Supplementary Material for “A Contour Stochastic
Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions”

Wei Deng Guang Lin Faming Liang *
Department of Mathematics Departments of Mathematics & Departments of Statistics

Purdue University School of Mechanical Engineering Purdue University
West Lafayette, IN, USA Purdue University West Lafayette, IN, USA
weideng056@gmail . com West Lafayette, IN, USA fmliang@purdue.edu

guanglin@purdue.edu

The supplementary material is organized as follows: Section [A] provides a review for the related
methodologies, Section [B] proves the stability condition and convergence of the self-adapting pa-
rameter, Section [C|establishes the ergodicity of the contour stochastic gradient Langevin dynamics
(CSGLD) algorithm, and Section [D]provides more discussions for the algorithm.

A Background on stochastic approximation and Poisson equation

A.1 Stochastic approximation

Stochastic approximation [Benveniste et al., [1990] provides a standard framework for the devel-

opment of adaptive algorithms. Given a random field function H (8, x), the goal of the stochastic
approximation algorithm is to find the solution to the mean-field equation h(8) = 0, i.e., solving

h8) = /X H(0,)we(dz) =0,

where z € X C R%, 0 € ©® C R™, H(6, x) is a random field function and we () is a distribution
function of x depending on the parameter 6. The stochastic approximation algorithm works by
repeating the following iterations

(1) Draw xy1 ~ g, (xk, ), where g, (x4, -) is a transition kernel that admits g, () as
the invariant distribution,

(2) Update 0,1 = 0 + wk+1ﬁ(0k, Tpy1) + wiﬂp(ek, Tp+1), where p(-, -) denotes a bias
term.

The algorithm differs from the Robbins—Monro algorithm [[Robbins and Monro| |1951]] in that x is
simulated from a transition kernel Ilg, (-, -) instead of the exact distribution wg, (). As a result, a
Markov state-dependent noise H (0, xr+1) — h(0y,) is generated, which requires some regularity
conditions to control the fluctuation Y, II&(H (0, z) — h(@)). Moreover, it supports a more general
form where a bounded bias term p(-, -) is allowed without affecting the theoretical properties of the
algorithm.

A.2 Poisson equation

Stochastic approximation generates a nonhomogeneous Markov chain {(x, %)}, for which the
convergence theory can be studied based on the Poisson equation

po(x) — Ilgpe(x) = H(0,x) — h(0),
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where ITg(x, A) is the transition kernel for any Borel subset A C X" and pg(+) is a function on X'.
The solution to the Poisson equation exists when the following series converges:

po(x) == > TI5(H(O,x) — h(0)).
k>0

That is, the consistency of the estimator € can be established by controlling the perturbations of
S eso 5 (H (0, 2) — h(8)) via imposing some regularity conditions on jg(-). Towards this goal,
Benveniste et al.| [1990] gave the following regularity conditions on yg(-) to ensure the convergence
of the adaptive algorithm:

There exist a function V : X — [1,00), and a constant C' such that for all 6,0 € ©,
[Mope ()| < CV(x), [Hope(x) — g pe: ()|l < C10 - '[[V (), E[V ()] < oo,

which requires only the first order smoothness. In contrast, the ergodicity theory by |[Mattingly et al.
[2010] and [Vollmer et al.|[2016] relies on the much stronger 4th order smoothness.

B Stability and convergence analysis for CSGLD

B.1 CSGLD algorithm

To make the theory more general, we slightly extend CSGLD by allowing a higher order bias term.
The resulting algorithm works by iterating between the following two steps:

(1) Sample 11 = mk—ekvmz(sﬂk, 0;)+N(0,2¢,71), (S1)
(2) Update 01 = Oy + wiy 1 H (O, Thp1) + iy p(Ok, Thot1), (S2)

where €, is the learning rate, w41 is the step size, me(az, 0) is the stochastic gradient given by

Vol(z,0) = % {1 + % (log 0(J(x)) — log0((J(x) — 1) v 1))] VoU(z), (1)

H(0,z) = (Hy(0,x),. .., H,(0,x)) is arandom field function with
H:(0,z) = 6°(J(z)) (1i:j(w) - 0(2‘)) L i=1,2,...,m, 2)

for some constant ¢ > 0, and p(0y, Tx1) is a bias term.

