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Abstract

Inspired by the robustness and efficiency of sparse representation in sparse coding
based image restoration models, we investigate the sparsity of neurons in deep net-
works. Our method structurally enforces sparsity constraints upon hidden neurons.
The sparsity constraints are favorable for gradient-based learning algorithms and
attachable to convolution layers in various networks. Sparsity in neurons enables
computation saving by only operating on non-zero components without hurting
accuracy. Meanwhile, our method can magnify representation dimensionality and
model capacity with negligible additional computation cost. Experiments show that
sparse representation is crucial in deep neural networks for multiple image restora-
tion tasks, including image super-resolution, image denoising, and image compres-
sion artifacts removal. Code is available at https://github.com/ychfan/nsr.

1 Introduction

Sparse representation plays a critical role in image restoration problems, such as image super-
resolution [1, 2, 3], denoising [4], compression artifacts removal [5], and many others [6, 7]. These
tasks are inherently ill-posed, where the input signal usually has insufficient information while the
output has infinitely many solutions w.r.t. the same input. Thus, it is commonly believed that sparse
representation is more robust to handle the considerable diversity of solutions.

Sparse representation in sparse coding is typically high-dimensional but with limited non-zero
components. Input signals are represented as sparse linear combinations of tokens from a dictionary.
High dimensionality implies larger dictionary size and generally leads to better restoration accuracy,
since a more massive dictionary is capable of more thoroughly sampling the underlying signal space,
and thus more precisely representing any query signal. Besides, sparsity limits numbers of non-zero
elements work as an essential image prior, which has been extensively investigated and exploited to
make restoration robust. Sparsity also brings computational efficiency by ignoring zero parts.

Deep convolutional neural networks for image restoration [8, 9, 10, 11, 12] extend the sparse coding
based methods with repeatedly cascaded structures. The deep network based approach was firstly
introduced to improve the performance in [13] and conceptually connected with previous sparse
coding based methods. A simple network, with two convolutional layers bridged by a non-linear
activation layer, can be interpreted as: activation denotes sparse representation; non-linearity enforces
sparsity and convolutional kernels consist of the dictionary. SRResNet [14] extended the basic
structure with skip connection to form a residual block and cascaded a large number of blocks to
construct very deep residual networks.

Sparsity of hidden representation in deep neural networks cannot be efficiently solved by iterative
optimization as sparse coding, since deep networks are feed-forward during inference. Sparsity of
neurons is commonly achieved by ReLU activation in [15] by thresholding negative values to zero
independently in each neuron. Still, its 50% sparsity on random vectors is far from the sparsity
definition on the overall number of non-zero components. Oppositely, sparsity constraints are more
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actively used in model parameters to achieve network pruning [16]. However, hidden representation
dimensionality is reduced in pruned networks, and accuracy may hurt.

In this paper, we propose a method that can structurally enforce sparsity constraints upon hidden
neurons in deep networks but also keep representation in high dimensionality. Given high-dimensional
neurons, we divide them into groups along channels and allow only one group of neurons can be
non-zero each time. The adaptive selection of the non-sparse group is modeled by tiny side networks
upon context features. And computation is also saved when only performed on the non-zero group.
However, the selecting operation is not differentiable, so it is difficult to embed the side networks
for joint training. We relax the sparse constraints to soft and approximately reduce as a sparse linear
combination of multiple convolution kernels instead of hard selection. We further introduce additional
cardinal dimensions to decompose sparsity prediction into sub-problems by splitting each sparse
group and concatenating after cardinal-independent combination of parameters.

To demonstrate the significance of neural sparse representation, we conduct extensive experiments
on image restoration tasks, including image super-resolution, denoising, and compression artifacts
removal. Our experiments conclude that: (1) dedicated constraints are essential to achieve neural spar-
sity representation and benefit deep networks; (2) our method can significantly reduce computation
cost and improve accuracy, given the same size of model footprint; (3) our method can dramatically
enlarge the model capacity and boost accuracy with negligible additional computation cost.

