ
‖bk‖2 +

ηk
2
‖ĝk−1‖2.

After taking expectation and apply the inequality from Lemma 9, we get

E[f(xk−1)]− f∗ ≤ E
[
η−1
k − µ/2

2
‖xk−1 − x∗‖2 −

η−1
k

2
‖xk − x∗‖2

]
+
∑d
i=1 4B2α

i τ2−2α
i µ−1 + ηkG

ατ2−α
i /2.

Then take ηk = 4
µ(k+1) , τi = Bik

1
α and multiply both side by k, we get

kE[f(xk−1)]− f∗ ≤ µ

8
E
[
k(k − 1)‖xk−1 − x∗‖2 − k(k + 1)‖xk − x∗‖2

]
+ 8

∑d
i=1B

2
i k

2−α
α µ−1.

Notice that
∑K
k=1 k

2−α
α ≤

∫K+1

0
k

2−α
α dk ≤ (K + 1)2/α. Sum over k and we get∑K

k=1 kE[f(xk−1)]− f∗ ≤ µ

8
E
[
−T (T + 1)‖xT − x∗‖2

]
+ 8

∑d
i=1B

2
i k

2−α
α µ−1.

Devide both side by K(K+1)
2 and we get

2

K(K + 1)

∑K
k=1 kE[f(xk−1)]− f∗ ≤ 8

∑d
i=1B

2
i k

2−α
α µ−1.

Notice that for K ≥ 1, K−1 ≤ 2(K + 1)−1. We have

2

K(K + 1)

∑K
k=1 kE[f(xk−1)]− f∗ ≤ 16

∑d
i=1B

2
i k

2−α
α µ−1.

The theorem then follows by Jensen’s inequality.
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F Lower Bound (Proof of Theorem 5)

We consider the following simple one-dimensional function class parameterized by b:

min
x∈[0,1/2]

{
fb(x) = 1

2 (x− b)2
}
, for b ∈ [0, 1/2] . (4)

Also suppose that for α ∈ (1, 2] and b ∈ [0, 1/2] the stochastic gradients are of the form:

g(x) ∼ ∇fb(x) + χb ,E[g(x)] = ∇fb(x) , and E[|g(x)|α] ≤ 1 . (5)

Note that the function class (4) has µ = 1 and optimum value fb(b) = 0, and the α-moment of the
noise in (5) satisfies G = B ≤ 1. Thus, we want to prove the following:
Theorem 14. For any α ∈ (1, 2] there exists a distribution χb such that the stochastic gradients
satisfy (5). Further, for any (possibly randomized) algorithm A, define Ak(fb + χb) to be the output
of the algorithm A after k queries to the stochastic gradient g(x). Then:

max
b∈[0,1/2]

E[fb(Ak(fb + χb))] ≥ Ω

(
1

k2(α−1)/α

)
.

Our lower bound construction is inspired by Theorem 2 of [4]. Let Ak(fb + χb) denote the output
of any possibly randomized algorithm A after processing k stochastic gradients of the function
fb (with noise drawn i.i.d. from distribution χb). Similarly, let Dk(fb + χb) denote the output of
a deterministic algorithm after processing the k stochastic gradients. Then from Yao’s minimax
principle we know that for any fixed distribution B over [0, 1/2],

min
A

max
b∈[0,1/2]

EA[Eχbfb(Ak(fb + χb))] ≥ min
D

Eb∼B[Eχbfb(Dk(fb + χb))] .

Here we denote EA to be expectation over the randomness of the algorithm A and Eχb to be over the
stochasticity of the the noise distribution χb. Hence, we only have to analyze deterministic algorithms
to establish the lower-bound. Further, since Dk is deterministic, for any bijective transformation
h which transforms the stochastic gradients, there exists a deterministic algorithm D̃ such that
D̃k(h(fb + χb)) = Dk(fb + χb). This implies that for any bijective transformation h(·) of the
gradients:

min
D

Eb∼B[Eχbfb(Dk(fb + χb))] = min
D

Eb∼B[Eχbfb(Dk(h(fb + χb)))] .

In this rest of the proof, we will try obtain a lower bound for the right hand side above.

We now describe our construction of the three quantities to be defined: the problem distribution B,
the noise distribution χb, and the bijective mapping h(·). All of our definitions are parameterized by
α ∈ (1, 2] (which is given as input) and by ε ∈ (0, 1/8] (which represents the desired target accuracy).
We will pick ε to be a fixed constant which depends on the problem parameters (e.g. k) and should be
thought of as being small.

