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A Proofs of Section 2

A.1 Preliminary Lemmas

In this subsection, we present some preliminary lemmas that will be used in the subsequent for
proving the regret bounds. Without loss of generality, suppose that for each i ∈ V and t = 1, . . . , T ,
fi,t is αt-strongly convex with αt ≥ 0, where αt ≡ 0 in the convex case. We start with a general
lemma concerning the regret bound.
Lemma 1. Let Assumptions 1 and 2 hold. Consider Algorithm 1, where {ηt} is a non-increasing
sequence.
(i) If αt ≡ 0, then for each j ∈ V :

Reg(j, T ) ≤ ND2
1

2ηT
+
NG2

f

2

T∑
t=1

ηt +Gf

T∑
t=1

N∑
i=1

‖xi,t − xj,t‖. (A.1)

(ii) If αt > 0, by setting ηt = 1∑t
τ=1 ατ

we obtain that for each j ∈ V :

Reg(j, T ) ≤
NG2

f

2

T∑
t=1

ηt +Gf

T∑
t=1

N∑
i=1

‖xi,t − xj,t‖. (A.2)

Proof. Define aij,t , a if {i, j} ∈ Et, aii,t , 1 − a|Ni,t|, and aij,t = 0, otherwise. Thus,∑N
j=1 aij,t = 1 and

∑N
i=1 aij,t = 1. By using (3), x∗ ∈ K, and the non-expansive property of the

projection operator, we have that

N∑
i=1

‖xi,t+1 − x∗‖2 ≤
N∑
i=1

∥∥∥∥∥∥
N∑
j=1

aij,tyj,t − x∗

∥∥∥∥∥∥
2

(a)
=

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

aij,t
(
yj,t − x∗

)∥∥∥∥∥∥
2

(b)

≤
N∑
i=1

N∑
j=1

aij,t ‖yj,t − x∗‖2 (c)
=

N∑
j=1

‖yj,t − x∗‖2 (2)
=

N∑
i=1

‖xi,t − x∗ − ηt∇fi,t(xi,t)‖2

=

N∑
i=1

‖xi,t − x∗‖2 + η2t

N∑
i=1

‖∇fi,t(xi,t)‖2 − 2ηt

N∑
i=1

(
xi,t − x∗

)T∇fi,t(xi,t),
(A.3)
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where inequality (a) used
∑N
j=1 aij,t = 1, inequality (b) used the Jensen’s inequality, and equality

(c) used
∑N
i=1 aij,t = 1 for each j ∈ V. It is noticed from Assumption 2 that

fi,t(xi,t) = fi,t(xj,t) + fi,t(xi,t)− fi,t(xj,t)
≥ fi,t(xj,t) + (xi,t − xj,t)

T∇fi,t(xj,t) ≥ fi,t(xj,t)−Gf‖xi,t − xj,t‖,

and hence
N∑
i=1

(
fi,t(xi,t)− fi,t(x∗)

)
≥

N∑
i=1

(
fi,t(xj,t)− fi,t(x∗)

)
−Gf

N∑
i=1

‖xi,t − xj,t‖. (A.4)

Applying the definition of αt-strong convexity of fi,t to the pair of xi,t,x
∗, we obtain that(

xi,t − x∗
)T∇fi,t(xi,t) ≥ (fi,t(xi,t)− fi,t(x∗))+

αt
2
‖xi,t − x∗‖2.

It combined with (A.4) produces

N∑
i=1

(
xi,t − x∗

)T∇fi,t(xi,t)
≥

N∑
i=1

(
fi,t(xj,t)− fi,t(x∗)

)
−Gf

N∑
i=1

‖xi,t − xj,t‖+
αt
2

N∑
i=1

‖xi,t − x∗‖2. (A.5)

By substituting (A.5) into (A.3) and using Assumption 2, we derive

N∑
i=1

‖xi,t+1 − x∗‖2 ≤
N∑
i=1

‖xi,t − x∗‖2 +Nη2tG
2
f − 2ηt

N∑
i=1

(
fi,t(xj,t)− fi,t(x∗)

)
+ 2Gfηt

N∑
i=1

‖xi,t − xj,t‖ − αtηt
N∑
i=1

‖xi,t − x∗‖2.

