
A Details of the Experiments

A.1 Details of the Datasets

Here we introduce the details of the datasets used in the experiments.

Dataset Task Feature Dimension Monotonic Features # Training # Test
COMPAS Classification 13 4 4937 1235
Blog Feedback Regression 276 8 47302 6968
Loan Defaulter Classification 28 5 418697 70212
Chest X-Ray Classification 4 tabular + image 2 4484 1122

Table 6: Dataset Summary

COMPAS: COMPAS [16] is a dataset containing the criminal records of 6,172 individuals
arrested in Florida. The task is to predict whether the individual will commit a crime again
in 2 years. The probability predicted by the system will be used as a risk score. We use
13 attributes for prediction. The risk score should be monotonically increasing w.r.t. four at-
tributes, number of prior adult convictions, number of juvenile felony, number
of juvenile misdemeanor, and number of other convictions.

Blog Feedback Regression: Blog Feedback [4] is a dataset containing 54,270 data points from
blog posts. The raw HTML-documents of the blog posts were crawled and processed. The prediction
task associated with the data is the prediction of the number of comments in the upcoming 24 hours.
The feature of the dataset has 276 dimensions, and 8 attributes among them should be monotonically
non-decreasing with the prediction. They are A51, A52, A53, A54, A56, A57, A58, A59. Please
refer to the link 4 for the specific meanings of these attributes. Because outliers could dominate the
MSE metric, we only use the data points with targets smaller than the 90th percentile.

Prediction of Loan Defaulters: Lending club loan data5 contains complete loan data for all loans
issued through 2007-2015 of several banks. Each data point is a 28-dimensional feature including
the current loan status, latest payment information, and other additional features. The task is to
predict loan defaulters given the feature vector. The possibility of loan default should be non-
decreasing w.r.t. number of public record bankruptcies, Debt-to-Income ratio, and
non-increasing w.r.t. credit score, length of employment, annual income.

Chest X-Ray: Without the constraints on structure, our method can easily go beyond tabular data.
Chest X-ray exams are one of the most frequent and cost-effective medical imaging examinations
available. NIH Chest X-ray Dataset6 has 5606 X-ray images with disease labels and patient infor-
mation. Hence, this dataset is a multi-modal dataset using both image and tabular data. We resize
all the images to 224× 224, and use a ResNet-18 pretrained on ImageNet as the feature extractor.
The task is to predict whether a patient has chest disease or not. The possibility of chest disease
is set to be non-decreasing to age and number of follow-up examinations. We did not count
the parameters in the ResNet-18 feature extractor. The benefit of monotonic neural networks is
that we can apply end-to-end training on the feature extractor. Other methods, including XGBoost,
Crystal and DLN, cannot do end-to-end training. Hence, for these methods, we extract the features of
the images using the pretrained ResNet-18, and train them using fixed image features without the
ResNet-18 in the training pipeline.

A.2 More Details in Implementation

To capture the non-monotonic relationship between the output and the non-monotonic features,
we only impose monotonic constraints on half of the neurons in each 2k-th layer. we cut off the
connection (i.e. set the weights on the edges to zero) between the monotonic features and the other
half of the neurons, so that removing the monotonic constraints will not change the monotonicity

4https://archive.ics.uci.edu/ml/datasets/BlogFeedback
5https://www.kaggle.com/wendykan/lending-club-loan-data
6https://www.kaggle.com/nih-chest-xrays/sample

13



Algorithm 1 Training Monotonic Neural Network with Monotonic Verification

1: Input: A randomly initialized neural network f , dataset D = {x(i), y(i)}ni=1 and the indices of
monotonic features Im = {m1,m2, . . . ,mk}.

2: Set the coefficient of the monotonic regularization λ = λ0.
3: Train f with loss function LD(f) + λRIm(f) till convergence.
4: if f2k:2k−1 passes monotonic verification for ∀k = 1, 2, . . . ,K then
5: Return monotonic neural network f
6: else
7: Increase λ and repeat the previous steps.
8: end if

of the network. Since our regularization requires sampling over the whole input domain, it requires
more samples as the dimension increase, which means that the sampling could fail if the dimension
of the input, d, is large (e.g. d = 276 in Blog Feedback). To address it, we add an additional linear
layer for dimension reduction on the non-monotonic features. This linear layer reduces the dimension
of the non-monotonic features to 10, and is also trained in an end-to-end manner.

Our method adopts a simple MLP structure. We select the number of the hidden layers (depth of
the network) from d = {1, 3} using the validation set. Since our regularization is applied on each
2k-th layer, the number of hidden neurons is fixed to 20 to avoid curse of dimension. For the neuron
numbers in each (2k + 1)-th hidden layer, we select from n ∈ {40, 100, 200}.

B Additional Formulation

B.1 Individual Monotonicity for Deep Networks

For networks with more than 2 layers, we provide the corresponding MILP formulation. We follow
the notations in Section 3.1. Consider the the following MLP,

f(x) =

nK∑
iK=1

aiK ReLU(wiK
K

>
xK + biKK ), xk = ReLU(w>k−1xk−1 + bk), k = 1, 2, . . . ,K.

Here, wk is the weight matrix of the k-th linear layer, and bk is the bias. wik
k is the ik-th row of the

weight matrix, and bikk is the ik-th element of the bias. Then we can replace all the ReLU activations
with the linear constrains (5), and thus creating a MILP problem. Comparing with the two-layer case,
we introduce a new variable zk and the corresponding constraints in every additional layer.