• Problem distribution: B picks b0 = 2ε or b1 = ε at random i.e. ν ∈ {0, 1} is chosen by an
unbiased coin toss and then we pick

bν = (2− ν)ε . (6)

• Noise distribution: Define a constant γ = (4ε)1/(α−1) and pν = (γα − 2νγε). Simple
computations verify that γ ∈ (0, 1/2] and that

pν = (4ε)
α
α−1 − 2ν(4εα)

1
α−1 = (4− 2ν)(4εα)

1
α−1 ∈ (0, 1) .

Then, for a given ν ∈ {0, 1} the stochastic gradient g(x) is defined as

g(x) =

{
x− 1

2γ with prob. pν ,
x with prob. 1− pν .

(7)

To see that we have the correct gradient in expectation verify that

E[g(x)] = x− pν
2γ

= x− γα−1

2
+ νε = x− (2− ν)ε = x− bν = ∇fbν (x) .
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Next to bound the α moment of g(x) we see that

E[|g(x)|α] ≤ γα
(
x− 1

2γ

)α
+ xα ≤ 1

2
+

1

2
= 1 .

The above inequality used the bounds that α ≥ 1, x ∈ [0, 1/2], and γ ∈ (0, 1/2]. Thus g(x)
defined in (7) satisfies condition (5).

• Bijective mapping: Note that here the only unknown variable is ν which only affects pν .
Thus the mapping is bijective as long as the frequencies of the events are preserved. Hence
given a stochastic gradient g(xi) the mapping we use is:

h(g(xi)) =

{
1 if g(xi) = xi − 1

2γ ,

0 otherwise.
(8)

Given the definitions above, the output of algorithm Dk is thus simply a function of k i.i.d. samples
drawn from the Bernoulli distribution with parameter pν (which is denoted by Bern(pν)). We now
show how achieving a small optimization error implies being able to guess the value of ν.
Lemma 15. Suppose we are given problem and noise distributions defined as in (6) and (7), and an
bijective mapping h(·) as in (8). Further suppose that there is a deterministic algorithm Dk whose
output after processing k stochastic gradients satisfies

Eb∼B[Eχbfb(Dk(h(fb + χb)))] < ε2/64 .

Then, there exists a deterministic function D̃k which given k independent samples of Bern(pν) outputs
ν′ = D̃k(Bern(pν)) ∈ {0, 1} such that

Pr
[
D̃k(Bern(pν)) = ν

]
≥ 3

4
.

Proof. Suppose that we are given access to k samples of Bern(pν). Use these k samples as the input
h(fb + χb)) to the procedure Dk (this is valid as previously discussed), and let the output of Dk be
x

(ν)
k . The assumption in the lemma states that

Eν
[
Eχb |x

(ν)
k − bν |

2
]
<
ε2

32
, which implies that Eχb |x

(ν)
k − bν |

2 <
ε2

16
almost surely.

Then, using Markov’s inequality (and then taking square-roots on both sides) gives

Pr
[
|x(ν)
k − bν | ≥

ε

2

]
≤ 1

4
.

Consider a simple procedure D̃k which outputs ν′ = 0 if x(ν)
k ≥ 3ε

2 , and ν′ = 1 otherwise. Recall
that |b0− b1| = ε with b0 = 2ε and b1 = ε. With probability 3

4 , |x(ν)
k − bν | <

ε
2 and hence the output

ν′ is correct.

Lemma 15 shows that if the optimization error of Dk is small, there exists a procedure D̃k which
distinguishes between the Bernoulli distributions with parameters p0 and p1 using k samples. To
argue that the optimization error is large, one simply has to argue that a large number of samples are
required to distinguish between Bern(p0) and Bern(p1).

Lemma 16. For any deterministic procedure D̃k(Bern(pν)) which processes k samples of Bern(pν)
and outputs ν′

Pr[ν′ = ν] ≤ 1

2
+

√
k(4ε)

α
α−1 .

Proof. Here it would be convenient to make the dependence on the samples explicit. Denote
(ν)
k =

(
s

(ν)
1 , . . . , s

(ν)
k

)
∈ {0, 1}k to be the k samples drawn from Bern(pν) and denote the output

as ν′ = D̃(
(ν)
k ). With some slight abuse of notation where we use the same symbols to denote the

realization and their distributions, we have:

Pr
[
D̃(

(ν)
k ) = ν

]
=

1

2
Pr
[
D̃(

(1)
k ) = 1

]
+

1

2
Pr
[
D̃(

(0)
k ) = 0

]
=

1

2
+

1

2
E
[
D̃(

(1)
k )− D̃(

(0)
k )
]
.
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Next using Pinsker’s inequality we can upper bound the right hand side as:

E
[
D̃(

(1)
k )− D̃(

(0)
k )
]
≤
∣∣∣D̃(

(1)
k )− D̃(

(0)
k )
∣∣∣
TV
≤
√

1

2
KL
(
D̃
(

(1)
k

)
, D̃
(

(0)
k

))
,

where |·|TV denotes the total-variation distance and KL(·, ·) denotes the KL-divergence. Recall two
properties of KL-divergence: i) for a product measures defined over the same measurable space
(p1, . . . , pk) and (q1, . . . , qk),

KL((p1, . . . , pk), (q1, . . . , qk)) =

k∑
i=1

KL(pi, qi) ,

and ii) for any deterministic function D̃,

KL(p, q) ≥ KL(D̃(p), D̃(q)) .