(A.6)

By rearranging the terms, there holds

N∑
i=1

(
fi,t(xj,t)− fi,t(x∗)

)
≤

(1− αtηt)
∑N
i=1 ‖xi,t − x∗‖2 −

∑N
i=1 ‖xi,t+1 − x∗‖2

2ηt

+NG2
fηt/2 +Gf

N∑
i=1

‖xi,t − xj,t‖.

By summing up the above inequality from t = 1 to T , we obtain that

T∑
t=1

N∑
i=1

(
fi,t(xj,t)− fi,t(x∗)

)
≤ 1

2

T∑
t=1

N∑
i=1

‖xi,t − x∗‖2
(

1

ηt
− 1

ηt−1
− αt

)

+
NG2

f

2

T∑
t=1

ηt +Gf

T∑
t=1

N∑
i=1

‖xi,t − xj,t‖,
1

η0
, 0. (A.7)

(i) By using Assumption 1 and the non-increasing of {ηt}, we obtained that

T∑
t=1

N∑
i=1

‖xi,t − x∗‖2
(

1

ηt
− 1

ηt−1

)
≤

T∑
t=1

N∑
i=1

D2
1

(
1

ηt
− 1

ηt−1

)
=
ND2

1

ηT
.

This combined with (A.7) and αt ≡ 0 proves the bound (A.1).

(ii) From ηt = 1∑t
τ=1 ατ

it follows that 1
ηt
− 1

ηt−1
− αt = 0. Hence by (A.7), we obtain (A.2). 2

Let IN denote the N ×N identity matrix. Denote by Lt the Laplacian matrix of the graph Gt,
where [Lt]ij = −1 if {i, j} ∈ Et, [Lt]ii = |Ni,t|, and and [Lt]ij = 0, otherwise. Then based
on the Erdös-Rényi rule that {i, j} ∈ Et with probability 0 < p < 1 for all {i, j} ∈ E , we have
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that E[Lt]ij = −p if {i, j} ∈ E , E[Lt]ii = p|Ni|, and and E[Lt]ij = 0, otherwise. Therefore,
E[Lt] = pL. We further define At , IN − aLt,

Φ(t, t+ 1) , IN and Φ(t, s) , At · · ·As, ∀t ≥ s ≥ 1. (A.8)

By the definition of At it is seen that At is a positive and symmetric matrix with the sum of each row
equal to 1. Then for any t ≥ 1 :

E[At] , Ā = IN − apL,
E[A2

t ] = IN − 2apL + a2E[L2
t ].

Let Ḡ = {V, Ē} be an undirected graph generated by the matrix E[A2
t ], where {i, j} ∈ Ē if (i, j)th

entry of E[A2
t ] satisfies E[A2

t ]ij > 0. Note by 0 < a ≤ 1
1+maxi |Ni| and 0 < p < 1 that for each

pair {i, j} ∈ E :

E[A2
t ]ij ≥ E[aii,taij,t + aij,tajj,t] = ap (2− ap|Ni| − ap|Nj |) > 0.

Hence, {i, j} ∈ Ē if {i, j} ∈ E . By the fact that the base graph G is connected, Ḡ is also an undirected
and connected graph. We can similarly show that the graph associated with the matrix Ā is undirected
and connected. Then we obtain the following with Ω , 1N1TN

N :

ρ0 = ‖Ā−Ω‖ = esp(Ā) = max{|λ| : λ is the eigenvalue of Ā different from 1},
ρ2 = ‖E[A2

t ]−Ω‖ = esp
(
IN − 2apL + a2E[L2

t ]
)
.

(A.9)

Next, we establish a lower bound and an upper bound on the consensus matrix, which is important
for estimating the consensus error.

Lemma 2. Define Fs , σ{e1,A1, · · · ,As−1} for any s ≥ 1. Let et+1 ,
(
Φ(t, s) − Ω

)
es for

any nonzero vector es ∈ RN adapted to Fs. Then the following holds:

ρt−s+1
0 ≤ max

es∈RN

E
[
‖et+1‖|Fs

]
‖es‖

≤ ρt−s+1. (A.10)

Proof. Since AtΩ = Ω, by the definition of Φ(t, s), we obtain that(
At −Ω

)
· · ·
(
As −Ω

)
= Φ(t, s)−Ω, ∀t ≥ s ≥ 1.

