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Abstract

Visual processing in the retina has been studied in great detail at all levels such that
a comprehensive picture of the retina’s cell types and the many neural circuits they
form is emerging. However, the currently best performing models of retinal func-
tion are black-box CNN models which are agnostic to such biological knowledge.
In particular, these models typically neglect the role of the many inhibitory circuits
involving amacrine cells and the biophysical mechanisms underlying synaptic
release. Here, we present a computational model of temporal processing in the
inner retina, including inhibitory feedback circuits and realistic synaptic release
mechanisms. Fit to the responses of bipolar cells, the model generalized well to
new stimuli including natural movie sequences, performing on par with or better
than a benchmark black-box model. In pharmacology experiments, the model
replicated in silico the effect of blocking specific amacrine cell populations with
high fidelity, indicating that it had learned key circuit functions. Also, more in
depth comparisons showed that connectivity patterns learned by the model were
well matched to connectivity patterns extracted from connectomics data. Thus,
our model provides a biologically interpretable data-driven account of temporal
processing in the inner retina, filling the gap between purely black-box and detailed
biophysical modeling.

1 Introduction

In the retina, light is transduced by the photoreceptors (PRs) and processed in two layers of neuropil
before the signal is sent to the brain (Fig. [T). In the outer plexiform layer, the output of PRs is shaped
by feedback of horizontal cells before it is passed to the bipolar cells (BCs). In mice, 14 types of BC
then relay the signal to the second synaptic layer, the inner plexiform layer (IPL). Here, the signal is
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Figure 1: Retinal circuit schematics. A. The signalling pathways in the retina: photoreceptors
(PRs) transmit the light signal to bipolar cells (BCs) before it is passed on to ganglion cells (GCs),
which project the signal to the brain. In between, the signal is shaped by two classes of mostly
inhibitory interneurons: horizontal cells (HCs) and amacrine cells (ACs). Figure adapted from [[13].
B. Translation of the retinal circuit to a computational network model. We modeled two main groups
of ACs: more globally and more locally acting feedback neurons. C. Light stimulus-evoked responses
of four different types of BCs (two Off and two On cells); overlaid are traces for spatially extended
(full-field) and localized (local) chirp stimuli. For details, see [].

shaped by a complex network of more than 45 different types of mostly inhibitory amacrine cells
(ACs) [} 2L 3] and passed on to the retinal ganglion cells (RGCs), which in turn transmit the signals
to visual areas in the brain. Already at the level of BCs, different parallel pathways emerge, which
are tuned for specific features of the stimulus. While the different BC types have been well studied at
the morphological, genetic and functional level [4} 5, |6], a comprehensive understanding of how the
diverse AC types shape BC output is still missing and so far, only highly specialized AC circuits have
been studied extensively [7, 2].

At the same time, the currently best-performing systems identification models for retinal neurons only
account for feedforward drive and typically neglect ACs, even when mimicking the non-linear subunit
structure of retinal processing [18, 9} 10, |L1]]. Therefore, our knowledge about the computational role
of ACs is largely limited to basic principles: for example, GABA-releasing wide-field ACs mostly
provide lateral feedback, while glycinergic small-field ACs predominantly mediate vertical feedback
across different strata of the IPL and modulate wide-field AC input to BCs [2]]. In addition, system
identification models typically neglect well-understood biophysical mechanisms involved in temporal
adaptation and therefore lack a clear link to the underlying biology. For example, the specialized
ribbon synapse, a feature of PRs and BCs, is known to dramatically shape the temporal structure of
the transmitted signal [12].

Here, we build on recent work modeling stimulus-response relationships of individual neurons
extending simple linear-nonlinear models to a full-scale network model of the IPL while keeping a
much higher degree of biophysical realism. Our contributions are:

1. We show how to train a network model of the IPL including ACs and a high degree of
biophysical realism end-to-end to reproduce the temporal responses of all 14 mouse BC
types on artificial stimuli (Figure[T]and [2).

2. We show that the predictive performance of this model is as good as that of deep recurrent
models on artificial as well as on natural stimuli (Figure 3).

3. We perform in silico pharmacological modulations and show that blocking different groups
of ACs has similar effects to what is observed in experiments (Figure ).