Thus, we can simplify as

Pr
[
D̃(

(ν)
k ) = ν

]
≤ 1

2
+

√
k

8
KL(Bern(p1),Bern(p0))

≤ 1

2
+

√
k

8

(p0 − p1)2

p0(1− p0)

≤ 1

2
+

√
k(γε)2

4γα

=
1

2
+

√
k
(
4(2−1/α)ε

) α
α−1 .

Recalling that α ∈ (1, 2] gives us the statement of the lemma.

If we pick ε to be

ε =
1

16k(α−1)/α
,

we have that
1

2
+

√
k(4ε)

α
α−1 <

3

4
.

Given Lemmas 15 and 16, this implies that for the above choice of ε,

Eb∼B[Eχbfb(Dk(h(fb + χb)))] ≥ ε2/64 =
1

214k2(α−1)/α
.

This finishes the proof of the theorem. Note that the readability of the proof was prioritized over
optimality and it is possible to obtain significantly better constants.

G Non-convex Lower Bound (Proof of Theorem 6)

The proof is based on the proof of Theorem 1 in [2]. The only difference is that we assume bounded
α−moment of the stochastic oracle instead of bounded variance as in the original proof. We refer
readers to [2] for more backgrounds and intuitions. For convenience, we study the stochastic
setting (K = 1 in [2]) instead of batched setting. We denote a d−dimensional vector x as, x =
[x(1); ...;x(d)]. Let support(x) denote the set of coordinates where x is nonzero, i.e.

support(x) = {i ∈ [d]|x(i) 6= 0} ⊆ [d].

Denote progβ(x) as the highest index whose entry is β−far from zero.

progβ(x) = max{i ∈ [d]||x(i)| > β} ∈ [d].
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Note that the function progβ( · ) is decreasing in β. The function we use to prove the theorem is the
same as in [2, 5]. We denote

fd(x) = −Ψ(1)Φ(x(1)) +

d∑
i=2

(
Ψ(−x(i−1))Φ(−x(i))−Ψ(x(i−1))Φ(x(i))

)
, where

Ψ(x) =

{
0, x ≤ 1/2

exp(1− 1
(2x−1)2 ), x > 1/2

,Φ(x) =
√
e

∫ x

−∞
e−

t2

2 dt.

The above function satisfies the following important properties,
Lemma 17 (Lemma 2 in [2]). The function fd satisfies the following properties,

1. fd(0)− infx fd(x) ≤ 12d.

2. fd is L0-smooth, where L0 = 152.

3. For all x, ‖∇fd(x)‖∞ ≤ 23.

4. For all x, prog0(∇fd(x)) ≤ prog 1
2
(x) + 1

5. For all x, if prog1(x) < d, then ‖∇fd(x)‖2 ≥ 1.

We also define the stochastic oracle gd(x) as below

gd(x)(i) =

(
1 + 1

{
i = prog 1

4
(x) + 1

}(z
p
− 1

))
∂

∂x(i)
fd(x)

where z ∼ Bernoulli(p). The stochasticity of gd(x) is only in the (prog 1
4
(x) + 1)th coordinate. It is

easy to see that gd(x) is a probability-p zero chain as in [2, Definition 2] i.e. it satisfies

P
(
∃x, s.t. prog0(gd(x)) = prog 1

4
(x) + 1

)
≤ p,

P
(
∃x, s.t. prog0(gd(x)) > prog 1

4
(x) + 1

)
= 0.

The second claim is because progβ( · ) is decreasing in β and

prog 1
4
(∇fd(x)) ≤ prog0(∇fd(x)) ≤ prog 1

2
(x) + 1 ≤ prog 1

4
(x) + 1 .

The first claim is because if z = 0, then we explicitly set the (prog 1
4
(x) + 1)th coordinate to 0. The

stochastic gradient additionally has bounded α-moment as we next show.
Lemma 18. The stochastic oracle above is an unbiased estimator of the true gradient, and for any
α ∈ (1, 2]

E[‖gd(x)‖α] ≤ 2‖∇fd(x)‖α + 23α
2

pα−1
.