2 Related Work

2.1 Sparse coding and convolutional networks

Here we briefly review the application of sparsity in image restoration and its relation to convolutional
networks. Considering image super-resolution as an example of image restoration, sparse coding
based method [1] assumes that input image signalX can be represented by a sparse linear combination
α over dictionary D1, which typically is learned from training images as

X ≈ D1α, for some α ∈ Rn and ‖α‖0 � n. (1)

In [3], a coupled dictionary, D2, for restored image signal Y is jointly learned with D1 as well as its
sparse representation α by

Y ≈ D2α. (2)

Convolutional networks, which consist of stacked convolutional layers and non-linear activation
functions, can be interpreted with the concepts from sparse coding [13]. Given for instance a small
piece of network with two convolutional layers with kernels W1,W2 and a non-linear function F , the
image restoration process can be formalized as

Y =W2 ∗ F (W1 ∗X). (3)

The convolution operation ∗ with W1 is equivalent to projecting input image signal X onto dictionary
D1. The convolution operation ∗ with W2 is corresponding to the projection of the signal representa-
tion on dictionary D2. These two convolutional layers structure is widely used as a basic residual
block and stacked with multiple blocks to form very deep residual networks in recent advances [14, 8]
of image restoration.

Dimensionality of hidden representation or number of kernels in each convolutional layer determines
the size of dictionary memory and learning capacity of models. However, unlike sparse coding,
representation dimensionality in deep models is usually restricted by running speed or memory usage.

2.2 Sparsity in parameters and pruning

Exploring the sparsity of model parameters can potentially improve robustness [17], but sparsity
in parameters is not sufficient and necessary to result in sparse representation. Furthermore, group
sparsity upon channels and suppression of parameters close to zero can achieve node pruning [18,
16, 19, 20, 21], which dramatically reduces inference computation cost. Despite efficiency, node
pruning reduces representation dimensionality proportionally instead of sparsity, limits representation
diversity, and leads to accuracy regression.
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Figure 1: Illustration of computation reduction in two-layer neural networks with sparse hidden
nodes in a simplified matrix multiplication example. Left: network with sparsity constraints, which
only allow one group with c hidden nodes to be non-zero over kc nodes in total. Right: reduced
computation with only W i

1 and W j
2 , since other activation nodes are zero. (Grayscale reflects

magnitude of matrix values. Matrix multiplication is in right to left order.)

2.3 Thresholding and gating

Thresholding function, ReLU [22] for example, plays the similar role of imposing the sparsity
constraints [15] by filtering out negative values to zero, and contributes to significant performing
improvement over previous activation functions, i.e., hyperbolic tangent. Although ReLU statistically
gives only 50% sparsity over random vectors, there is still a significant gap between sparsity definition
in Eq. 1. Gating mechanism, in Squeeze-and-Excitation [23, 24], for example, scales hidden neurons
with adaptive sigmoid gates and slightly improves sparsity besides noticeable accuracy improvements.
Both thresholding and gating are applied independently to hidden neurons and could not inherently
guarantee global sparsity in Eq. 1.

3 Methodology

We propose novel sparsity constraints to achieve sparse representation in deep neural networks.
Relaxed soft restrictions are more friendly to gradient-based training. Additional cardinal dimension
refines the constraints and improves the diversity of sparse representation.