4. We compare the connectivity between the different types of BCs and ACs in our model
to connectomics data [14] and find that our model has learned the general rules of IPL
connectivity from functional data (Figure[5).

5. Finally, we use the biological realistic components of the model to make predictions on
biophysical properties of the ribbon synapses for individual BC types (Figure 6).

Thus, our model provides a biologically interpretable data-driven account of temporal processing
in the inner retina, filling the gap between purely black-box modeling and detailed biophysical
modeling.

2 Previous Work

Current models of neural processing in the retina broadly fall into two categories:

1. Neural system identification approaches [15]] are designed to maximize the performance
when predicting the activity of a retinal neuron or a population of neurons from the visual
stimulus. Such models include statistical linear-nonlinear-Poisson models (LNP) and their
generalizations incorporating feedback terms and non-linear subunits [|8, 9] as well as models
based on deep neural networks [11}[16/[17]. These approaches are able to predict the activity
of retinal neurons with remarkable accuracy and subunits in the respective models can
resemble presynaptic neurons [[10} 18, [19,[20]. However, the models are often difficult to
interpret in terms of actual biological mechanisms. In addition, they typically fail to model
adaptive processes determining the temporal response kinetics in many retinal neurons.

2. Mechanistic models for retinal neurons are typically biophysically realistic models based
on Hodgkin-Huxley equations. For example, such models have been used to model the
activity of BCs and RGCs, and can do very well in accounting for adaptive processes, as
they incorporate the underlying biophysical mechanisms [21} 22]]. Such models are based on
large amounts of biological detail and knowledge, thus enabling a mechanistic investigation
into a specific computation, but are time-consuming to simulate and notoriously hard to fit
to data.

To strike a middle ground between these two extremes, system identification models have been
combined with an additional kinetic block that allows them to account for rapid release adaptation at
synaptic sites as well as other adaptive processes [23},124]]. Additionally, a single inhibitory pathway
has been incorporated in such models to account for the aggregate feedback from all ACs [25].
Here, we advance such hybrid models and combine an interpretable linear-nonlinear-release (LNR)
model with a kinetic block [24]] with the rich feedback structure of the whole AC network. Using this
network to model temporal processing in the IPL, we obtain accurate predictions of BC activity across
a wide range of stimuli while maintaining a high degree of biological interpretability. In contrast
to the often involved inference necessary for biophysically realistic models [22| [26]], our model
is completely differentiable and can be efficiently learned end-to-end with modern deep learning
frameworks.

3 Model

3.1 The Bipolar Cell Network model

Our BC network (BCN) model consists of two main parts: i) a vertical model of the 14 parallel
BC channels, and ii) a model of the AC feedback (Fig. E]B). The feedback consists of a local and
global pathway, activated by stimulation of center and surround component of BC receptive fields,
respectively. As data, we used light-evoked responses of BCs recorded with the genetically encoded
glutamate sensor iGluSnFr [3]] (c.f. Appendix B). Therefore, we convolved our model output with the
iGluSnFR kernel as a final step, which allows for a direct comparison to the functional recordings of
BCs. In total, the model has 1,932 free parameters.

3.1.1 Model of the vertical pathway

The vertical pathway consists of a linear biphasic kernel, a sigmoidal non-linearity and a model of
the release machinery at a ribbon synapse. The linear stage accounts for the approximately linear
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Figure 2: Training Performance. A. Linear correlation of the output of the three models for all 14
BC types on the local (top) and the global (bottom) chirp stimulus. B. Summary of the correlation
across all types of BCs for the three models and two stimulus conditions. C. Model predictions for
the Off (type 4) and On (type 5t) BC from Fig. [T[C. Cluster mean traces are shown in grey and p gives
Pearson correlation coefficients.

processing of light [ in PRs and dendrites of BC i [27]:
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The signal is then modulated by the inhibitory local and global AC feedback (fb,(t), see Section