B.2 Convergence of parameter estimation

To establish the convergence of 8, we make the following assumptions:

Assumption Al (Compactness). The space © is compact such that infg 6(i) > 0 for any i €
{1,2,...,m}. There exists a large constant Q) > 0 such that for any @ € ® and x € X,

ol <@, [H®.2)<Q. [p6,2)]<Q. 3)

To simplify the proof, we consider a slightly stronger assumption such that infg 6(i) > 0 holds for
any ¢ € {1,2,...,m}. To relax this assumption, we refer interested readers to [Fort et al.| [2015]]
where the recurrence property was proved for the sequence {0y, }>1 of a similar algorithm. Such a
property guarantees 6, to visit often enough to a desired compact space, rendering the convergence
of the sequence.

Assumption A2 (Smoothness). U(x) is M-smooth; that is, there exists a constant M > 0 such that
forany x, &’ € X,

IVeU(x) = VaU(a')|| < M|z — || )

Smoothness is a standard assumption in the study of convergence of SGLD, see e.g. Raginsky et al.
(2017], Xu et al.|[2018]].



Assumption A3 (Dissipativity). There exist constants m > 0 and b > 0 such that foranyx € X
and 0 € O, .
(VoL(x,0),2) < b—mlx|? )

This assumption ensures samples to move towards the origin regardless the initial point, which is
standard in proving the geometric ergodicity of dynamical systems, see e.g. Mattingly et al.|[2002],
Raginsky et al.|[2017], Xu et al.| [2018]].

Assumption A4 (Gradient noise). The stochastic gradient is unbiased, that is,
E[VoU(z1) — VaU(21)] = 0;
in addition, there exist some constants M > 0 and B > 0 such that
E[[|VaU (k) — VaU (i) |P] < M?||2|* + B2,
where the expectation || is taken with respect to the distribution of the noise component included in

VoU(x).

Lemma BT]establishes a stability condition for CSGLD, which implies potential convergence of .
Lemma B1 (Stability). Suppose that Assumptions hold. For any 6 € ©, (h(0),0 —
0,) < —¢l6 — 6. ||2 + O (6, (0) +e+L), where ¢ = infeZy' > 0, 0, =
([, T(@)de, [, m(2) oy [, m(@)dx) and 6, (-) is a bias term depending on the batch size n
such that §,(-) — O asn — N
(x)
Vo (U(x))
a fixed piecewise continuous function given by

Proof Letwy,(z) x denote a theoretical invariant measure of SGLD, where Wg(u) is

m

-
\Ifg(u) _ Z (9(2 o 1)e(log 0(i)—log O(i— 1))7) 1u,;_1<u§u7;7 (6)
i=1
the full data is used in determining the indexes of subregions, and the learning rate converges to zero.
In addition, we define a piece-wise constant function

Ty = Za(i)%_l@gu“

and a theoretical measure wg, (x) x m Obviously, as the sample space partition becomes

fine and fine, i.e., U1 — Umin, Um—1 — Umax and m — oo, we have H\I/9 — WUp|| — 0 and
g, (®) — @, (x)|| — 0, where Umin and umax denote the minimum and maximum of U (x),

respectively. Without loss of generality, we assume upy.x < 00. Otherwise, umax can be set to a
value such that w({x : U(2) > umax}) is sufficiently small.

For each i € {1,2,...,m}, the random field H,(6,z) = 6°(J(x)) (1i2j(m) - 0(2)) is a biased

estimator of H;(8,x) = 0¢(J(x)) (Li>s(@) — 0(i)). Let 8,(8) = E[H(8, ) — H(0,z)] denote
the bias, which is caused by the mini-batch evaluation of the energy and decays to 0 as n — V.

