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A Proofs of Section 2]

A.1 Preliminary Lemmas

In this subsection, we present some preliminary lemmas that will be used in the subsequent for
proving the regret bounds. Without loss of generality, suppose that foreach¢ € Vandt =1,...,T,
fit 1s oy-strongly convex with a; > 0, where a; = 0 in the convex case. We start with a general
lemma concerning the regret bound.

Lemma 1. Let Assumptions|l|and[2|hold. Consider Algorithm|l| where {n;} is a non-increasing

sequence.
(i) If ay = 0, then for each j € V :

' ND2 NG2 T T N
Reg(j,T) < 271 + Tf Zm + Gy Z Z %16 — %j,e]- (A.D)
i t=1 t=1i=1
(ii) If oy > O, by setting ny = Et% we obtain that for each j € V :
=147
NG2 T T N
Reg(j,T) < Tf Do+ Gy Y i = xel- (A2)
t=1 t=1 i=1

Proof. Define a;;, £ aif {i,7} € Ey, Qs ¢ £ 1 — a|N; 4|, and ai;+ = 0, otherwise. Thus,
Z;\f:l a;j: = 1 and Zfil a;j+ = 1. By using (3), x* € K, and the non-expansive property of the
projection operator, we have that
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where inequality (a) used Z 1 @35+ = 1, inequality (b) used the Jensen’s inequality, and equality
(c) used Zl 1 @5t = 1 foreach j € V. It is noticed from Assumptlonlthat
fix(Xie) = fir(X5,0) + fir(Xig) — fie(X5t)
> fie(Xj0) + (Xie = %5.0) TV i (x50) 2 fie(X50) = Gpllxie — x5,

and hence
N N
Z(fi,t(xi,t) fm Z flt X]t fzt GfZHth X, t” (A.4)
i=1 i=1

Applying the definition of a;-strong convexity of f; ; to the pair of x; ;, x*, we obtain that

(i = %) " Vi (i) 2 (fualxie) = fiax) + Flixi — x|

It combined with (A.4) produces

a T
(xit — %) V fii(xi)
=1

N N N
* « *
Zl (fie(xje) = fie(x") = Gy Z e = xjll + = Z Ixie =<1 (AS)
By substituting (A-3) into (A-3) and using Assumption 2] we derive
N N N
> i =X P <D lxin — X2+ NopGF —2m > (fia(x40) = Fir(x¥))

i=1 i=1 i=1

(A.6)
N N
+2G Z l[xi,e — xj,el| — ceeme Z llxi.c — x*|°.
=1 i=1
By rearranging the terms, there holds
N N N
oy o (L= aeme) Sty i — x* (12 = D050 (1% 041 — x|
Z (fin(xje) — fin(x*)) < 112 11X
i=1 2
N
+ NG /2+ Gy lxie —xll-
i=1
By summing up the above inequality from ¢ = 1 to 7', we obtain that
T N )
(fie(x40) = fie(x SZZ|X”_X||2< _at)
t=1 i=1 2t111 Me M1
Zﬁt + szz lxie — x]tl\, — é 0. (A7)

t=1 i=1

(i) By using Assumption|l| ! and the non-increasing of {7, }, we obtained that

Zan”_x?(t_) ZZD2<— 1 )ZNDg

t=1 i=1 -1 =1 i=1 e -1 nr

This combined with (A.7) and a;; = 0 proves the bound (A-T).

1) From 7y = —<—— 1t follows that — — — — «a; = (. Hence , we obtain . a
(i) From 7 Zla it foll h nl, ml 0.H by btai
r=1 %" 2 -1

Let I; denote the N x NN identity matrix. Denote by L; the Laplacian matrix of the graph G,
where [Ly];; = —1if {4,j} € E¢, [Ly]i; = [N, |, and and [L;};; = 0, otherwise. Then based
on the Erdos-Rényi rule that {7, j} € E, with probability 0 < p < 1 for all {i,5} € £, we have



that E[L;|;; = —p if {i,j} € &, E[L¢;; = p|N;|, and and E[L;];; = 0, otherwise. Therefore,
E[L;] = pL. We further define A; = Iy — aLs,
St t+1)2Iyand (t,s) 2 Ay A, VE> 5> 1. (A.8)

By the definition of A, it is seen that A, is a positive and symmetric matrix with the sum of each row
equal to 1. Then forany ¢ > 1:

E[A;] 2 A =1y — apL,
E[AZ] = Iy — 2apL + o’E[L2].

