Additional theory background and proofs

9 Global convergence of over-parameterised DNNs

We briefly recapitulate here the main results on global convergence of over-parameterised neural
networks [Du et al., 2018, Mei et al., 2018, Rotskoff and Vanden-Eijnden, 2018]. We follow more
closely the notation of Rotskoff and Vanden-Eijnden [2018] and reference to that paper for more
formal proofs and definitions.

The setup of the problem is as follows: we are using a NN f(x, w) to approximate a function f(x).
The target function is observed at points drawn from a data distribution p(D) while the weights of the
NN are drawn from a measure p(w). The support of the data distribution p(D) is the data manifold
Mp C RY. The discrepancy between the observed target function and the approximating function
is measured through a suitable loss function L(x, w) which needs to be a convex function of the
difference between observed and predicted values (e.g. squared loss for regression or cross-entropy
loss for classification).

These results require a set of technical but rather standard assumptions on the target function and the
NN units (assumptions 2.1-2.4 and 3.1 in Rotskoff and Vanden-Eijnden [2018]), which we recall here
for convenience:

e The input and feature space are closed Riemannian manifolds, and the NN units are differentiable.

e The unit is discriminating, i.e. if it integrates to zero when multiplied by a function g for all
values of the weights, then g = 0 a.e. .

The network is sufficiently expressive to be able to represent the target function.

The distribution of the data input is not degenerate (Assumption 3.1).
One can then prove the following results:

e The loss function is a convex functional of the measure on the space of weights.

e Training a NN (with a finite number of units/ weights) by gradient descent approximates a
gradient flow in the space of measures. Therefore, by the Law of Large Numbers, gradient
descent on the exact loss (infinite data limit) converges to the global minimum (constant zero
loss) when the number of hidden units grows to infinity (overparameterised limit).

e Stochastic gradient descent also converges to the global minimum under the assumption that
every minibatch consists of novel examples.

In other words, Rotskoff and Vanden-Eijnden [2018] show that the celebrated Universal Approxima-
tion Theorem of Cybenko [1989] is realised dynamically by stochastic gradient descent in the infinite
data/ overparameterised limit.

10 Proofs of technical results

We provide here additional details for the theoretical results in the main text. We will assume that the
assumptions of Rotskoff and Vanden-Eijnden [2018] hold, as recalled in Section 9.

Lemma 3. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with a.e.
smooth data manifold Mp C R Let x* € Mp s.t. By(x*,€) C Mp, with B4(x*,€) the d-
dimensional ball centred at x* of radius € for some € > 0. Then f(x,w) is robust to gradient-based
attacks at x* of strength < ¢ (i.e. restricted in By(x*,€)).

Proof. By the results of Rotskoff and Vanden-Eijnden [2018], Mei et al. [2018], Du et al. [2018] we
know that, in the large data limit, an overparametrized NN will achieve zero loss on the data manifold
once fully trained. By assumption, the data manifold contains a whole open ball centred at x*, so the
loss will be constant (and zero) in an open neighbourhood of x*. Consequently, the loss gradient
at x* will be zero in a whole open neighbourhood of x*; therefore, any attack based on moving the
input point in the direction of the gradient at x* or a nearby point (such as PGD) will fail to change
the input and consequently fail to change the output value, thus guaranteeing robustness. O

13

Corollary 2. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with data
manifold M p C R smooth a.e. (where the measure is given by the data distribution p(D)). If f is
vulnerable to gradient-based attacks at x* € Mp in the infinite data limit, then a.s. dim (Mp) < d
in a neighbourhood of x*.

Proof. If f is vulnerable at x* to gradient based attacks, then the gradient of the loss at x* must be
non-zero. By Lemma 1 we know that, if the data manifold M p has locally dimension d, then the
gradient has to be zero. Hence dim (M p) < d in a neighbourhood of x*. O

Lemma 4. Let f(x,w) be a fully trained overparametrized NN on a prediction problem on data
manifold Mp C R a.e. smooth. Let X € M p to be attacked and let the normal gradient at X be
vw(X) := Vi xL(X,w) be different from zero. Then, in the infinite data limit and for almost all X,
there exists a set of weights w' such that

fx,w') = f(x,w) a.e. in Mp,
VixL(Z,w') = —vg(R).

Proof. By assumption, the function f(x, w) is realisable by the NN and therefore differentiable. To
show that there exists (at least) one set of weights that lead to a function satisfying the constraints
in (4) and (5), we proceed by steps. First, we observe that the loss is a functional over functions
g: Mp — [0,1], given explicitly by

Lig) = /M da’ 3" p(y16) log 9(60)

Y

where 6 is a parametrisation on M p, and we have written the data generating distribution p(D) =
p(y|0)q(0) as the product of the distribution of input values times the class conditional distribution.
However, evaluating the loss over a function ¢ : R — [0, 1] defined over the whole ambient space
only makes sense if one also defines a projection from the ambient space into the data manifold.
It is however still possible, given a function defined over the whole ambient space, to define the
loss computed on its restriction over M p and the normal gradient to the manifold by using the
ambient space metric and the decomposition it induces of the tangent space into directions along
M p and directions orthogonal. Normal derivatives of L[¢(x)] can then be defined as standard. For

any function ¢(x) on M p the normal gradient of the loss function® is
oL
Vinl(06) = HOY ()

Assuming the functional derivative of the loss is a differentiable function, as is the case e.g. with
cross-entropy, then condition 5 can be rewritten as

h(p(%), V 1x¢(%)) =0 (6)
for a suitably smooth function h.

