
We thank all the reviewers for the thoughtful feedback. We are encouraged that three reviewers voted to accept, and1

acknowledge that the paper is well written and clearly presented ([R1],[R2],[R3],[R4]), “first to study distributed OCO2

in random graphs" ([R2]), “novel" and “interesting and potentially related to some real life distributed tasks" ([R3]),3

and has a “complete characterization" with a “nontrivial" and solid analysis ([R2],[R3],[R4]). We respond to main4

comments below and will address all feedback in the main paper.5

Motivation and example ([R2], [R3], [R4]). We consider distributed OCO over Erdos-Renyi graphs motivated by6

the following. (1) Distributed optimization and learning over random graphs has been widely studied since it is a7

validated model in practical communication networks, e.g., for modeling package losses in wireless communications.8

(2) Erdos-Renyi graphs give us information about complex systems which exist in the real world. The Internet or9

social networks provide the example at the moment, and it is equally plausible to think about traffic flows, electrical10

systems or interacting biological processes ([1]). (3) It has been found that Erdos-Renyi random graphs can outperform11

fully connected graphs in some distributed training tasks ([2]). Moreover, in the dense network, we might want to12

avoid communicating along each edge per iteration to decrease communication, for which Erdos-Renyi graphs allow a13

more refined tradeoff between computation and communication costs. (4) Erdos-Renyi graphs allow us to intuitively14

have a deep theoretical characterization of how the graph topology and connectivity probability influence the OCO15

network regrets, and paves the way to study distributed OCO over random graphs with a power-law degree distribution16

by preferential attachment. A prominent motivating example is the distributed online learning through random social17

interactions for exploiting the streaming but private healthy data generated from wearable personal tracking device18

([3]), which also motivates our simulation study with bodyfat dataset.19

Discussions of theoretical results on factors, such as N ([R1], [R4]), graph topology ([R3]), and p ([R4]). (1) The20

average regret increases with N , possibly because the increasing node number would increase the nodes’ information21

heterogeneity and make the network regret minimization harder as Reviewer 1 suggested. Compared with the previous22

work by Lobel and Ozdaglar for distributed optimization over random networks, which provided bounds that grew23

exponentially in N , we achieved polynomial scaling on network size. (2) The derived regrets showed the inverse24

dependence on the spectral gap of the expected network, which is quite natural since it is well-known to determine the25

mixing rates in random walks on graphs, and the information propagation over Erdos-Renyi graphs is closely tied to the26

random walk on the expected network. (3) It remains open what is the optimal order of dependence on factors N , d,27

and p in the regrets. (4) We give a simulation study to show how N and d impact the algorithm performance.

28 Technical challenges ([R1],[R2]) By making use of the 9th page allowed in the camera-ready version, we will elaborate29

on as many proof outlines as possible in the main body. The proof novelty induced from the Erdos-Renyi graphs lies in30

showing that the expected consensus error depends on the inverse spectral gap of the expected network.31

Simulation Justification([R2],[R4]) We adopt bodyfat dataset in numerical studies since distributed OCO over Erdor-32

Renyi graphs is a practical and preferred learning framework for exploiting personal healthy data from wearable33

personal digital device or personal tracking device. Concerns on scalability and privacy make the distributed learning a34

preferable method than centralized ones, while the streaming of the data entails online learning.35

Other discussions in simulations [R4] At the beginning steps of Figure 2, there is not enough accumulated data to36

adapt a good solution in the one-point bandit case, hence the performance can get deteriorated in the first few steps.37

This is accordant with theoretical results that the time averaged regret goes to zero as T goes to infinity. In Figure 338

and Figure 4, the regret is decreasing with the increment of p, while the decreasing magnitude depends on the graph39

topology. MReg is the maximal of expected regret of all nodes, hence is taken as a representative performance index in40

simulations.41
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