Note that At is independent of Ft = σ{e1,A1, · · · ,At−1}. Hence for any t ≥ s ≥ 1 :

E
[
Φ(t, s)|Fs

]
= E

[
E
[
Φ(t, s)

∣∣Ft]∣∣∣Fs]
= E

[
E
[(

At −Ω
)
Φ(t− 1, s)

∣∣Ft]∣∣∣Fs] = (Ā−Ω)E
[
Φ(t− 1, s)|Fs

]
,

where the first equality holds by [1, Chapter 7, Eqn. (14v)] because Fs ⊂ Ft. Then based on the
above recursion and ĀΩ = Ω, we obtain that E

[
Φ(t, s)|Fs

]
= Āt−s+1 −Ω. Then by the fact that

es is adapted to Fs, the following holds for any t ≥ s ≥ 1 :

E
[
et+1|Fs

]
= E

[(
Φ(t, s)−Ω

)
es|Fs

]
= (Āt−s+1 −Ω)es.

Then by the Jensen’s inequality for conditional expectations, the following holds

E
[
‖et+1‖

∣∣Fs] ≥ ∥∥E[et+1|Fs]
∥∥ =

∥∥(Āt−s+1 −Ω)es
∥∥, ∀t ≥ s ≥ 1. (A.11)

Note that AtΩ = AT
t Ω = Ω and AT

t At = A2
t . Then for any t ≥ s ≥ 1 :

E
[
eTt+1et+1|Fs

]
= E

[
E
[
eTt+1et+1

∣∣Ft]∣∣∣Fs]
= E

[
E
[
eTt (At −Ω)T (At −Ω)et

∣∣Ft]∣∣∣Fs] = E
[
eTt E[A2

t −Ω]et

∣∣∣Fs]
≤ E

[
eTt et|Fs

]∥∥E[A2
1]−Ω

∥∥ ≤ . . . ≤ eTs es
∥∥E[A2

1]−Ω
∥∥t−s+1

,
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where the third equality holds because et is adapted to Ft and At is independent of Ft. Then by the
Jensen’s inequality for conditional expectations, we obtain that

E
[
‖et+1‖|Fs

]
≤
√
E
[
eTt+1et+1|Fs

]
≤
√

eTs es
∥∥E[A2

1]−Ω
∥∥(t−s+1)/2

. (A.12)

Therefore, by combing (A.11) with (A.12), we obtain that for any t ≥ s ≥ 1 :∥∥∥∥(Āt−s+1 −Ω)
es
‖es‖

∥∥∥∥ ≤ E
[
‖et+1‖|Fs

]
‖es‖

≤
∥∥E[A2

1]−Ω
∥∥(t−s+1)/2

Thus, by maximizing the above equation with respect to es, using (A.9) and recalling the definition
of the matrix two-norm ‖A‖ = max

x s.t. ‖x‖=1
‖Ax‖, we proves (A.10). 2

Remark 1. The upper bound established in Lemma 2 might be obtained by some specific selection
of Erdős-Rényi random graphs. For example [2, Example 4.7], the priori graph G = {V, E} is a
complete graph and a = 1

N .

Then based on Lemma 2, we can establish the following lemma concerning the consensus error.
Lemma 3. Suppose Assumptions 1, and 2, hold. Let the local estimates {xi,t}Tt=1 for each node
i ∈ V be generated by Algorithm 1. Then the following hold with x̄t = 1

N

∑N
i=1 xi,t:

N∑
i=1

E
[
‖xi,t − x̄t‖

]
≤ 3NGf

t−1∑
s=1

ηsρ
t−s, and

max
j∈V

E
[
‖xi,t − x̄t‖

]
≤ 3
√
NGf

t−1∑
s=1

ηsρ
t−s.