First, let’s compute the mean-field (@) with respect to the empirical measure g (x):

hi(O):/Xﬁi(G,m)wg(m)dm:/)(Hi(e,m)wg(m)dm—kénw)

@)
= / Hi(0,z) | wg, () —wg, (®) + wyy(x) —wwy(x) + wo(x) | dz + 6n(0).
" I I I3
For the term I;, we have
1 N (@)
/X H;(0,x)wg, (x)dx = Zs QC(J( ) (Lizs(@) — 0(2)) mdm
- ®)
x)lp—idx —
0[S, o005 o

= Zg ' [0.(i) = 0(0)],



 m(z)dz ..
where Zg = > 1", % denotes the normalizing constant of wg ().

Next, let’s consider the integrals I and I3. By Lemma and the boundedness of H (0, x), we have

/ H;i(0,z)(—wg, (%) + wy,(x))de = O (1> . )
X m
For the term I3, we have for any fixed 6,
/ H;(0,x) (—wg, () + we(x)) dx = O(5,, (0)) + O(e), (10)
X

where d,,(+) uniformly decays to 0 as n — N and the order of O(e) follows from Theorem 6 of |Sato
and Nakagawa| [2014].

Plugging (), (@) and (T0) into (7), we have

hi(8) = Zg" [£8:(0) + 0u(i) — 0(3)] (11)
where ¢ = 0(6,(0) +e+2) and B;(6) is a bounded term such that Z,'c3;(8) =
O (6,(0) + e+ ).
To solve the ODE system with small disturbances, we consider standard techniques in perturbation

theory. According to the fundamental theorem of perturbation theory [Vanden-Eijnden, 2001]], we
can obtain the solution to the mean field equation h(8) = 0:

0(i) = 0,(i) +B:(0,) + O(?), i=1,2,...,m, (12)

which is a stable point in a small neighbourhood of 8.

Considering the positive definite function V(6) = %6, — 6||? for the mean-field system 1(8) =

Zy ' (eBi(0) + 0, — 0) = Z, (0, — 0) + O(e), we have

(1(6), V) = ((6),6-0.) = ~Z,6-0.2+0(2) < ~6l0-6.[P+0 (8,(6) + <+ )

where ¢ = infg Zg 1> 0 by the compactness assumption This concludes the proof.

The following is a restatement of Lemma 1 of Deng et al.|[2019]], which holds for any @ in the
compact space ©.

Lemma B2 (Uniform L? bounds). Suppose Assumptions and hold. Given a small enough
learning rate, then sup,>, E[[|zx||*] < occ.

Lemma B3 (Solution of Poisson equation). Suppose that Assumptions hold. There is a
solution pg(-) on X to the Poisson equation

po () — Tgpe(x) = H(O,x) — h(H). (13)
In addition, for all 6,0’ € ©, there exists a constant C' such that

E[[Mope(2)|l] < C,

14
E[|Tope () — o pior ()] < CJl6 — 0] (1

Proof The lemma can be proved based on Theorem 13 of [Vollmer et al.| [2016], whose conditions
can be easily verified for CSGLD given the assumptions A1-A4 and Lemma The details are
omitted.

Now we are ready to prove the first main result on the convergence of 8j. The technique lemmas are
listed in Section[B.3]

Assumption A5 (Learning rate and step size). The learning rate {€y } e is a positive non-increasing
sequence of real numbers satisfying the conditions

o0
limek = 0, E € — OQ.
k
k=1



The step size {wy, }reN Is a positive decreasing sequence of real numbers such that

oo
.. w w —w
wi — 0, Zwk =400, lim inf2¢ k + k+12 ESo0. (15)
1 k—o0 WE41 wk,H
According to|Benveniste et al.|[1990)], we can choose wy, := ﬁ for some o € (%7 1] and some

suitable constants A > 0 and B > 0.

Theorem 1 (L? convergence rate). Suppose Assumptions hold. For a sufficiently large value
of m, a sufficiently small learning rate sequence {€;}7° |, and a sufficiently small step size sequence
{wi}ty, {0k} converges to 0, in Ly-norm such that

1
E[|6; — 0.]I’] = O (wk + sup €; + — + sup (5n(0i)) ,
i>ko m >k
where ky is a sufficiently large constant, and 6,,(0) is a bias term decaying to 0 as n — N.
Proof Consider the iterations

0141 = 01 + Wi (ﬁ(ekamk—o—l) + Wk+1p(0k7-73k+1)> .