3.1 Sparsity in hidden neurons

Unlike the methods discussed in Section 2.3 only considering local sparsity for each neuron indepen-
dently, our approach enforces global sparsity between groups. Specifically, the hidden neurons are
divided into k groups with c nodes in each group, and only one group is allowed to contain non-zero
values. Correspondingly, convolution kernels can also be divided upon connected hidden neurons.
Then only the kernels connected to non-zero neurons need to be accounted. Formally, for networks
structure in Eq. 3, the convolution kernels are divided as W1 = [(W 1

1 )
T , (W 2

1 )
T , . . . (W k

1 )
T ]T and

W2 = [W 1
2 ,W

2
2 , . . .W

k
2 ]. Then the Eq. 3 can be rewritten as
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2 ,W

2
2 , . . .W

k
2 ]F ([(W

1
1 )

T , (W 2
1 )

T , . . . (W k
1 )

T ]TX)

=

k∑
i=1

W i
2 ∗ F (W i

1 ∗X).
(4)

When sparsity constraints only allow the ith group of neurons with non-zero components, then Eq. 4
can be reduced, as shown in Figure 1, and formally as

Y =W i
2 ∗ F (W i

1 ∗X). (5)

The proposed sparsity is supposed to pick the node group with the largest amplitude and cannot be
achieved without computing the values of all the nodes. In our approach, the selection of the only
non-zero group is modeled by a multi-layer perceptron (MLP) with respect to the input signal X .

Regular convolution operations need the kernels shared for every pixel. Hence the selection should
also be identified through the spatial space. We are inspired by the Squeeze-and-Excitation [23, 24]
operation and propose to add pooling operation before the MLP and boardcasting operation for group
selection. The above procedure can be formalized as

i = argmax
j∈[[1,k]]

MLP(Pool(X), j). (6)
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Note that, as most of patch-based algorithms [1, 24] for image restoration, the pooling operation
should be with respect to a specific patch size instead of the whole image.

Comparison to thresholding and gating. The proposed method limits the number of non-zero
entities under 1/k of all the nodes in hidden-layer representation, which is more closed to sparsity
definition in Eq. 1 than thresholding and gating methods discussed in section 2.3. The proposed
method also dramatically reduces computation cost by k times by only considering the adaptively
selected group, which is not possible with thresholding and gating methods.

Comparison to node pruning. Node pruning is designed to diminish activation nodes by zeroing all
the related trainable parameters. The pruned nodes stick to zero no matter how the input signal varies,
which substantially reduces representation dimensionality. In our method, the sparsity adaptively
depends on input. Although the input inherently keeps the high dimensionality in representation, our
method saves computation and memory cost as narrow models.

Comparison to block sparse coding. Our method with multi-level sparsity constraints, by ReLU
activation in the main networks and Softmax activation in the side MLP, shares a similar idea with
block sparsity [25]. The sparsity constraints are enforced into model structure instead of additional
objective functions which is more favorable for efficiency and optimization in deep models.

Comparison to group sparse coding. Group sparse coding [26] divides input instances into groups
and ensures robust and stable sparse patterns within groups. Our method shares the sparsity group
selection for every pixel in an image patch, which achieves robustness and efficiency simultaneously.
Experiments show that appropriate patch size benefits model accuracy.

3.2 Relaxed soft sparsity

Similar as L0-norm in sparse coding, the adaptive sparse group selection in Eq. 6 is not differentiable
and feasible to be jointly learned with neural networks. Although Gumbel trick [27] is proposed to
re-parameterize the argmax with respect to a conditional probability distribution, it does not achieve
convincing results in our experiment settings.

The sparsity constrains are relaxed by substituting selection with softmax as a smooth approximation
of max. Instead of predicting index over k, the MLP is relaxed to predict probability over groups
β = [β1, β2, . . . βk] ∈ Rk

(0,1) with softmax function σ(·) by

β = σ(MLP(Pool(X))). (7)

Then, the two-layer structure in Eq. 4 is updated to adaptive weighted sum of groups as

Y =

k∑
i=1

βiW
i
2 ∗ F (W i

1 ∗X). (8)

With weighted summation, Eq. 8 cannot be directly reduced as Eq.5, since none of group weights is
exactly zero. Fortunately, given sparse assumption of softmax outputs, ∃i, s.t. βi � βj → 0,∀j 6= i,
and piece-wise linear activation function F , ReLU for example, it can be proved that weighted sum
of hidden neurons can be approximately reduced to weighted sum of parameters W i, as shown in
Figure 2, and formally as

Y ≈

(
k∑

i=1

√
βiW

i
2

)
∗ F (

(
k∑

i=1

√
βiW

i
1

)
∗X). (9)

Note that the two
√
β applied to W1 and W2 are not necessary to be identical to achieve the

approximation. Our experiments show that independently predicting weights for W1 and W2 has
benefits for accuracy.