(A.13)

Proof. Note by (3) and the definition of aij,t that xi,t+1 = ΠK

(∑N
j=1 aij,tyj,t

)
. Define

ri,t+1 = xi,t+1 −
N∑
j=1

aij,tyj,t = ΠK

 N∑
j=1

aij,tyj,t

− N∑
j=1

aij,tyj,t. (A.14)

Then by substituting (2) into (A.14), we obtain that

‖ri,t+1‖ =
∥∥∥ΠK

( N∑
j=1

aij,t (xj,t − ηt∇fj,t(xj,t))
)
−

N∑
j=1

aij,t (xj,t − ηt∇fj,t(xj,t))
∥∥∥

(a)

≤
∥∥∥ΠK

( N∑
j=1

aij,t (xj,t − ηt∇fj,t(xj,t))
)
−

N∑
j=1

aij,txj,t

∥∥∥+ ηt‖
N∑
j=1

aij,t∇fj,t(xj,t)‖

(b)
= 2ηt

N∑
j=1

aij,t‖∇fj,t(xj,t)‖
(c)

≤ 2ηtGf , ∀i ∈ V, (A.15)

where (a) used the triangle inequality, (b) used the non-expansive property of the projection operator
and the fact that

∑N
j=1 aij,txj,t ∈ K by

∑N
j=1 aij,t = 1, and (c) holds by Assumption 2 and∑N

j=1 aij,t = 1. By combing (2) with (A.14) and (A.8), there holds

xi,t+1 =

N∑
j=1

aij,tyj,t + ri,t+1 =

N∑
j=1

aij,t (xi,t − ηt∇fi,t(xi,t)) + ri,t+1.

Then by stacking the above equation for each i ∈ V , and using xi,1 = 0 for each i ∈ V, there holds

xt+1 ,

 x1,t+1

...
xN,t+1

 = At ⊗ Id

xt+1 − ηt

 ∇f1,s(x1,t)
...

∇fN,s(xN,t)


+

 r1,t+1

...
rN,t+1


(A.8)
= −

t∑
s=1

ηsΦ(t, s)⊗ Id

 ∇f1,s(x1,s)
...

∇fN,s(xN,s)

+

t∑
s=1

Φ(t, s)⊗ Id

 r1,s+1

...
rN,s+1

 .
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Thus by the definition of x̄t, and using the doubly stochastic of Φ(t, s), we obtain that

x̄t+1 =
1

N

N∑
i=1

xi,t+1 = −
t∑

s=1

ηs
1

N

N∑
j=1

∇fj,s(xj,s) +

t∑
s=1

1

N

N∑
j=1

rj,s+1.

Then we obtain the following

x̃t+1 ,

 x1,t+1 − x̄t+1

...
xN,t+1 − x̄t+1

 = −
t∑

s=1

ηs(Φ(t, s)−Ω)⊗ Id

 ∇f1,s(x1,s)
...

∇fN,s(xN,s)


+

t∑
s=1

(Φ(t, s)−Ω)⊗ Id

 r1,s+1

...
rN,s+1

 .

Thus, from (A.10), (A.15), and Assumption 2 it follows that

E
[
‖x̃t+1‖

∣∣Fs] ≤ t∑
s=1

ρt−s+1

ηs
∥∥∥∥∥∥∥
 ∇f1,s(x1,s)

...
∇fN,s(xN,s)


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 r1,s+1

...
rN,s+1


∥∥∥∥∥∥∥


≤ 3
√
NGf

t∑
s=1

ηsρ
t−s+1.

By taking unconditional expectation with respect to the above equation, there holds

E
[
‖x̃t+1‖

]
≤ 3
√
NGf

t∑
s=1

ηsρ
t−s+1. (A.16)

Thus, E [‖xj,t − x̄t‖] ≤ 3
√
NGf

∑t−1
s=1 ηsρ

t−s for each j ∈ V. Note by the Jensen’s inequality that(∑N
i=1 xi/N

)2
≤
∑N
i=1 x

2
i /N , which implies that

∑N
i=1 xi ≤

√
N
∑N
i=1 x

2
i . This incorporating

with (A.16) produces

E

[
N∑
i=1

‖xi,t − x̄t‖

]
≤ E


√√√√N

N∑
i=1

‖xi,t − x̄t‖2

 =
√
NE
[
‖x̃t‖

]
≤ 3NGf

t−1∑
s=1

ηsρ
t−s.

Thus, the lemma is proved. 2

A.2 Proof of Theorem 1

Note that
N∑
i=1

‖xi,t − xj,t‖ =

N∑
i=1

‖xi,t − x̄t −
(
xj,t − x̄t

)
‖ ≤

N∑
i=1

‖xi,t − x̄t‖+N‖xj,t − x̄t‖.