Define T}, = 6, — 0,. By subtracting 6, from both sides and taking the square and Lo norm, we
have

1T = TR || + wid [|H (B, @hs1) + wis1p(Ok, ®rgr)||” + 2wis1 (T, H(@hs1) + wis19(Ok, Tig1)) -

D

First, by Lemma there exists a constant G = 4Q?(1 + Q?) such that

| H Ok, Trt1) + w190k, 2is1) > < G+ || Ti[?). (16)

Next, by the Poisson equation (I3), we have

D = (Tj, H(Ok, Ty +1) + wrt10(0k, Thv1))
= (T, h(0k) + po, (Tk+1) — o, f1o, (Th+1) + Wr19(Ok, Tht1))
= (T, h(Ok)) + (T, pro,, (r11) — o, po, (Th+1)) + (Tho, wi+19(Ok, Tp41)) -

D, Do D3

For the term Dq, by Lemma|B1] we have
1
E (T, 1(01))] < =GB Te[*] + O(6n(88) + ex + —).

For convenience, in the following context, we denote O(4,,(0x) + € + %) by Ag.
To deal with the term Dy, we make the following decomposition
Dy = (T}, po, (xr41) — 1o, pto, (1))
D2y
+ (Tiw, o, o, (1) — o, _, o, (xr)) + (T, o, _, o, () — Lo, po, (Tr+1)) -

Dos D23

(i) From the Markov property, g, (€x+1) — Ilg, po, () ) forms a martingale difference sequence
E [(Tk, po, (Tr+1) — o, 1o, (x1))| Fi] =0, (D21)
where Fy, is a o-filter formed by {0, x1,01, T2, - , @k, O }.

(ii) By the regularity of the solution of Poisson equation in (I4) and Lemma[B6| we have
E[|o, po, (k) — o, oy, (z)[]] < Cll0k — O] < 2QCwy. (17)



Using Cauchy—Schwarz inequality, (T7) and the compactness of © in Assumption[AT] we have
E[(Ty, o, po, (zx) — o, _, pto,_, (zx))] < B[|Th|]] - 2QCwy < 4Q°Cuwy, < 5Q*Cuwpyr (Daa),
where the last inequality follows from assumption |A5|and holds for a large enough k.
(ii1) For the last term of Do,
(T, o, _, 1o, (1) — Lo, pto, (Tr+1))
= (T, Mg, _, o, _, (1)) — (Thy1, o, o, (Tht1)))

+ ((Tr+1, o, po, (Tr11)) — (Tk, Lo, pro,, (®11)))
:(Zk: - Zk+1> + <Tk+1 - Tkn Hgk/’l’ek ($k+1>>,

where 2 = (T, Ilg, _, g, _, (1)). By the regularity assumption (14) and Lemma|[B6}
E(Thr1 — Ti, Ho, pio,, (Th+1)) < E[l|0h41 — O] - E[[[To, g, (zr41)[]] < 2QCwhy1.  (D2s)

Regarding Ds, since p(0y, €+1) is bounded, applying Cauchy—Schwarz inequality gives
E[(Tk, wir 190k, Trr1))] < 2Q°wp11 (D3)

Finally, adding (16), D, Dgl, D52, Do3 and D3 together, it follows that for a constant Cy =
G +10Q%*C +4QC + 4Q?,

[||Tk+1|| ] =~ (1 — 2wk+1¢ + GwﬁH)]E [HTkHZ] + Cow]%_’_l + 2Akwk+1 + 2E[Zk - zk+1]wk+1.
(18)