In this way, networks restricted by soft sparse constraints can be as efficient as those with hard
constraints. And the only additional computation cost from the interpolation of convolution kernels is
negligible comparing with convolution operations with the image.

Comparison to conditional convolution. CondConv [28] has similar operation of the adaptive
weighed sum of convolution kernels as our relaxed soft sparsity approach. However, CondConv uses
the sigmoid function to normalize the weights of kernels instead of softmax function in our method.
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Figure 2: Illustration of weighted neurons in soft sparsity constraints and reduced counterpart with
weighted sum of parameters. Left: network with soft sparsity constraints, weights βi are applied to
neurons in k groups. Right: approximate reduction by firstly weighted summing of parameter groups
into a small slice then applying it to features.
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Figure 3: Illustration of our method. Features of image patch are firstly spatially pooled and feed in
MLP with softmax activation to predict sparsity constraints γ ∈ Rd,k. Softmax function is performed
along k axis. Convolution kernel W is divided into k sparsity groups and c channels per group W i.
Each group is further divided into d cardinal groups and c/d channels per group W j,i. The cardinal-
independent weighted sum is performed as Eq. 10. Finally, the aggregated kernel Ŵ convolves
with the original features. (Colors reflect sparsity groups and grayscale reflects magnitude of matrix
values.)

Hence, no sparsity constraints are explicitly applied in CondConv, and our experiments show that
sparsity is very important for model accuracy. Dynamic convolution [29] also introduces softmax
function upon CondConv, but our sparsity weights are conditional on neighbor pixels instead of the
whole image which can handle more varieties for image restoration tasks.

3.3 Cardinality over sparsity groups

Modeling sparsity between groups with a simple MLP is challenging, especially when dimensionality
c per group grows. Also, bonding channels within pre-defined groups limits diversity of the sparsity
patterns. Inspired by group convolution in ResNeXt [30], we split the c nodes per sparsity group
into d cardinal groups, and each cardinal group with c/d nodes is independently constrained along
k sparsity groups, as shown in Figure 3. Formally, the averaging weights are extended to matrix
γ = [γ1, γ2, . . . γd] ∈ Rd,k

(0,1) and γi = σ(MLPi(Pool(X))), then weighted averaged convolution
kernel becomes

Ŵ =
d

concat
j=1

(
k∑

i=1

γj,iW
j,i

)
, (10)

where W i = [W 1,i,W 2,i, . . .W d,i] and W j,i is the jth cardinal group and ith sparsity group.
concat is concatenation operation along the axis of output channels. Notably, with cardinal grouping,
Squeeze-and-Excitation [23] operation becomes a particular case of our approach when d = c, k = 1
and the MLP activation is substituted with sigmoid function.
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4 Experiments

4.1 Settings

Datasets and benchmarks. We use multiple datasets for image super-resolution, denoising, and
compression artifacts removal separately. For image super-resolution, models are trained with DIV2K
[31] dataset which contains 800 high-quality (2K resolution) images. The DIV2K also comes with
100 validation images, which are used for ablation study. The datasets for benchmark evaluation
include Set5 [32], Set14 [2], BSD100 [33] and Urban100 [34] with three up-scaling factors: ×2,
×3 and ×4. For image denoising, training set consists of Berkeley Segmentation Dataset (BSD)
[33] 200 images from training split and 200 images from testing split, as [35]. The datasets for
benchmark evaluation include Set12, BSD64 [33] and Urban100 [34] with additive white Gaussian
noise (AWGN) of level 15, 25, 50. For compression artifacts removal, training set consists of 91
images in [1] and 200 training images in [33]. The datasets for benchmark evaluation include LIVE1
[36] and Classic5 with JPEG compression quality 10, 20, 30 and 40. Evaluation metrics include
PSNR and SSIM [37] for predicted image quality in luminance or grayscale, only DIV2K is evaluated
in RGB channels. FLOPs per pixels is used to measure efficiency, because the runtime complexity is
proportional input image size for fully convolutional models.