Then from (A.13) it follows that

E

[
N∑
i=1

‖xi,t − xj,t‖

]
≤

N∑
i=1

E [‖xi,t − x̄t‖] +NE [‖xj,t − x̄t‖]

≤ (3N + 3N3/2)Gf

t−1∑
s=1

ηsρ
t−s. (A.17)

It is noticed that
T∑
t=1

t−1∑
s=1

ηsρ
t−s =

T−1∑
t=1

T∑
s=t+1

ηt−sρ
t =

T−1∑
t=1

ρt
T∑

s=t+1

ηt−s ≤
ρ

1− ρ

T∑
s=1

ηs =
ρ

1− ρ

T∑
t=1

ηt.

5



This combined with (A.17) produces

T∑
t=1

E

[
N∑
i=1

‖xi,t − xj,t‖

]
≤ ρ(3N + 3N3/2)Gf

1− ρ

T∑
s=1

ηs. (A.18)

Note that
∑T
t=1

1√
t
≤
∫ T
0

1√
x
dx = 2

√
x|T0 = 2

√
T . Then by recalling that ηt = D1

Gf
√
t
, taking the

unconditional expectation on both sides of (A.1) and using (A.18), we obtain that

E
[
Reg(j, T )

]
≤ ND1Gf

√
T

2
+ND1Gf

√
T +

6ρN(1 +
√
N)D1Gf

√
T

1− ρ
.

Then the theorem is proved. 2

A.3 Proof of Theorem 2

By taking the unconditional expectation on both sides of (A.2) and using (A.18), we obtain

E
[
Reg(j, T )

]
≤
NG2

f

2

(
1 +

6ρ(1 +
√
N)

1− ρ

)
T∑
t=1

ηt. (A.19)

Note from ηt = 1
αt that

T∑
t=1

ηt =
1

α
+

1

α

T∑
t=2

1

t
≤ 1

α
+

1

α

∫ T

1

1

x
dx =

1

α
+

1

α
ln(x)|T1 =

1

α
(1 + ln(T )).

This combined with (A.19) proves the theorem. 2

B Proofs of Section 3

Proof of Theorem 3. By Assumption 4 and ξ = δ/r that for any x ∈ (1 − ξ)K : x + δu ⊆
(1− ξ)K + ξrB ⊆ (1− ξ)K + ξK ⊆ K. Then from (6) and (8) it follows that for each i ∈ V:

‖gi,t‖ ≤
d

δ
‖fi,t(xi,t + δui,t)‖‖ui,t‖ ≤

dC

δ
, t = 1, · · · , T. (B.1)

Then by ∇f̂i,t(xi,t) = E[gi,t], ‖∇f̂i,t(xi,t)‖ ≤ dC
δ , Gf holds for each i ∈ V and any t =

1, · · · , T . Note by Assumption 4 that ‖x− y‖ ≤ 2R , D1 for any x,y ∈ (1− ξ)K. By recalling
the definition (1), similarly to Theorem 1, we can show that for each j ∈ V :

E
[ T∑
t=1

N∑
i=1

f̂i,t(xj,t)
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

f̂i,t(x) ≤ 3dNRC

δ

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T . (B.2)

Since x ∈ (1− ξ)K ⊆ K and x + δu ∈ K, by Assumption 5 and the definition of f̂i,t that

‖f̂i,t(x)− fi,t(x)‖ = ‖Eu∈B[fi,t(x + δu)]− fi,t(x)‖
≤ Eu∈B‖fi,t(x + δu)− fi,t(x)‖ ≤ δLf , ∀x ∈ (1− ξ)K.

Therefore, we obtain that f̂i,t(xj,t) ≥ fi,t(xj,t)− δLf and f̂i,t(x) ≤ fi,t(x) + δLf . This combined
with (B.2) produces

E
[ T∑
t=1

N∑
i=1

fi,t(xj,t)− δLf
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

(
fi,t(x) + δLf

)
≤ 3dNRC

δ

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T .

6



By rearranging the terms, we obtain that

E
[ T∑
t=1

N∑
i=1

fi,t(xj,t)
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

fi,t(x)

≤ 3dNRC

δ

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T + 2δNLfT.