Moreover, from (3) and (14), E[||] is upper bounded by
Ellz|] = E[(Tk, o, _, po, _, (xx))] < E[[|Ti[[JE[|[Ig, _, o, _, (xx)[] <2QC.  (19)
According to Lemma[B7} we can choose A and & such that
9 1
E[|| T[] < ko = Aowr, + — sup Ay,
® i>ko
which satisfies the conditions (30) and (31) of Lemma[B9] Applying Lemma [B9leads to

k
E[|T)?] <en+E| > Az —2)|, (20)
j=ko+1
where ¥, = \owi + 1 3 SUD;> 1, A, for all k& > kq. Based on ( and the increasing condition of Aé?

in Lemma[B§| we have
k
E[ Z Af(z]_lzj)}—]E[ ]

j=ko+1
< Z (A5 — AHQC + E[|2wizi|] + 2A5QC @D

Jj=ko+1
<2(Af — A})QC + 2A5QC + 2A5QC
<6AFQC.

k-1

k k k
> (Afr — M)z — 2wiezk + Ag112k
j=ko+1

Given ¢y, = )\Owk +1 3 SUD;> A; which satisfies the conditions and of Lemma it
follows from (20) and 1] . ) that the following inequality holds for any k > ko,

1 1
]EH|Tk|| | < i+ 6AR rQC = (Mo 4+ 12QC) wi + — sup A; = dwg + — sup 4,
i>ko 1>ko

2G sup;~ . A 420,
where A = Ag + 12QC, A = 22 Pizke 202000

G +5Q2C +2QC +2Q? and G = 4Q2(1 + Q?).

A W W — W
,C1 = liminf 2p—— + L% 5 0, ¢ =
Wh+1 W41



B.3 Technical lemmas

Lemma B4. Suppose Assumption holds, and w; and u,,_1 are fixed such that V(u1) > v and
U(um—1) > 1 — v for some small constant v > 0. For any bounded function f(x), we have

1
/ f(z w% z) — %g(w)) de = O (m> . (22)
Proof Recall that wg () = Z%#ﬁ)) and wy, () = Zie \Ijﬁge()m)). Since f(z) is bounded,

it suffices to show

/ 1 7(x) 1 m(x) e

Zg 0(J (@) Zw, W(U())
</, Zlf% % \Iﬂt(vg?w)) o, Zle@é?gc(i:)) 7 \Ifét(;()w)) T
Z/ G wgg()w)) ”i % 7l )y Wgﬁ;))dw:o ()
where Zg = Y7, f: stkdx, Zu, = Y, Jx, Wc’;(”? )); and Wg(u) is a piecewise continu-

ous function defined in (G).

By Assumption infg O(¢) > 0 for any ¢. Further, by the mean-value theorem, which implies
|z¢ — y¢| < o —y|2¢ forany ¢ > 0,2 < yand 2z € [z,y] C [u1,00), we have

_ 1y 9%) - C(U(w)) [Wo(ui-1) ‘I’ (us)]
h= Zg ;/x U(x)) S Zo Z/ ; (e
szax|‘llg(ui—Au — Ug(u;) Z/ G dm—max\\llg( )—\Ilg(ui)|§Au:(9<%> ,

1 1
A
Zo Ly,

7(z)

where the last inequality follows by Taylor expansion, and the last equality follows as w1 and ., —1
0 C Y (U(=)

are fixed. Similarly, we have
| Zw, — 1
A "7 de=1L=0|—).
Ve — Zo — ZO Z r ! m
The proof can then be concluded by combining the orders of I; and I5.
Lemma B5. Given sup{w; }32, < 1, there exists a constant G = 4Q*(1 + Q?) such that
1 (B @i1) + wir1p(Ok, i) |* < G(L+ |6k — 0. ]). (24)

Proof

According to the compactness condition in Assumption A1} we have
1H (8, @1 IIP < Q7 (1+]6k]7) = Q° (14105 —0.+6.1%) < Q*(1+2]61—0.]+2Q%). (25)

Therefore, using , we can show that for a constant G = 4Q?(1 + Q?)
|1 H (01, Trs1) + wir1p(Or, Trs1)|)
< 2| H(Ok, i 11)|* + 271 [p(Ok, zoi1) 1P
<2Q°(1+2(0k — 0. +2Q%) +2Q°
< 2Q°(2+2Q% + (2+2Q%)|6x — 6.])
G(1+ (6% — 6.]1%).