Training settings. Models are trained with nature images and their degraded counterparts. Online
data augmentation includes random flipping and rotation during training. Training is based on
randomly sampled image patches for 100 times per image and epoch. And total training epochs are
30. Models are optimized with L1 distance and ADAM optimizer. Initial learning rate is 0.001 and
multiplied by 0.2 at 20 and 25 epochs.

4.2 Ablation study

We conduct ablation study to prove the significance of neural sparse representation. The experiments
are evaluated on DIV2K validation set for image super-resolution with ×2 up-scaling under PSNR.
We use WDSR [38] networks with 16 residual blocks, 32 neurons and 4× width multiplier as the
baseline, and set k = 4 for sparsity groups by default.

Sparsity constraints. Sparsity constraints are essential for representation sparsity. We implement
the hard sparsity constraints with Gumbel-softmax to simulate the gradient of hardmax and compare
it with soft sparsity achieved by softmax function. The temperature in softmax also controls the
sharpness of output distribution. When the temperature is small, softmax outputs are sharper and
closer to hardmax. Thus gradient will vanish. When the temperature is large, softmax outputs are
more smooth, then it will contradict with our sparsity assumption in Eq. 9 for approximation. We
also compare them with a similar model with sigmoid function as MLP activation instead of sparsity
constraints in CondConv [28]. Results in Table 1 show that Gumbel-based hard-sparsity methods are
not feasible and even worse than the baseline without sparsity groups. Temperature is necessary to
be initialized with proper value to achieve better results, which coincides with the above analysis.
Sigmoid also gets worse results than softmax because sigmoid cannot guarantee sparsity, which also
agrees with our comparison in the previous section. In addition, sharing the group selection weights
β between two convolution layers adjacent to the activation layer drops PSNR from 34.87 dB to
34.85 dB.

1 2 4 8 16 32
Cardinality

34.85

34.90

PS
NR

Sparse with cardinal dim
Squeeze-and-Excitation

Figure 4: Comparison of cardinality.

Cardinality. Cardinal dimension reduces the ac-
tual dimensionality and dependency between chan-
nels in sparsity groups and improves the diversity
of linear combination weights over convolution ker-
nels. Results of models with different cardinalities
in Fig. 4 show that increasing cardinality constantly
benefits accuracy. We also compare with Squeeze-
and-Excitation (SE) model, which is a special case of
our method, under the same FLOPs. And our models
significantly outperform the SE model.

Efficiency. Our method can approximately save computation by k times with k sparsity groups but
remains the same model size or number of parameters. Results in Table 2 have the same model size
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Table 1: Comparison of different sparsity constrains.

Sparsity N/A Sigmoid Gumbel Softmax(τ = 10) Softmax(τ = 1) Softmax(τ = 0.1)
PSNR 34.76 34.81 34.45 34.86 34.87 34.83

Table 2: Models with the same size. FLOPs is
inversely proportional to group size.

Group size # of residual blocks
2 4 8 16

N/A 33.91 34.29 34.56 34.76
2 33.92 34.30 34.57 34.77
3 33.86 34.23 34.51 34.71
4 33.81 34.21 34.41 34.68

# params (M) 0.15 0.30 0.60 1.2

Table 3: Models with the same FLOPs. Model
size is proportional to group size.

Group size # of residual blocks
2 4 8 16

N/A 33.91 34.29 34.56 34.76
2 33.98 34.38 34.65 34.83
4 34.07 34.45 34.70 34.87
8 34.14 34.50 34.74 34.89
16 34.17 34.56 34.77 34.91

FLOPs (M) 0.15 0.30 0.60 1.2

in columns and show that our method can save at least half of computation without hurting accuracy
uniformly for various model sizes.