B.2 Monotonicity Verification with General Activation Function

Our method has been developed for piecewise linear functions. In this section, we extend it to to any
continuous activation functions. The idea is to bound the activation function with piecewise linear
functions. Specifically, consider a two-layer network,

f(x) =

n∑
i=1

aiσ(w
>
i x+ bi),

where σ is a general activation function. Then the partial derivative equals,

∂x`
f(x) =

n∑
i=1

σ′(w>i x+ bi)aiwi,`.

We can bound σ′(·) with step-wise constant functions. Assume we partition R into M consecutive,
non-overlapping intervals, such that R =

⋃M
m=1 [pm, qm), where qm = pm+1, p1 = −∞, qM =

+∞. Now we can bound σ′(·) with,

M∑
m=1

g−m I (x ∈ [pm, qm)) ≤ σ′(x) ≤
M∑
m=1

g+m I (x ∈ [pm, qm))

14



where g−m = infx∈[pm,qm) σ
′(x) and g+m = supx∈[pm,qm) σ

′(x), both of which can be calculated
explicitly. If we take M large enough, the upper and lower bound will approach the original σ′(·).
Now we have the following lower bound for ∂x`

f(x),

∂x`
f(x) ≥

n∑
i=1

M∑
m=1

gm,i I
(
w>i x+ bi ∈ [pm, qm)

)
aiwi,`,

where gm,i = g−m if aiwi,` ≥ 0 and gm,i = g+m if aiwi,` ≤ 0. Denote,

U` = min
x∈X

n∑
i=1

M∑
m=1

gm,i I
(
w>i x+ bi ∈ [pm, qm)

)
aiwi,`.

Replacing I(·) with the linear constraints in (8), U` becomes a MILP problem. Monotonicity is
certified if U` ≥ 0.

B.3 Naive Monotonicity Verification is Impractical on Deep Networks

Naive monotonicity verification could be problematic with deep networks. To illustrate the issue,
suppose f is a ReLU network with K layers, with nk neurons in the k-th layer. Then the objective
for computing U` = minx∈X ∂x`

f(x) is,

U` = min
x∈X

a diag(zK) wK diag(zK−1) . . . w2 diag(z1) w
`
1.

We ignore the constraints here for simplicity. Here, a is the weight matrix of the last linear layer,
and w`

1 refers to the `-th column of the input layer w1. zi =
(
z1i , . . . , z

ni
i

)
contains all the binary

decision variables for the indicator functions of the i-th layer, where ni denotes the number of neurons
in that layer. Expanding the objective leads to product of these binary variables, zi11 z

i2
2 . . . ziKK , which

makes the objective non-linear. We can linearize the problem by introducing new binary variables,

U` := min
x∈X

n∑
i=1

ai
∑

ik∈[1:nk]

[(
K∏
k=1

[wk−1]ik−1,ik

)
zi1,i2,...,iK

]

s.t. zi1,i2,...,iK ≤ z
ik
k , zi1,i2,...,iK ≥

K∑
k=1

zikk − (K − 1), ∀k ∈ {1, 2, . . . ,K}.

Here, [wk]ik,ik−1
refers to the element on the ik-th row and ik−1-th column in the weight matrix wk.

Intuitively, we replace the product zi11 z
i2
2 . . . ziKK with a new binary variable zi1,i2,...,iK and additional

constraints to linearize the problem. However, in this way, we need n1 × n2 × · · · × nk new binary
variables, which is an unaffordable large-scale MILP problem for typical MILP solvers. Even for
a small network with 3 hidden layers and 20 neurons in each hidden layer, there is more than 800
binary variables. Current MILP solvers will fail to solve this problem in limited time (e.g. 1 hour). To
summarize, naive monotonicity verification requires to consider all the paths in the neural network,
which greatly increases the number of integer variables.

C Additional Experiment Results

C.1 Influence of λ

λ indicates the magnitude of our monotonicity regularization. We empirically demonstrate how λ
influence the lower bound U`. We show 2 networks with d = 1, n = 100 (Net 1) and d = 3, n = 100
(Net 2) on COMPAS and Chest X-Ray. Generally, min`∈α U` increases as λ increases.

C.2 Validation Results

We provide the validation accuracy of different structures on different datasets.

15



m
in
`
∈
α
U
`

0 1 2 3 4
0.6

0.3

0.0

0.3

Net 1
Net 2

log10 λ

m
in
`
∈
α
U
`

0 1 2 3 40.6

0.3

0.0

0.3

Net 1
Net 2

log10 λ

Figure 7: Left: Result on COMPAS. Right:Result on Chest X-Ray. Generally, min`∈α U` increases
as λ increases.

Network Depth Hidden Neurons Total Parameters Validation Accuracy
1 1 40 522 62.15%
2 1 100 1302 68.02%
3 1 200 2602 68.12%
4 3 40 1792 65.99%
5 3 100 7462 68.22%
6 3 200 23112 68.42%

Table 7: Validation Results on COMPAS

Network Depth Hidden Neurons Total Parameters Validation RMSE
1 1 40 8492 0.1340
2 1 100 17192 0.1345
3 1 200 31692 0.1357
4 3 40 9762 0.1373
5 3 100 23352 0.1378
6 3 200 54002 0.1371

Table 8: Validation Results on Blog Feedback

Network Depth Hidden Neurons Total Parameters Validation Accuracy
1 1 40 1082 64.70%
2 1 100 2342 64.98%
3 1 200 4442 65.03%
4 3 40 2352 65.07%
5 3 100 8502 65.15%
6 3 200 26752 65.12%

Table 9: Validation Results on Loan Defaulter

Network Depth Hidden Neurons Total Parameters Validation Accuracy
1 1 40 5732 61.65%
2 1 100 6632 61.76%
3 1 200 8132 62.10%
4 3 40 7002 60.87%
5 3 100 12792 62.21%
6 3 200 30442 61.20%

Table 10: Validation Results on Chest X-Ray

16