Lemma B6. Given sup{wy;}?°, < 1, we have that
0r — 011 < 2wiQ (26)



Proof Following the update 6, — 0,1 = wkfI(Hk,h xy) +wip(Ok—1, Tk), we have that

16 — Ok 1| = llwr H (Ok—1, k) + wip(Ok—1, k)| < wil H(Ok—1, k)| + willp(Or—1, k).
By the compactness condition in Assumption[AT]and sup{ws }32, < 1, can be derived.
Lemma B7. There exist constants Ao and kg such that YA > \g and ¥k > ko, the sequence {1} 72 |,

where Y, = A \wy, + %SUPizko A;, satisfies
Y1 >(1 = 2wk 19 + Gwiy )Wr, + Cowityy + 285w i1- 27)
Proof By replacing 1y, with Awy, + % SUp; >k, Ai in , it suffices to show

1 1
Awk41 + = sup A; >(1 — 2wp410 + Gwiﬂ) ()\wk + — sup AZ) + Cow;%H + 2Akwk41-
® i>ko @ i>ko

which is equivalent to proving

1
w41 — wk + 2wpwWrt1P — kawiH) > p; sup A;(—2wrt+10 + Gw,%_,_l) + Cow,%_,_l + 2Akwi41.-
i>ko

Given the step size condition in (I5), we have

2
Wrt1 — Wi + 2w0pwr410 > Crwiy 1,

where C7 = liminf 2¢ i + Wit1 — Wi > 0. Combining —sup,>,, A; < Ay, it suffices to
Wk41 Wit1 -
prove
G
A(C1 — Gup)wi g > <¢ sup A; + Co> Wiy (28)
i>ko

. 2G sup;, A;+2C
It is clear that for a large enough ko and \o such that wy, < % Ao = P zg‘iqﬁ Od), the

desired conclusion ([28) holds for all such k > ko and X > Xo.

The following lemma is a restatement of Lemma 25 (page 247) from [Benveniste et al.|[1990].

Wit1 — W

Sl Ry 2¢ — Gwgy1 > 0 for some
WEWk+1

constant G. Then for any k > ko, the sequence {AX}y_y, . i defined below is increasing and

uppered bounded by 2wy,

Lemma B8. Suppose kg is an integer satisfying infy~,

2w 15 (1 - 2w 110+ Gw2yy) ifk < K,
AR = (29)
2k ifk = K.

Lemma B9. Let {1y} x>k, be a series that satisfies the following inequality for all k > ko
PYrs1 20k (1 — 2wpq10 + Gy ) + Cowiy g + 28wkt (30)

and assume there exists such kg that

E [|| Tk |I”] < ro- 31)
Then for all k > ko, we have
k
E[|T:)?]) <on+ Y. Af(zio1— ). (32)
j=ko+1

Proof We prove by the induction method. Assuming is true and applying (I8), we have that

k
E[|Tei]®] < (1= 2wk16+win G) (e + Y Aj(z-1 — 2))
j=ko+1

+ Cowi i1 + 28 kwit1 + 2wk 1Bz — 2i41]



Combining and Lemma/B§] respectively, we have

k
E[|Tei1]?] < vortr + (1= 20k410 + 0k G) > A (z5-1 — 25) + 20k 11 B2k — 2i41]
i=ko+1

k
Sent Y AJT(zo1 — ) + AV Ez — 2k44]
Jj=ko+1

k+1

< g1 + Z A (zio1 — z5).

j=ko+1

C Ergodicity and dynamic importance sampler

Our interest is to analyze the deviation between the weighted averaging estimator
£ Zl 1 Z( J(x:))f(z;) and posterior expectation [ ¢ f(x)m(dx) for a bounded function f. To
accomplish this analysis, we first study the convergence of the posterior sample mean % Zf: 1 flxs)
to the posterior expectation f = [, f(x)wy,, (x)(dz) and then extend it to |, f(@)wg, (z)(dz).