Capacity. Our method can also extend model capacity or number of parameters by k times with k
sparsity groups but only with negligible additional computation cost. Results in Table 3 have the
same computation cost in columns and show that our method can continually improve accuracy by
extending model capacity up to 16 times.

Figure 5: Computation time (in milliseconds).
Group size N/A 2 4 8 16

fixed model size 1.96 1.17 0.77 0.56 0.70
fixed FLOPs 1.96 2.12 2.12 2.08 2.08

Computation time. We follow the protocol
as Squeeze-and-Excitation networks using
CPU inference time to address the latency for
embedded device applications. We evaluate
the forward running time of a single convolu-
tion layer of our implementation in PyTorch.
The running time is the average of 100 times on quad-core Intel Core i5-2500 at 3.30GHz. We set
batch size as 100, input and output channels as 64, patch size as 64 × 64. The time for additional
computation is around 5-10%.

Visualization of kernel selection. It is difficult to directly visualize the sparsity of high-dimensional
hidden representation, we take the selection of kernels as a surrogate. As Fig. 6, in the first block, the
weights are almost binary everywhere and only depend on color and low-level cues. In later blocks,
the weights are more smooth and more attentive to high-frequency positions with more complicated
texture. And the last layer is more correlated to high-level context, for example, tree branches in the
first image and lion in the second image.

Figure 6: Visualization of kernel selection for network with 2 sparsity group and 4 residual blocks.
First column shows input images. Later columns shows softmax MLP outputs of the second convolu-
tional layer in each block. Blue and yellow denotes two groups respectively.
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Table 4: Public image super-resolution benchmark results and DIV2K validation results in PSNR /
SSIM. The better resutls with small and large EDSR are underlined and in bold respectively.

Dataset Scale Bicubic VDSR EDSR (S) Sparse + EDSR (L) Sparse -

×2 33.66 / 0.9299 37.53 / 0.9587 37.99 / 0.9604 38.02 / 0.9610 38.11 / 0.9601 38.23 / 0.9614
Set5 ×3 30.39 / 0.8682 33.66 / 0.9213 34.37 / 0.9270 34.43 / 0.9277 34.65 / 0.9282 34.62 / 0.9289

×4 28.42 / 0.8104 31.35 / 0.8838 32.09 / 0.8938 32.25 / 0.8957 32.46 / 0.8968 32.55 / 0.8987
×2 30.24 / 0.8688 33.03 / 0.9124 33.57 / 0.9175 33.60 / 0.9191 33.92 / 0.9195 33.94 / 0.9203

Set14 ×3 27.55 / 0.7742 29.77 / 0.8314 30.28 / 0.8418 30.37 / 0.8443 30.52 / 0.8462 30.57 / 0.8475
×4 26.00 / 0.7027 28.01 / 0.7674 28.58 / 0.7813 28.66 / 0.7836 28.80 / 0.7876 28.79 / 0.7876

×2 29.56 / 0.8431 31.90 / 0.8960 32.16 / 0.8994 32.26 / 0.9008 32.32 / 0.9013 32.34 / 0.9020
B100 ×3 27.21 / 0.7385 28.82 / 0.7976 29.09 / 0.8052 29.15 / 0.8074 29.25 / 0.8093 29.26 / 0.8100

×4 25.96 / 0.6675 27.29 / 0.7251 27.57 / 0.7357 27.61 / 0.7372 27.71 / 0.7420 27.72 / 0.7414

×2 26.88 / 0.8403 30.76 / 0.9140 31.98 / 0.9272 32.57 / 0.9329 32.93 / 0.9351 33.02 / 0.9367
Urban100 ×3 24.46 / 0.7349 27.14 / 0.8279 28.15 / 0.8527 28.43 / 0.8587 28.80 / 0.8653 28.83 / 0.8663