Note by [3, Observation 1] that

min
x∈(1−ξ)K

T∑
t=1

N∑
i=1

fi,t(x) ≤ 2ξCTN + min
x∈K

T∑
t=1

N∑
i=1

fi,t(x). (B.3)

Hence by the definition (1) and ξ = δ/r, there holds

E
[
Reg(j, T )

]
≤ 3NdRC

δ

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T + 2δNLfT + 2δCTN/r.

Hence, by the definitions of c1 and c2 that E
[
Reg(j, T )

]
≤ N

(
c1
√
T

δ + c2δT
)
. Thus, we complete

the proof by using δ = (c1/c2)0.5T−0.25. 2

Proof of Theorem 4. Recall by (B.1) that Gf = dC
δ . We can obtain from Theorem 2 and the definition

(1) that for each j ∈ V :

E
[ T∑
t=1

N∑
i=1

f̂i,t(xj,t)
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

f̂i,t(x) ≤ Nd2C2

2αδ2

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )).

Then by taking a similar procedure as the proof of Theorem 3 after (B.2), we have that

E
[
Reg(j, T )

]
≤ Nd2C2

2αδ2

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )) + 2δNLfT + 2δCTN/r

= N
( c3
δ2

(1 + ln(T )) + c2δT
)
.

Then we obtain the result by the definitions of c2, c3 and δ. 2

C Proofs of Section 4

Proof of Theorem 5. By recalling that x ∈ (1− ξ)K ⊆ K and x + δu ∈ K, from (9) and Assumption
5 that for each i ∈ V and any t = 1, · · · , T :

‖g̃i,t‖ ≤
d

2δ
‖fi,t(xi,t + δui,t)− fi,t(xi,t − δui,t)‖‖ui,t‖ ≤

d

2δ
2Lfδ‖ui,t‖2 ≤ dLf .

Then by ∇f̂i,t(xi,t) = E[gi,t], ‖∇f̂i,t(xi,t)‖ ≤ dLf , Gf . Note by Assumption 4 that for any
x,y ∈ (1− ξ)K : ‖x− y‖ ≤ 2R , D1. We then obtain from Theorem 1 and the definition (1) that
for each j ∈ V :

E
[ T∑
t=1

N∑
i=1

f̂i,t(xj,t)
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

f̂i,t(x) ≤ 3dNLfR

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T . (C.1)

By ξ = δ/r and a similar procedure as that of [4, Lemma 2], we can show that for any x ∈ K :

T∑
t=1

N∑
i=1

fi,t(y
1
j,t) + fi,t(y

2
j,t)

2
−

T∑
t=1

N∑
i=1

fi,t(x)

≤
T∑
t=1

N∑
i=1

f̂i,t(xj,t)−
T∑
t=1

N∑
i=1

f̂i,t((1− ξ)x +NTLfδ(3 +R/r). (C.2)
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This combined with (C.1) produces that

E

[
T∑
t=1

N∑
i=1

fi,t(y
1
j,t) + fi,t(y

2
j,t)

2

]
−

T∑
t=1

N∑
i=1

fi,t(x
∗)

≤ 3dNLfR

(
1 +

4ρ(1 +
√
N)

1− ρ

)
√
T +NTLfδ(3 +R/r).

Then we obtain the result by the selection of δ. 2

Proof of Theorem 6. Recall that ‖g̃i,t‖ ≤ dLf and ‖∇f̂i,t(xi,t)‖ ≤ dLf , Gf . We can obtain from
Theorem 2 and the definition (1) that for each j ∈ V :

E
[ T∑
t=1

N∑
i=1

f̂i,t(xj,t)
]
− min

x∈(1−ξ)K

T∑
t=1

N∑
i=1

f̂i,t(x) ≤
Nd2L2

f

2α

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )).

This combined with (C.2) produces that

E

[
T∑
t=1

N∑
i=1

fi,t(y
1
j,t) + fi,t(y

2
j,t)

2

]
−

T∑
t=1

N∑
i=1

fi,t(x
∗)

≤
Nd2L2

f

2α

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )) +NTLfδ(3 +R/r)

We then obtain the result by the selection of δ. 2
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