[3.1.2), which is thought to be their main mode of modulation, before it is passed through a sigmoidal

non-linearity to be converted into vesicle release probability p; (see Appendix A for details):

pi(t) = o (BCP () — iocar,i (t) — giobari (£)) -

We mimic one kind of sensitivity adaptation in the retina by allowing the offset of the non-linearity to
change by shifting its operating point [23]. This allows different computations in the vertical pathway
for local and full-field stimuli. We used a deterministic version of the release model described in
[24]] to model the BC’s synapse. In this model, vesicles move between three different pools in a
probabilistic fashion: At each time step, vesicles are released (into the synaptic cleft) from the ready
releasable pool (RRP). The replenishment of the RRP occurs in two step: Vesicles from the cytoplasm
are first moved into the intermediate pool (IP) with the rate IP.q;, from which they are moved to
the RRP in the second step (with the rate RRP..s;), making them available for release. To make the
model deterministic, we replaced all random variables by their expected value given the present state
of the different pools. This results in three simplified equations for vesicle movement:

release = p(t) - RRP, RRPesn = k1 - IP, IP.cin = k2,

where k; and k9 are constant over time. Additionally, maximal pool sizes were learned for both the
IP and RRP. For better optimization, the occupancies of the pools were sent through a sigmoidal
non-linearity in each time step and thus smoothly clamped at the maximal values.

3.1.2 Feedback model

The feedback structure is implemented by a network of ACs (Fig. [IB). Each AC is modeled by a LN
model, which receives input from all BC types with learned weights WBCAC, The LN part consists
of a double-exponential kernel k¢ (see Appendix A for details) and a sigmoidal non-linearity o
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We modeled both the local and global AC pathways, consisting of mostly glycinergic and mostly
GABAergic ACs, respectively. While both groups provide direct feedback to most BCs, local ACs
also act as a gate keeper for global ACs by modulating their output to BCs in an inhibitory manner
(cf. Figure[IB, [13]]). The two AC groups further differ in their spatial tuning. Local ACs integrate
over small spatial regions (up to 300pm [2, [13]]), whereas global ACs are better activated by larger
stimuli, complementing their smaller counterparts. Consequently in the model, global feedback is
only activated during full-field stimuli, whereas local feedback is present for all stimuli. We can thus
describe the feedback for each BC i in the following way:

local,j
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To be able to compare the learned connectivity structure, which is represented by the different weight
matrices W, with the connectivity structure found in electronmicroscopy data, we took the number of

ACs from [14] (45 ACs in total) and matched the ratio of local to global ACs to the ones identified in
[3]] (10:35) (see Appendix F for details).

3.2 Benchmark models

LN model As alower bound for performance, we used a linear-nonlinear model (LN). It consists
only of the two first stages of the LNR model. It has the same parameterization but does not
incorporate any feedback. Its parameters were optimized using the same training schedule (c.f.
Appendix C) as for the BCN model.

LSTM As an upper bound for performance, we used a standard long-short-term-memory (LSTM)
model (implemented in pytorch with torch.LSTMModel) with 18 hidden dimensions, and a linear
readout layer with 28 output dimensions for the 14 local and 14 global traces, respectively. The
number of hidden dimensions was chosen such that the number of parameters (2,044) approximately
matched the number of parameters of the BCN. The LSTM was trained on full length chirp traces.
See Appendix C for details.

3.3 Training

The models were trained on the mean traces of the 14 BC types in response to the local/global chirp
stimulus (Fig. [TIC). The data was recorded in the IPL using two-photon imaging of BC output with the
genetically encoded fluorescent glutamate sensor iGluSnFr and clustered into functional types using
an anatomy-guided clustering approach [S]] (Appendix B). The training objective was to maximize the
correlation between model predictions and recorded responses across all cell types and stimuli (local
and global chirp). Letting ¥; s, §;,s denote the (mean-centered) recorded and predicted response of

Table 1: Training and generalization performance. All numbers indicate (rounded) mean Pearson’s
correlation, standard deviations are written in brackets (minimum clipped to 0.01). Best model in
each column indicated in bold.