×4 23.14 / 0.6577 25.18 / 0.7524 26.04 / 0.7849 26.24 / 0.7919 26.64 / 0.8033 26.61 / 0.8025

×2 30.80 / 0.9339 37.22 / 0.9750 38.55 / 0.9769 38.94 / 0.9776 39.10 / 0.9773 39.31 / 0.9782
Manga109 ×3 26.95 / 0.8556 32.01 / 0.9340 33.45 / 0.9439 33.77 / 0.9462 34.17 / 0.9476 34.27 / 0.9484

×4 24.89 / 0.7866 28.83 / 0.8870 30.35 / 0.9067 30.63 / 0.9106 31.02 / 0.9148 31.10 / 0.9145

DIV2K
validation

×2 31.01 / 0.8923 33.66 / 0.9290 34.61 / 0.9372 34.87 / 0.9395 35.03 / 0.9407 35.07 / 0.9410
×3 28.22 / 0.8124 30.09 / 0.8590 30.92 / 0.8734 31.10 / 0.8767 31.26 / 0.8795 31.30 / 0.8797
×4 26.66 / 0.7512 28.17 / 0.8000 28.95 / 0.8178 29.10 / 0.8223 29.25 / 0.8261 29.29 / 0.8263

FLOPs (M) - 0.67 1.4 1.4 43 9.5

Table 5: Benchmark image denoising results of PSNR / SSIM for various noise levels. Training and
testing protocols are followed as in [35]. The best results are in bold and the second are underlined.

Dataset Noise BM3D WNNM DnCNN Baseline Sparse - Sparse +

Set12
15 32.37 / 0.8952 32.70 / 0.8982 32.86 / 0.9031 32.97 / 0.9044 33.00 / 0.9048 33.04 / 0.9054
25 39.97 / 0.8504 30.28 / 0.8557 30.44 / 0.8622 30.59 / 0.8655 30.63 / 0.8667 30.68 / 0.8676
50 26.72 / 0.7676 27.05 / 0.7775 27.18 / 0.7829 27.40 / 0.7939 27.46 / 0.7954 27.51 / 0.7969

BSD68
15 31.07 / 0.8717 31.37 / 0.8766 31.73 / 0.8907 31.79 / 0.8925 31.81 / 0.8928 31.83 / 0.8931
25 28.57 / 0.8013 28.83 / 0.8087 29.23 / 0.8278 29.30 / 0.8311 29.33 / 0.8319 29.35 / 0.8327
50 25.62 / 0.6864 25.87 / 0.6982 26.23 / 0.7189 26.35 / 0.7272 26.37 / 0.7265 26.39 / 0.7274

Urban100
15 32.35 / 0.9220 32.97 / 0.9271 32.68 / 0.9255 32.94 / 0.9309 32.96 / 0.9316 33.05 / 0.9324
25 29.70 / 0.8777 30.39 / 0.8885 29.97 / 0.8797 30.33 / 0.8930 30.36 / 0.8932 30.48 / 0.8959
50 25.95 / 0.7791 26.83 / 0.8047 26.28 / 0.7874 26.76 / 0.8118 26.84 / 0.8113 26.95 / 0.8122

FLOPs (M) - - 0.55 0.59 0.30 0.60

4.3 Main results

In this section, we compare our method on top of the state-of-the-art methods on image super-
resolution, image denoising, and image compression artifact removal.

Super-resolution. We compare our method on top of EDSR [8], the state-of-the-art single image
super-resolution methods, also with bicubic upsampling, VDSR [39]. As shown in Table 4, the small
EDSR(S) has 16 residual blocks and 64 neurons per layer, and our sparse+ model extends it to 4
sparsity groups with cardinality 16 and outperforms on all benchmarks with 4× model capacity but
negligible additional computation cost. The large EDSR(L) has 32 residual blocks and 256 neurons
per layer, and our sparse- model has 32 residual blocks, 128 neurons per layer, 4 sparsity groups with
cardinality 16. Then they have a similar model footprint and on-par benchmark accuracy but 4×
computation cost difference.

