
We thank the reviewers (R1, R2, R3) for their detailed feedback. Key concerns are briefly addressed below.1

Novelty of learning rule and key contributions (R2): While the final expression for our learning rule is superficially2

similar to other tri-factor rules (as suggested by the name), ours is derived in a principled manner from a global objective.3

Importantly, our solution is by construction designed for recurrent networks, unlike the references mentioned by R2,4

which do not learn recurrent weights (note that we had originally cited two of them). The closest solution to ours at the5

technical level is the REINFORCE algorithm (Williams, 1992), but the Hebbian term in that formulation is different6

and produces subtly different experimental predictions:7

• Our learning rule: ∆wij ∝ α(Dr, s)
(
rirj − 〈rirj〉p(r|s)

)
− 2λWwij8

• REINFORCE: ∆wij ∝ α(Dr, s)
∑T

t=0 f
′(hi(t))(ri(t)− r̄i(t))rj(t)− 2λWwij ,9

where f(·) is the activation function, hi is the pre-activation of neuron i, and r̄i is the expected average activation for10

that neuron. One notable difference is that learning is gated by deviations from the mean co-activation of the pre- and11

post-synaptic neurons, and not by post-synaptic activity alone – which is unique to our solution and potentially testable.12

More generally, to our knowledge, no previous work has used tri-factor learning rules to study the effects of task13

constraints and intrinsic noise on the learned representations. Our derivation of the three-factor rule facilitates this goal,14

but our main contribution is these novel analyses (as noted by R1).15

Disentangling sensory information from task (R3): While one tends to think of sensory representations as being16

determined exclusively by input statistics, with task constraints only affecting decoding/decision-making circuitry, there17

is a substantial body of experimental evidence showing that early sensory cortices can change in a task-specific manner18

in the presence of neuromodulation (Polley & Merzenich, 2006; Froemke & Schreiner 2007). Our results speak to these19

experimental observations. More generally, the task specificity of the learned code will depend on several factors –20

the set of tasks the system needs to perform, and various resource constraints (architecture, total number of neurons,21

etc). We believe that generalizations of our circuit model should allow one to dissect the contribution of each of these22

elements to the final representation.23

Symmetric weights (R1): Having a proper energy significantly simplifies the analysis of how the noise is being24

reshaped during learning, but is not strictly necessary for our framework. We are working on a generalization to25

arbitrary weights, which results in qualitatively similar learning rules, with additional temporal integration via eligibility26

traces. Also note that our current learning rule will naturally converge to symmetric weights, even for arbitrary synapse27

initialization (cf. Kolen & Pollack, 1994), so symmetry is an emergent property of the network.28

Results clarifications (R1): Prior manipulations were made throughout learning, not only at test time. The volume29

fraction is defined as V F (s) = detCD

detCPCA
, where CD is the covariance matrix of r projected onto the two output30

dimensions, and CPCA is the covariance matrix of r projected onto the first two principal components of the neural31

activity for a fixed stimulus s. In Fig. 2a, ellipses give 95% confidence range for network outputs, for a range of test32

stimuli marked with corresponding black crosses.33

“It is not clear in what way intrinsic noise in the recurrent dynamics ... allows us to derive closed-form probabilistic34

expressions for the objective function gradients.”: when we say that noise is necessary for our learning rule, we mean35

that the probabilistic description of neural activity is essential for the derivation of the learning rule (Eq. 3), not that the36

noise levels must be large. Intrinsic noise is what allows for this probabilistic description. In particular, in the absence37

of noise, our learning rule produces weight updates of 0 (i.e., no learning).38

Intrinsic noise is not always bad (R3): Increasing the magnitude of the noise is generally detrimental for performance,39

at least in our setup (Fig. 3c). We thought that the network might learn to use its stochasticity to encode uncertainty, but40

saw no evidence for this for our simple tasks. We’ll rephrase the statement about noise being detrimental for encoding,41

mentioning potential benefits of sampling for Bayesian computation.42

The network just plays as a filter of the noise in the framework of MSE (point estimate). You are right that the output of43

the network is a point estimate and not a probability. But there is a subtle point to be made here: although we have a44

probabilistic formulation for the encoding model, the computational goals of the circuit are not explicitly Bayesian. The45

task objectives are defined by marginalizing the prior input statistics and the intrinsic noise.46

Clarity and missing details (R1-3): We will correct the typos, add the requested additional information and the47

suggested references in the updated version. A Github code repository will also be provided to facilitate reproducibility.48