Training Generalization
Model Local Chirp Global Chirp Natural Vary Sine Small Sine  Large Sine
LN 0.80 (0.09) 0.70 (0.17) 0.18 (0.06) 0.06 (0.05) 0.02(0.02) 0.02 (0.02)
LSTM 1.00 (0.01) 0.99 (0.01) 0.24 (0.06) 0.09 (0.07) 0.03 (0.03) 0.03(0.03)
BCN 0.96 (0.02) 0.96 (0.02) 0.24 (0.06) 0.10 (0.08) 0.03 (0.03) 0.04 (0.03)
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Figure 3: Generalization Performance. A. Each point corresponds to the Pearson correlation
between recorded response and model response of a single BC terminal for the LN model (x axis)
and BCN model (y axis). Color indicates IPL depth (center at 0.5), straight line the identity. IPL
depth is a good proxy for On/Off separation, Off BCs are shallower (red), On cells deeper (blue).
B. Sample predictions for the best On and Off BC terminal (highest correlation across all models)
for the three models (recorded traces in grey). C., D. Same as A, B but for a sine flicker stimulus
of varying size. Note that the IPL depth had to be estimated differently for these recordings, which
might cause a difference in scaling compared to A. The dense regions of the stimulus have high
frequency sinusoidal oscillations.

type ¢ to stimulus s, our loss function was

14 T ~
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We minimized this loss function to train the LN and LSTM modelEl For the BCN model,
we encouraged sparse connections between different types of neurons as observed in real EM
data [14], by additionally adding a sparse penalty, minimizing the 1-norm of all connectiv-
ity matrices W7: Lyparsity = Z [|[W7]|;. Finally, we weighted the two terms and optimized
Liotal = Leorrelation + ﬂﬁspa,ﬂmy All models were written in PyTorch [28] and optimized using
the Adam optimizer [29] (see Appendix C for details about hyper-parameter search and learning
schedule).

4 Results

4.1 Model Performance

We found that the BCN model learned to predict BC chirp responses for both local and global chirps
nearly perfectly when evaluated on the training data, with performance reaching almost that of the
LSTM model (Fig. QA B; Table Eb In contrast, the LN model performed noticeably worse, failing to
capture salient response features such as a slowly decaying response during the first onset of light
(Fig. 2C). The BCN model was able to model this adaptative process accurately. While the LSTM
model likewise captured this process and even achieved slightly higher correlation values, it showed
signs of over-fitting as it predicted little noise ripples in the data (Fig. [2IC, 4, left) .

2 As two-photon imaging data is on an arbitrary scale, we did not learn the final linear transformation that
minimizes the squared error of our model predictions. This linear transformation can simply be computed after
fitting.
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Figure 4: In silico pharmacological experiments. A. The model reproduces type-specific modula-
tions of BC responses induced by drug application, all showing local responses (model in red, data
in grey). B. Tonic release index (defined in Appendix E) for Off BCs under control condition and
blocking of glycinergic (local) ACs (errorbars indicating bootstrapped 95% confidence intervals,
Model: p=0.004 for a paired t-test). C. Tonic release index for Off BCs under control condition and
blocking of the On BC pathway (Model: p=0.002 for a paired t-test). All figures of experimental data
adapted from [J5].

To probe the generalization performance of the model to unseen stimuli, we used additional recordings
of BC terminals in response to natural movies and to sinusoidal flickering stimuli of constant and
varying spatial size. To obtain a time series approximating the contrast statistics across the spatial
receptive field of a single BC for the spatially inhomogeneous stimuli, we filtered these stimuli with a
spatial difference of Gaussian kernel (see Appendix B) .

We found that the BCN performed better than the LN model and as good as or better than the LSTM
on the hold out data (Fig. 3} Table[I). In particular, we found a more pronounced performance
gain for Off compared to On BCs. We want to highlight that the training data were averaged over
many animals/ROIs/repetitions, while the natural movie dataset consists of averages over only five
repetitions and the sine dataset of single trial traces, making the two latter substantially more noisy.
Furthermore, the datasets were collected under different experimental conditions, making it a harder
generalization task because of the domain shift. This resulted in lower correlation levels for the
generalization data compared to the training data. Additional data sets with variations of the sine
stimuli are shown in Appendix D.