The key tool for establishing the ergodic theory is still the Poisson equation which is used to charac-
terize the fluctuation between f(x) and f:

Ly(x) = f(z)— [, (33)

where g () is the solution of the Poisson equation, and L is the infinitesimal generator of the Langevin

diffusion
Lg = (Vg,VL(-0.)) +TV?g.

By imposing the following regularity conditions on the function g (), we can control the perturbations

of % Zle f(x;) — f and enables convergence of the weighted averaging estimate.

Assumption A6 (Regularity). Given a sufficiently smooth function g(x) and a function V(x) such
that | D¥g|| < VP(x) for some constants py, > 0, where k € {0,1,2,3}. In addition, VP has a
bounded expectation, i.e., sup,, E[VP ()] < oo; and V is smooth, i.e. sups¢ o 13 VP (sz+(1-s)y)
VP(x) + VP(y) forall z,y € X and p < 2max{py}.

For stronger but verifiable conditions, we refer readers to [Vollmer et al.| [2016]. In what follows,
we present a lemma, which is majorly adapted from Theorem 2 of |Chen et al.|[2015] with a fixed
learning rate .

Lemma C1 (Convergence of the Averaging Estimators). Suppose Assumptions hold. For any
bounded function f,

[lefwl} /f z)wg, (x)ds

Ko
where ky is a sufficiently large constant, D, (z) x 95?52))» and Ei? YL = o(-L) as implied by
Assumption[AS]

Proof We rewrite the CSGLD algorithm as follows:
Tpy1 = T — eszZ(azk, 0k) JrN(O, QEkTI)
= a1 — 6 (VoL (@i,0.) + T(@1. 01.6.) ) + N (0,26,7D),

where V,L(z,0) = ¥ |1+ &= (log6(J (z)) — log §((J(z) — 1) v 1))] VaU (), VoL(x,0) is
as defined in Section , and the bias term is given by Y(x,0y,0,) = Vwi(a:k,ek) —
VwL(a:k,H*).

By Assumption[A2] we have |V,U ()| = |[VoU(z) — Vo U(x,)|| S [l — 2. < ||| + ||z
for some optimum. Then the L? upper bound in Lemma implies that VU (x) has a bounded



second moment. Combining Assumption we have E {vaﬁ (x) ||2} < oo. Further by Eve’s law

(i.e., the variance decomposition formula), it is easy to derive that E [||Vm(7 () ||} < 00. Then, by

the triangle inequality and Jensen’s inequality,

[E[Y (@, Ok, 0.)]|| < E[[[Va E(wkﬁk)—v E(mk,e*)H]HE[HV E(wkﬁ*)—v L(zy,6.)|]

SE[|6x — 0.]]] + 0(6.4(6.)) < VE[[6x — 6.]] + O(6
<0 <\/wk +e+ 1 + sup 6n(0i)> )
m o i>kg

where Assumption and Theorem are used to derive the smoothness of VL (x, @) with respect
to 8, and 0,,(0) = E[H(0,x) — H(O,x)] is the bias caused by the mini-batch evaluation of U ().

The ergodic average based on biased gradients and a fixed learning rate is a direct result of Theorem
2 of |(Chen et al.|{[2015] by imposing the regularity condition By simulating from wy, ()

()
vy (U(=))

[lefml] /f T)ww,, (

(34)

and combining and Theoremﬂ we have

k

<O< . +zianMﬁmmm>

! SEy Wi+ e+ sup,sy, 0a(6)
50 E+€+ A —

>
<+\/+ L +\F+f>u;£\/7)

where the last inequality follows by repeatedly applying the inequality va + b < v/a + v/b and the
inequality 3% | /o, < [k wi.

For any a bounded function f(x), we have | [, f(x)wy, (x)dz— [, f(@)wg, (x)dx|= o)
by Lemma[B4] By the triangle inequality, we have

|:ZZ 1f331 :| /f wxpe

which concludes the proof.

1
VI ik

k
Finally, we are ready to show the convergence of the weighted averaging estimator <<= 1k LU (@) (i)

k08 (J (=)

to the posterior mean [, f(x)7r(dx).