Proof. The unbiased-ness is easy to verify. For the bounded α-moment, observe that only the
(prog 1

4
+ 1)-th coordinate is noisy and differs by a factor of ( zp − 1). Hence, we have

E[‖gd(x)‖α] ≤ 2‖∇fd(x)‖α + 2E[‖gd(x)−∇fd(x)‖α]

≤ 2‖∇fd(x)‖α + ‖∇fd(x)‖α∞E
[
|z
p
− 1|α

]
≤ 2‖∇fd(x)‖α + ‖∇fd(x)‖α∞

p(1− p)α + (1− p)pα

pα

≤ 2‖∇fd(x)‖α + 23α
2

pα−1

The first inequality followed from Jensen’s inequality and the convexity of ‖ · ‖α for α ∈ (1, 2]:

‖u+ v‖α ≤ 4‖u+v
2 ‖

α ≤ 2(‖u‖α + ‖v‖α) for any u, v .
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Now we are ready to prove Theorem 6. Given accuracy parameter ε, suboptimality ∆ = f(0)− f∗,
smoothness constant L, and bounded α−moment Gα, we define

f(x) =
Lλ2

152
fd(

x

λ
),

where λ = 304ε
L and d = b ∆L

7296ε2 c. Then,

g(x) =
Lλ

152
gd(x/λ) = 2εgd(x/λ).

Using Lemma 18, we have

E[‖g(x)‖α] ≤ 8εα‖∇fd(x)‖α +
5000εα

pα−1

When G ≥ 4
√

∆L, we can set p = (5000ε)
α
α−1

(G−4
√

∆L)
α
α−1

and get E[‖g(x)‖α] ≤ Gα.

Let xk be the output of any zero-respecting algorithm A. By [2, Lemma 1], we know that with
probability at least 1/2, prog1(xk) ≤ prog0(xk) < d for all k ≤ (d−1)

2p . Now applying Lemma 17.5,

we have that for all k ≤ (d−1)
2p :

E[‖∇f(xk)‖] ≥ 1

2

Lλ

152
E[1‖∇fd(xk/λ)‖ | {prog1(xk) < d}] ≥ ε .

Therefore, E‖∇f(xk)‖ ≥ ε, for all k ≤ (d−1)
2p = (G−4

√
∆L)

α
α−1 ∆L

7296×5000
α
α−1 ε

2+ α
α−1

= c(α)(G −

4
√

∆L)
α
α−1 ∆Lε−

3α−2
α−1 . By eliminating ε, we can rewrite this in terms of k. Finally, the tech-

niques from [2, Theorem 3] show how to lift lower-bounds for zero-respecting algorithms to any
randomized method.

H A Comparison with [25]

We are not the first to study the heavy-tailed noise behavior in neural network training. The novel
work by Simsekli et al. [25] studies the noise behavior of AlexNet on Cifar 10 and observed that
the noise does not seem to come from Gaussian distribution. However, in our AlexNet training
with ImageNet data, we observe that the noise histogram looks Gaussian as in Figure 5(a, b). We
believe the difference results from that in [25], the authors treat the noise in each coordinate as an
independent scaler noise, as described in the original work on applying tail index estimator. We
on the other hand, consider each the noise as a high dimensional random vector computed from a
minibatch. We are also able to observe heavy tailed noise if we fix a single minibatch and plot the
noise in each dimension, as shown in Figure 5(c). The fact that noise is well concentrated on Cifar is
also observed by Panigrahi et al. [20].
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Figure 5: (a) Noise histogram of AlexNet on ImageNet data at initialization. (b)Noise histogram of
AlexNet on ImageNet data at 5k iterations. (c) The per dimension noise distribution within a single
minibatch at initialization.

Furthermore, we used the tail index estimator presented in [25] to estimate the tail index of noise
norm distribution. Though some assumptions of the estimator are not satisfied (in our case, the
symmetry assumption; in [25], the symmetry assumption and independence assumption), we think it
can be an indicator for measuring the “heaviness” of the tail distribution.
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(a) ImageNet training, α̂ = 1.99
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(b) Bert pretraining, α̂ = 1.08

Figure 6: Tail index estimation of gradient noise in ImageNet training and BERT training.

I ACClip in ImageNet Training

For completeness, we test ACClip on ImageNet training with ResNet50. After hyperparameter tuning
for all algorithms, ACClip is able to achieve better performance compared to ADAM, but worse
performance compared to SGD. This is as expected because the noise distribution in ImageNet +
ResNet50 training is well concentrated. The validation accuracy for SGD, ADAM, ACClip are
0.754, 0.716, 0.730 respectively.
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Figure 7: Validation loss for ResNet50 trained on ImageNet. SGD outperforms Adam and ACClip.
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