Let G = {V, £} be an undirected graph generated by the matrix E[A2], where {i,5} € € if (i,7)w
entry of E[A?] satisfies E[A?];; > 0. Note by 0 < a < L v and 0 < p < 1 that for each

1+max;
pair {i,j} € &:
E[A?]ij > Elaiitaij¢ + aijeas5.:) = ap (2 — ap|Ni| — ap|Nj|) > 0.

Hence, {i,j} € £if {i,j} € £. By the fact that the base graph G is connected, G is also an undirected

and connected graph. We can similarly show that the graph associated with the matrix A is undirected
1y1%
N

po = |A — Q| = esp(A) = max{|\| : A is the eigenvalue of A different from 1},
p* = |E[A]] — Q| = esp (In — 2apL + a’E[L]]) .

and connected. Then we obtain the following with £ £

(A9)

Next, we establish a lower bound and an upper bound on the consensus matrix, which is important
for estimating the consensus error.

Lemma 2. Define F, = o{e1, Ay, ,A,_1} forany s > 1. Let e, = (®(t,s) — Q)e, for
any nonzero vector e, € RY adapted to F,. Then the following holds:

E F.
P51 < max “|et+1”| S]

< pt—stl A.10
oS IR T Je =7 A1

Proof. Since A;€2 = €2, by the definition of ®(¢, s), we obtain that
(Ar—Q) - (A, —Q) =D(t,5) - Q, Vt>s>1.
Note that A, is independent of 7; = o{e;, A1, -+ ,A;_1}. Hence forany ¢t > s > 1:
E[®(t,5)|7.] = E[E[®(t,5)| 7] | 7]

_ E[E[(At —Q)®(t - 1,5)|F]

;S} — (A— QE[®(t—1,5)|F],

where the first equality holds by [1, Chapter 7, Eqn. (14v)] because F, C F;. Then based on the
above recursion and AQ = €2, we obtain that E[®(¢, s)| F,| = A'"*** — Q. Then by the fact that
e, is adapted to Fg, the following holds forany ¢ > s > 1:

Elews1]Fs] =E[(®(t,5) — Q)es|F] = (AT — Q)e,.
Then by the Jensen’s inequality for conditional expectations, the following holds
E[lletr1]l|Fs] > |Eleca|Fsl|| = (AT — Q)ey||, Vt>s>1. (A.11)
Note that A;Q2 = ATQ = Qand ATA, = A?. Thenforanyt > s> 1:

E[el, ers1|F.] = IE[IE el et | 7]

fs}
_ H«:[IE [l (A, — )T (A, — Q)e;| F] ‘]-'} ) [etT]E[Af _ Q]et‘]-“s}

< Elele|F]|[E[A3] - Q| < ... < ele,||E[AZ] - @,



where the third equality holds because e; is adapted to F; and A is independent of F;. Then by the
Jensen’s inequality for conditional expectations, we obtain that

Efllec 7] < \/E[el el 7] < \/elel[[E[AT -2 A

Therefore, by combing (A-TT) with (A712)), we obtain that forany ¢t > s > 1 :

(AP ) e, E|llec1ll|Fs] < |E[AZ - ﬂ||(tfs+1)/2
lles | [lesll
Thus, by maximizing the above equation with respect to e, using (A.9) and recalling the definition
of the matrix two-norm ||A|| = max ||Ax]|, we proves (A10). O

x s.t. [|x]|=1
Remark 1. The upper bound established in Lemma2|might be obtained by some specific selection
of Erdds-Rényi random graphs. For example [2| Example 4.7], the priori graph G = {V,E} is a
complete graph and a = %
Then based on Lemma[2] we can establish the following lemma concerning the consensus error.
Lemma 3. Suppose Assumption and |2} hold. Let the local estimates {x; ;}{_, for each node
/

1 € V be generated by Algorithm Then the following hold with X; = % Zfil X, 40

ZE [[xi,0 — el ] <3NGonsp % and
i=1

1 (A.13)
maXE[ l|1%i.e — Xe] ] < S\FGf Znsp
s=1
Proof. Note by @) and the definition of a;; ¢ that x; ;1 = Ik (Zjvzl aij,tyj,t> . Define
N
T 41 = X441 — Z aij.yie = i Z aij 1yt | — Z ity .t (A.14)
j=1 = =

Then by substituting (2) into (A:14), we obtain that
N

N
[ri 1] = HHK ( Z aijt (X560 — eV f,(x5,0)) ) = a5, =V fi.0(%.0)) H

j*l

‘HIC(ZG/Z], X4t — ntVfL X]; ) Zal]7txj7

\+nm§ijvL,me

®)