Denoising. We compare our method with state-of-the-art image denoising methods: BM3D [40],
WNNM [41] and DnCNN [35]. As shown in Table 5, our baseline model is residual networks with
16 blocks, 32 neurons per layer, 2× width multiplier [38, 42], and has similar footprint as DnCNN
but better performance because of residual connections. Our sparse- model with 2 sparsity groups
and 1× width multiplier keeps the model size as baseline but gains 2× computation reduction with
better performance. Our sparse+ model adds 2 sparsity groups over baseline model, doubles model
capacity, and boosts performance with negligible computation cost.

Compression artifact removal. We compare our method with state-of-the-art image compression
artifact removal methods: JPEG, SA-DCT [43], ARCNN [44] and DnCNN [35]. As shown in Table 6,
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Table 6: Compression artifacts reduction benchmark results of PSNR / SSIM for various compression
qualities. Training and testing protocols are followed as in [35]. The best results are in bold.

Dataset q JPEG SA-DCT ARCNN DnCNN Baseline Sparse -

LIVE1

10 27.77 / 0.7905 28.65 / 0.8093 28.98 / 0.8217 29.19 / 0.8123 29.36 / 0.8179 29.39/0.8183
20 30.07 / 0.8683 30.81 / 0.8781 31.29 / 0.8871 31.59 / 0.8802 31.73 / 0.8832 31.79/0.8839
30 31.41 / 0.9000 32.08 / 0.9078 32.69 / 0.9166 32.98 / 0.9090 33.17 / 0.9116 33.21/0.9121
40 32.35 / 0.9173 32.99 / 0.9240 33.63 / 0.9306 33.96 / 0.9247 34.18 / 0.9273 34.23/0.9276

Classic5

10 27.82 / 0.7800 28.88 / 0.8071 29.04 / 0.8111 29.40 / 0.8026 29.54 / 0.8085 29.56/0.8087
20 30.12 / 0.8541 30.92 / 0.8663 31.16 / 0.8694 31.63 / 0.8610 31.72 / 0.8634 31.72/0.8635
30 31.48 / 0.8844 32.14 / 0.8914 32.52 / 0.8967 32.91 / 0.8861 33.07 / 0.8885 33.08/0.8891
40 32.43 / 0.9011 33.00 / 0.9055 33.34 / 0.9101 33.77 / 0.9003 33.94 / 0.9028 33.96/0.9031

FLOPs (M) - - 0.11 0.55 0.59 0.30

baseline and sparse- models have the same structure as the ones in denoising. Our method consistently
saves computation and improves performance on all the benchmark datasets and different JPEG
compression qualities.

5 Conclusions

In this paper, we have presented a method to structurally enforces sparsity constraints upon hidden
neurons to achieve sparse representation in deep neural networks. Our method trade-offs between
sparsity and differentiability, and is jointly learnable with deep networks iteratively. Our method is
packed as a standalone module and substitutable for convolution layers in various models. Evaluation
and visualization both illustrate the importance of sparsity in hidden representation for multiple
image restoration tasks. The improved sparsity further enables optimization of model efficiency and
capacity simultaneously.

6 Broader Impact

Image restoration algorithms can recover high-quality images from low-quality counterparts. The
algorithms can help people who cannot afford professional cameras to take photos with low-end
devices. However, many low-quality photos are taken under unwanted scenarios, i.e., sneak shots.
Powerful image restoration algorithms may contribute to related abuse. Low-level vision models
cannot identify inappropriate images because of lacking the capability for high-level understanding
of images. Our method can dramatically increase model capacity and increase the possibility to
identify inappropriate patterns by models. Moreover, as shown in Fig. 6, our model can automatically
explore high-level features, which benefits the capability to discover inappropriate images if we add
corresponding supervision in training.
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