4.2 In silico Pharmacological Manipulations

We tested three different pharmacological manipulations in silico and compared their effects to
previously obtained experimental results [5]. See Appendix E for details of the implementation.
Blocking of local feedback led to more transient responses in On BCs and an increased modulation of
release below baseline for Off BCs, in line with experimental findings (Fig. f]A, B). This is thought
to result from an increase in tonic glutamate release caused by blocking cross-over inhibition from
the On pathway mediated by small-field, glycinergic ACs. To confirm this idea, we additionally
in silico blocked On BCs, that provide the excitatory drive for cross-over inhibition, and observed
similar effects consistent with experimental data (Fig. f[C). This suggests that our model learned the
circuit motif of cross-over inhibition. In addition, blocking local feedback decreased the correlation
of local and global chirp responses of model BCs significantly (p = 0.036) due to dis-inhibition of
global feedback (Appendix E). While the decrease in correlation was less pronounced in the model
compared to experimental BC responses, this suggests that the model learned the gating of global
by local feedback. Finally, blocking global feedback instead resulted in an increase in correlation
between local and global chirp responses compared to the control condition, matching experimental
data (Appendix E).

4.3 Connectivity Analysis

Next, we compared the connectivity weights in our model to the connectivity of the IPL. For this, we
used an EM data set consisting of all contacts between neurons of the inner retina [14] (for processing
of the data set, see Appendix F). These contacts only represent potential synaptic contacts, as the data
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Figure 5: Connectivity analysis. A. Example weights of the best model and the EM data from [14]]
for BC to ACgjopal coOnnectivity WBCACaona - See Appendix F for the full weight matrices. Orange
lines indicating classification as On-cell. B. Connectivity matrices reduced to On/Off entries. See
Figure 11 for examples of randomly sampled matrices.

set does not contain any synaptic markers. For the statistical tests in Fig. 9 we compared the weights
of the 20 best training runs to account for different solutions during the non-convex optimization.

In order to compare ACs between model weights and connectivity data, we ordered them according
to the ratio of Off to On BC input (Fig. [5]A). ACs which predominately received input from On
BCs were classified as On ACs, and vice versa. The connectivity matrices revealed a block diagonal
structure in both the model and the EM data (Fig. 5]A; see Appendix Fig. 10 for full connectivity
matrix), which was even more striking if all connections of cells with same response polarity (On/Off)
were combined (Fig. BB). This suggests that feedback within On and Off layers is much stronger than
between the two layers. Overall, the learned connectivity weights were slightly sparser than in the
EM data (Fig. 9A). To assess whether the similarity between model and EM connectivity matrix was
due to chance, we constructed a random connectivity model. Each entry of the random connectivity
matrix was randomly drawn from the EM data distribution and the complete matrix preprocessed in
the same way as before (see Fig. 10 for two random example matrices). However, the correlation
of the model connectivity and the EM data was significantly higher than the correlation with the
random model (Fig. 9B,C, p = 0.002, p = 0.018 for the best model respectively). We also found
that the fraction of On ACs among global ACs (Fig. 9D) and the ratio of On to Off AC input to the
BCs (Fig. 9 E) matched the EM data well. In contrast, the fraction of On ACs among local ACs was
more comparable to the random model, suggesting that this feature of IPL connectivity could not be
learned from the current limited functional data.

4.4 Model-based Prediction of Biophysical Properties

Further, we show how our interpretable BCN Ao B
model can be used to make predictions about 2 2
cellular properties on the biophysical level. In- élol §
specting the model parameters for the synaptic ~ § ]
release of BCs, we found that RRP capacity was a 100 g
correlated with the global transience index (a [

measure of the activity decay after a large activa-
tion, computed on the experimental data, for de- 06 08 1.0 1072 107! 10°
tails, see [5]]; Pearson, p = 0.306 bootstrapped Global Transience Index Transfer rate IP to RRP

95% confidence intervals [0.204, 0.395], 20 best  Fjgure 6: Model-based Predictions. A. Global
models, Fig. [fJA). This is surprising, since we  (rangience index (as in [3]) and RRP capacity of
would have expected to find smaller RRP ca-  the ribbon block. B. Model parameters of the
pacities in conjunction with more transient cell - ripbon block by BC type for the best 20 models.

types. Interestingly, the RRP capacity together  Red/yellow Off BCs, blue/green On BCs. See Ap-
with the transfer rate from IP to RRP divided pendix E for detailed color code.

the BC types into clearly distinguishable clus-
ters (Fig. [6B), suggesting that measuring these parameters experimentally could be important for
understanding the emergence of different temporal processing channels in the inner retina.