()
= 2% (X0l < 2mGy, Vie Y, (A.15)

7j=1
where (a) used the triangle inequality, (b) used the non-expansive property of the projection operator
and the fact that Zjvzl a;j:Xj: € K by Zjvzl a;j: = 1, and (c) holds by Assumption [2| and

Z;\f:l a;j = 1. By combing (2) with (A14) and (AR), there holds

N N
Xip1 = D Qig¥ie + Tioer = Y @i (Xie = eV fip(Xi0)) + Tigg
j=1 j=1
Then by stacking the above equation for each ¢ € V, and using x; ; = 0 for each ¢ € V, there holds

X141 Vf1,s(x1,4) ri+1
Xp1 2 =A: @Iy | Xpp1 — e +
XN 41 Vn,s(xnt) TN t+1
t Vfl,s(Xl,s) t 1 s4+1
Z ®(t,s) @1y : +) @)@l :
s=1 va,s(XN,s) s=1 N, s+1



Thus by the definition of X;, and using the doubly stochastic of ® (¢, s), we obtain that

t
it+1:%ZXi,t+1 Zﬁs ZVfgs XJs +Z 1 ZI']SJrl
i=1 s=1 3:1

Then we obtain the following

X141 — Xi41 ¢ Vf1s(x15)
Xpp1 2 : == n(®(t,5) - Q) @1, :
XNt41 — Xet1 s=1 VinsXn,s)
t 1 s+1
+) (®(t,s) - @1y
s=1 TN, s+1

Thus, from (A-10), (A-13)), and Assumption 2]it follows that

t Vfl,s(Xl,s) 'y s+1
B[R]l [F] <D0 7 | s : +
s=1 VIns(XN,s) TN s+1

t
< 3\/NGf Z Usl)t_SH-
s=1

By taking unconditional expectation with respect to the above equation, there holds
t
E[[[%es1ll] < 3VNG Y nep' =t (A.16)
s=1

Thus, E [||x;,; — X¢||] < 3fo ZS 1 nsp'~ % for each j € V. Note by the Jensen’s inequality that

2
(Zi:l :z:z/N> < N 22 /N, which implies that >~ | 2; < \/N IV, 2. This incorporating
with (A.16) produces

N
E lz %50 — e
i=1

Thus, the lemma is proved. O

N t—1
SE || N llxie —%e?| = VNE[ %] <3NGf Y nep'~".
=1 s=1

A.2 Proof of Theorem I

Note that
N N N
D i = xjell = D ki = %o = (x50 = Re) | < D lxie = Rell + Nz = Rel-
=1 =1 =1

Then from (A:13) it follows that

N N
E ) lIxie— xj,t||] <Y E[llxis — Zell] + NE[|lx;0 — %]
1=1 =1

t—1
< (BN +3NYA)G; S et (A.17)
s=1
It is noticed that
T t—1 T T
DD e ZZm sprp Zme—l 3 o
t=1 s=1 t=1 s=t+1 = s=t+1 s=1 pt:l



This combined with (A:17) produces

T

3N + 3N3/)G
ZE[ZXH x]tlll it + = )figm (A.18)

S

Note that 3], % < fOT %dx = 2,/z|} = 24/T. Then by recalling that 1, = G, \/, taking the
unconditional expectation on both sides of (A.T) and using (A:18), we obtain that

L)ffﬁ L NDGT 4 PN ﬁleGfﬁ.

E[Reg(j,T)] <
Then the theorem is proved. g

A.3 Proof of Theorem

By taking the unconditional expectation on both sides of (A.2) and using (A:18), we obtain

NG2 p(1 _|_ VN
: f
E[Reg(5,T)] < — (1 + Znt (A.19)
Note from 7 that
T T T
1 1 1 1 1 1 1 1 1
=+ - <oy Zde==+ @) = =1 +In(T)).
;Ut a+at_z2t_a+a/1 acx a+an(x)|1 a(+n( )
This combined with (A:19) proves the theorem. O

B Proofs of Section

Proof of Theorem 3| By Assumption [d] and £ = §/r that for any x € (1 — )K : x + du C
(1-9K+&rB C (1 — &K + &K C K. Then from (6) and (B) it follows that for each i € V:

dC
llgiell < Hfz t(Xi + 0wy )| [Jug || < 5 t=1,---,T. (B.1)