To construct a function ¢ that satisfies both conditions (4) and (5), we assume that the data manifold
admits smooth local coordinates in an open ball M p N By(X, €) of radius € centred at X (which is
true for almost all points by assumption). We then define ¢(x) = f(x,w) + g(x), where g(x) is
smooth, supported in B, (X, €) and zero on the boundary of the ball 0B;(X,¢€), and g(x) =0 Vx €
Mp N By(X, €). Therefore, ¢ satisfies condition (4) by construction. In particular we can impose
condition (4) on ¢ in the local coordinates around X, by using a slice chart on M p N By(X, €).

In the overparametrized limit, it will always be possible to approximate the resulting function ¢ by
choosing suitable weights w’ for the NN, thus proving the Lemma. Notice that condition 6 holds on
a fixed point X under attack, hence at different attack points we may in principle have different w’
satisfying the lemma.

O

®Notice that this is only defined on the data manifold M p, while x is a coordinate system in the ambient
d
space R“.

14

11 Comparison with Deep Ensembles

Deep ensembles, as proposed by Lakshminarayanan et al. [2017], are an ensemble of neural networks
trained from different randomly selected initial conditions, which are then averaged in order to make
a prediction. In Table 2 we consider the same network used to perform the experiments in Section 5.2
(hyper-parameters are reported in Table 4) and run a comparison with both deterministic NNs and
deep ensembles. As expected, Bayesian NNs are more robust than deterministic ones. Moreover, we
find that deep ensembles and deterministic NNs are comparable in terms of robustness, suggesting
that simply averaging predictions for different weight initialization and mini-batching is not enough
to achieve a robust model.

Test FGSM PGD

Model
accuracy | accuracy | accuracy
Deterministic NN 97.69 21.19 1.45
Ensemble NN 99.4 20.6 0.3
Bayesian NN 96.1 90.0 89.8

Table 2: FGSM and PGD attacks on the network employed in Section 5.2. We compare a deterministic
NN, a deep ensemble NN (of size 100), and a BNN (trained with VI). Attacks are performed on 1k
test points from the MNIST dataset. We observe that VI trained network achieve better robustness
against PGD and FGSM.

12 Training hyperparameters for BNNs

Half moons grid search

Posterior samples {250}

HMC warmup samples {100, 200, 500}
Training inputs {5000, 10000, 15000}
Hidden size {32, 128, 256, 512}
Nonlinear activation Leaky ReL.U
Architecture 2 fully connected layers

Figure 5: Hyperparameters for training BNNs in Figure 1

Training hyperparameters for HMC

Dataset MNIST Fashion MNIST
Training inputs 60k 60k

Hidden size 1024 1024

Nonlinear activation ReLU ReLU
Architecture Fully Connected Fully Connected
Posterior Samples 500 500

Numerical Integrator Stepsize 0.002 0.001

Number of steps for Numerical Inte- || 10 10

grator

Table 3: Hyperparameters for training BNNs using HMC in Figures 2 and 3.

15

Training hyperparameters for VI

Dataset MNIST Fashion MNIST
Training inputs 60k 60k

Hidden size 512 1024

Nonlinear activation Leaky ReLU Leaky ReLLU
Architecture Convolutional Convolutional
Training epochs 5 10

Learning rate 0.01 0.001

Table 4: Hyperparameters for training BNNs using VI in Figures 2 and 3.

HMC MNIST/Fashion MNIST grid search

Posterior samples

{250, 500, 750%}

Numerical Integrator Stepsize

{0.01, 0.005%, 0.001, 0.0001}

Numerical Integrator Steps

{10%*, 15, 20}

Hidden size

{128, 256, 512*}

Nonlinear activation

{relu*, tanh, sigmoid}

Architecture

{1*,2,3} fully connected layers

Table 5: Hyperparameters for training BNNs with HMC in Figure 4. * indicates the parameters used

in Table 1 of the main text.

SGD MNIST/Fashion MNIST grid search

Learning Rate

{0.001%}

Minibatch Size

{128, 256*, 512, 1024}

Hidden size

{64, 128, 256, 512, 1024%*}

Nonlinear activation

{relu*, tanh, sigmoid}

Architecture

{1*,2,3} fully connected layers

Training epochs

{3,5%,7,9,12,15} epochs

Table 6: Hyperparameters for training BNNs with SGD in Figure 4. * indicates the parameters used

in Table 1 of the main text.

SGD MNIST/Fashion MNIST grid search

Learning Rate

{0.001, 0.005, 0.01, 0.05}

Hidden size

(64,128, 256, 512}

Nonlinear activation

{relu, tanh, sigmoid}

Architecture

{2, 3,4, 5} fully connected layers

Training epochs

{5, 10, 15, 20, 25} epochs

Table 7: Hyperparameters for training BNNs with SGD in Figure 4.

16