4.5 Ablation experiments

Finally, we investigated the contribution of the different model parts by training two ablated models,
one without AC feedback terms (a deterministic version of the LNR model in [24]) and one without
vesicle release block but all AC feedback structure. The models were trained in the same framework
as the BCN. The ablated models all showed lower training correlation than the BCN model. In
particular, they failed to capture certain features of the chirp response: For the LNR model, we found
missing "feedback features" (e.g. higher baseline in some On cells or missing responses to small
amplitude On steps, Fig. 12A). For the BCN without vesicle release block, we found a mismatch in
the response to the long On/Off phase of the stimulus as the adaptation processes could not be fully
captured (Fig. 12B). In contrast to this, we found for other cells that some of the functional properties
of the release block can be approximately captured by the feedback structure (not shown).

As an additional experiment we compared the influence of training and model structure, which is
in general a nontrivial task. For this, we modified the best performing BCN model. We kept all
linear filters, non-linearities and the release blocks fixed but used randomly initialized feedback
connectivity weights. This randomly initialized model performed poorly on the training data, but -
depending on the strength of the feedback - did surprisingly well on the test data. The used evaluation
procedure (we assign traces from the test data to the output channel of the model with the highest
correlation), surely produces an upwards bias. Nevertheless, it seems that for some test conditions,
already some unspecific feedback is sufficient, and the model structure contributes strongly to its
overall performance.

5 Discussion

We trained a network model of temporal processing in the IPL including known structural constraints
as well as biophysically inspired mechanisms to predict the functionally distinct responses of all
14 mouse BC types to different stimuli. It generalizes well and performs on par with a recurrent
black-box model. Importantly, in silico pharmacology manipulations revealed that the model learned
“cross-over inhibition” and “gating of global by local feedback™ from the functional data, two of
the central circuit motifs of the IPL. In addition, the connectivity structure of the model closely
resembled that found in EM data. Furthermore, the model predicts that the 14 BC types can be
clearly distinguished by the parameters of their synaptic release cascade, a prediction which remains
to be tested. We emphasize that such predictions would not be easily possible from a pure systems
identification approach. Our ablation experiments finally show, that all model parts are crucial to
reproduce the detailed fingerprints of the different BC types, but also that the model design with its
specific feedback structure seems to capture some circuits mechanisms even before fine tuning its
weights.

Of course, our BCN model is but a first step in a comprehensive model of the IPL. On a technical
level, it would be highly desirable to perform inference for BCN parameters using recent advances in
Approximate Bayesian Computation [30, 31]]. However, these approaches are typically limited to
models with dozens of parameters [22} [24]]. When the technical challenges involved have been solved,
this will allow for the identification of degenerate solutions and dependencies in the parameter space.
Further, the BCN neglects most forms of more involved spatial processing or processing across light
levels. In both cases, different sets of ACs are recruited across different stimulus conditions [2]].
Therefore, including data from such conditions may be key in further understanding in how far the
connectivity structure of the IPL follows computational demands.

Broader Impact

We present a model for temporal processing in the inner retina that combines system identification
approaches with biophysically interpretable modules. The investigation of these modules allowed us
to not only reproduce earlier experimental observations but also make predictions for the underlying
biological system. First, this firmly grounds predictive models of neural activity in the biology of
the underlying neural system, which is of high interest from a theoretical perspective. Second, the
developed techniques for combining predictive and mechanistic models can likely be applied in other
regions of the central nervous system, as the necessary data to provide the mechanistic constraints
become available. Finally, our model may provide a first step towards establishing data driven in



silico experiments. This is not only valuable in the interest of reducing animal research, but also
for assessing the mechanisms of retinal degeneration and may inform future generations of targeted
therapies aimed at curing the underlying diseases. At this time, we cannot envision any negative
consequences to arise of this research.
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