Then by Vfiyt(xu) = Elg;., ||Vfz x| < £ Gy holds for each i € V and any ¢t =

,T. Note by Assumption@that Ix —y| < 2R D, forany x,y € (1 — £)K. By recalling
the definition (TJ), similarly to Theorem[T]} we can show that for each j € V :

T N
E[D N fualxia)] —XE?F%KZZ (%) < 3dNRC <1 - W) VT. (B2)
t=1 1=1

Since x € (1 — &K C Kandx + du € K, by Assumptionand the definition of fi,t that

1£5,6(x) = it (N = [Eueslfie(x + 0w)] = fie(x)]
< Euesllfii(x +0u) — fie(x)[ <Ly, Vxe(1-EK.

Therefore, we obtain that f; ;(x;.;) > fi.t(x;+) — 6L and f; ;(x) < fi.1(x) + L. This combined
with produces

T N T N
E[ZZM X;it) 5Lf} _xe?fi_%);czz (fir(x)+06Ly)

t=1 =1 t=1 =1
U ()
-p



By rearranging the terms, we obtain that

E{Z ) ftt(Xj,t)} - n;ﬂfg),CZZ fie(

t=1 i=1 t=1 i=1
< BINRC (| 4p(L+ VD) VT + 26N L;T.
é 1—0p
Note by [3} Observation 1] that
i i1(X) <26CTN i B.3
xegn_r%)KZth 3 +mmZZf,t (B.3)

t=1 i=1 t=1 i=1
Hence by the definition (I)) and & = /7, there holds

3NdRC (1 1+\F>
<

E[Reg(j,T)] < VT +25NL;T + 25CTN/r.

0

Hence, by the definitions of ¢; and ¢y that E [Reg( Js )] N (# + C25T) . Thus, we complete
the proof by using § = (¢ /c2)-5T 025, O

Proof of Theorem/d| Recall by (B) that Gy = 9. We can obtain from Theoremland the definition
() that for each y € V' :

E[Z Zﬁut(xj‘,t)] - xeﬁﬂ_%);cz > firlx) < % (1 + W) (1+ In(T)).
t=1i1=1

t=1 i=1
Then by taking a similar procedure as the proof of Theorem [3after (B.2)), we have that

Nd2C? <1+ 6p(1 + W)

E[Reg(j 7)) < ot L

) (1+1n(T)) + 26NL;T + 26CTN/r

=N (52( +In(T)) + C25T) .
Then we obtain the result by the definitions of ¢, c3 and 4. O
C Proofs of Section 4]

Proof of Theorem@ By recalling that x € (1 — &K C K and x + du € K, from (9) and Assumption
[|that foreachi € Vandany t = 1, -

d
||fz t(Xie 4+ 0wy ) — fio(Xie — 0y g) —2L¢0|lu;4||* < dLy.

Then by Vf;,(xis) = Elgi.], HVfZ +(xit)|| < dLy £ Gy. Note by Assumption E| that for any

X,y € (1-€6K:|x—y| <2R = D,. We then obtain from Theoremland the definition (T)) that
for eachjeV:

T N
B2 futs] - nlmblczzf” )= 3dNLfR< (itpf)> VT. (C.1)

t=1 i=1 t=1

By £ = 0/r and a similar procedure as that of [4, Lemma 2], we can show that for any x € K :

fzt(y]t)+fzty]t Zth

T N

t=1 i=1 t=1 i=1
T N R T N

<Y fialxi) = D0 firl(1 = Ox + NTL5(3+ R/r). (C2)
t=1 i=1 t=1 i=1



This combined with (C.I)) produces that

I D

t=1i=1 t=1 =1
4p(1 4+ VN)
I—-p

<3dNL;R (1 + >ﬁ+NTLf5(3+R/T).

Then we obtain the result by the selection of §. O

ProofofTheoremE] Recall that ||g; +|| < dLy and IV fie(xi0)]| < dL; £ G . We can obtain from
Theorem 2] and the definition (IJ) that for each j € V' :

T N ) Nd2L2
E[ZZfi,t(x.j,t)}— ”f“é),czz it o (HW) (1 +1In(7)).

t=1 i=1 t=1 i=1

This combined with (C.2)) produces that

T
szzty]t +fzty]t‘| szl,t

t=1 i=1 t=1 i=1
Nd?L? 6p(1 + VN
p— 1+M (1+In(T))+ NTL6(3+ R/r)
2a 1—p
We then obtain the result by the selection of d. O
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