
We thank all the reviewers. We hope the reviewers could increase the rating if the response addressed your concerns.1

G#1. General Comments: Convergence of the algorithm Theoretically, in Eq. (11), if we take λ→∞ and estimate2

R(f) sufficiently accurate, the solution will eventually become monotonic. In practice, we found that we usually find3

monotonic functions without using a lot of samples when estimating R(f), and we can further manage to do so easier4

by modifying R(f) = Ex∼Unif [min(b,−∂f(x))2], where b is a small positive constant (Please see Appendix A25

L402-404). Accordingly, we have revised the relevant sections of the paper by adding pertinent technical details.6

G#2. General Comments: All the learned models that we report performance about are certified monotonic.7

R1 Regarding Additional Feedback: 1. Arbitrary NN: Our main work is for ReLU networks, extension to more8

general activation functions are discussed in Appendix B2. 2. Are networks guaranteed monotonicity? All the9

networks reported are certified monotonic. We will make a note of this in the paper; see also G#1 and G#2. 3. A layer10

with only two neurons? You are correct that, in section 4.1, we use only two neurons for the sake of better illustration11

because it is a binary classification problem.12

R2 On the Implementation of R(f): The exact value of R(f) is intractable, and we approximate it by drawing13

samples of size 512 uniformly from the input domain during iterations of the gradient descent. Note that the samples14

we draw vary from iteration to iteration. By the theory of stochastic gradient descent, we can expect to minimize the15

object function well at convergence. Also, training NNs requires more than thousands of steps, therefore the overall16

size of samples can well cover the input domain. Our λ is just a tunable real number. See also G#1. We hope you could17

raise your score if this addresses your concern.18

R4 "We need to stop MILP early. Thus, even if no adversarial example is found, there is still no guarantee that the19

model is fully monotonic." MILP problems are NP-hard. In our implementation, we solve the exact solution without20

early stopping for the two-layer MILP problems, and the computation empirically only takes about several seconds21

when the hidden layer has 100 neurons (Fig. 3). Moreover, most MILP solvers are based on branch and bound, which22

provides a lower bound of the optimal solution and continuously tightens it. Therefore, it is in fact feasible to stop the23

algorithm whenever a lower bound is larger than zero, which provides certification but requires no exact solution. See24

also L149-159 for discussion.25

Regarding Numerical Studies: (1) While achieving similar test performance, our method generally use much less26

parameters than DLN. For example, in Loan Defaulter, we have 72% parameters less than DLN (see Table. 3). (2) To27

address the potential issue with only 3 runs, we report in the table below the average result in 10 runs (ours) of training28

loss, average test result and smallest verification result. (3) The difference of the three runs is only the random seed. (4)29

We provided sensitivity analysis on λ in Fig.6 in Appendix. Please see also the general response for more information.30

Datasets Test Acc (DLN) Training Loss (DLN) Test Acc (Ours) Training Loss (Ours) Uα
COMPAS 67.94% ± 0.27% 0.6124 68.83% ± 0.19% 0.5938 0.009

Blog Feedback 0.1608 ± 0.0006 0.1468 0.1584 ± 0.0003 0.1629 0.003
Loan Defaulter 65.12% ± 0.17% 0.6244 65.21% ± 0.03% 0.6235 0.005
Chest X-Ray 65.42% ± 0.13% 0.6232 66.07% ± 0.29% 0.6269 0.006

Hyperparameters of our method: Currently we adopt a simple strategy for choosing hyperparameters: (1) we start31

from λ = 1, and multiply λ by 10 every time the network fails to pass certification (L226-227). (2) we choose the32

architecture by grid-search using the validation set (see Appendix L399-404 for choice of grid).33

Hyperparameters of Baselines: Isotonic: Default in Scikit-learn package. XGBoost: Gird search parameters: maxi-34

mum tree depth, [3, 10]; learning rate η, [0, 1]; sub-sampling ratio, (0, 1]. Crystal and DLN: We used hyperparameters35

for the best reported results in corresponding papers.36

Right Panel of Fig. 1: It confirms that even the network looks feature-wise monotonic, we can still find adversarial37

sample xadv against x in high dimension. Specifically, it shows y = f(ax+ (1− a)xadv) w.r.t. a ∈ [−0.5, 1.5], with a38

as x-axis and y the y-axis. We will make that clear in future version.39

R5 Questions in "Weakness" Section: (1) Please refer to G#1 and G#2.40

(2) Thanks for pointing that out. It is beyond the scope of this work. We will investigate it in the future.41

(3) The results on the three binary classification tasks: Test Acc (Mono/Non-Mono): 2 vs. 7: 99.42% ±42

0.07% / 99.53%± 0.04% 8 vs. 3: 99.76%± 0.06% / 99.78%± 0.09% 7 vs.1: 99.85%± 0.08% / 99.82%± 0.04%.43

(4) (1) A,B,C,D refer to four different networks, with different structures, trained on different datasets. We will44

include the details in the future version. (2) Let us take a two-layer ReLU network, f =W2ReLU(W1x), for instance.45

Because ReLU(·) is a monotonically increasing function, we can simply verify the monotonicity of the network if46

all the elements in the matrix W2W1 is non-negative without our MILP formulation. Each element in the matrix is a47

multiplication of the weights on a path connecting the input to the output, hence named non-negative/negative paths.48

(5) We found that directly certifying DNNs with MILP without using two-layer decomposition fails to work completely49

due to the excessively high computational cost. See Appendix B.3 for more discussion.50

(6) Our method can be used to verify the monotonicity on the high-level features in the last few FC layers of CNNs51

(as what we do in MNIST result); it does not seem to make sense in general to assume monononicity on lower level52

features such as pixels.53