Theorem 2 (Convergence of the Weighted Averaging Estimators). Assume Assumptions[AIJA6|hold.
For any bounded function f, we have that

> 05 (J (i
20<J ]/f

7,17.

E

Proof

10



Applying triangle inequality and |E[z]| < E[|«|], we have

S 05T (a)]
| S ) ] f s
g || S @) @) L, 6 (@ ))f(:m)}
) S 05 (T ()
g || S T @) @) Ze, T 05 (I (s ))f(mi)}
i 0 (J () k

Iz

ZQ* i

) = 65 (@)| - | (@)l | + [E

k
ZZ* ;95(](331))]"(331)] —/Xf(m)ﬁ(dm)

Iz Iy

For the term I, consider the bias 6, (8) = E[H (6, ) — H(0, z)] as defined in the proof of Lemma
which decreases to 0 as n — N. By applying mean-value theorem, we have

- [ (S, 05 (T flo)) (S5, 05 (T (a))) — (S5, 05 (T (o)) f(aa)) (S, 05 (F(wa)) ) H
1 (Sh 08 @a))) (S, 6 (I ()
< supén(ei)E [

(S 05 (@) (@) (Lh, 05T () ) _o (Sup5 (0))

(S 65 (@) (Th, 65 (I ()
For the term Iz, by the boundedness of © and f and the assumption infg 6¢ (i) > 0, we have

oIS @) ) (I ()
S (1 > k Z)‘

(35)

i=1

< Ze*zueiw»_l}
r m SR (05() — 05(3) + 05(3) ) 1ya, )i
e {|z0, 302 (0 (k)+ e _1]

05 (1) S5y L=

Zo,» = =

I22

] |

For Iy, by first applying the inequality |2¢ —y¢| < |z —y|2¢~ forany ¢ > 0,2 < yand z € [z, ]
based on the mean-value theorem and then applying the Cauchy—Schwarz inequality, we have

i S {ii\egm—e \] }ﬂ{zze '}S;Jiﬁ[eﬁeﬂ,

Jj=11i=1
(36)

where the compactness of © has been used in deriving the second inequality.

For 155, considering the following relation

1= Z/ x)de = Z/ N0, ;;(z;d:c = Ze*/)(iz_:leg(i)h(m)_@% (x)dz,

11



then we have

where the last equality follows from Lemmaas the step function ZZL 0% ()17(a)= is integrable.

For I3, by the boundedness of f, the mean value theorem and Cauchy-Schwarz inequality, we have

S ) - e w»)\] 1E[> 300 -0.0]] 5 1$_2E[||ew—m|2]

i= =1 1i=1
(38)

I3 <E

~

For the last term Iy, we first decompose [, f(x)m(dx) into m disjoint regions to facilitate the
analysis

ROUCE / L I )’
j=1 ]m (39)
— Ze, /X S 0.6) F@) L san)—s g, (@)(d)

Plugging (39) into the last term I, we have

Ze* ZZQ* f®i)lyz;)= ]} / f(x

i=1 j=1

1 k m
[kz< 0:() (@)1, ]>:| / (295 (@) 1(es) J> =5 (z)(dx)

=1

= Zp, |E

(40)

Applying the function Z;nzl 05 () f(x:)1 J(m)=j tO Lemmaﬂyields

1 k
E [k; ;f(il?i):| - /X f(w)w\j,e* (z)(dz)

— 1 Ez 1 Wi -

_O(ke—h/é—s— = +f+?;1£)\/ )
41)

Plugging @I into @I) and combining Iy, Isy, Is2, I3 and Theorem[I] we have

22195( ZL1WZ
L] Lol oo )

which concludes the proof of the theorem.

D More discussions on the algorithm

D.1 An alternative numerical scheme

In addition to the numerical scheme used in (6) and (8) in the main body, we can also consider the
following numerical scheme

log 0 (J (zk) A m) — log O (J (xk
Au

N -
Thtl = Tk~ Cht1 1+¢7 ) VaoU(k) + /2T€kp1Whi1.
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Such a scheme leads to a similar theoretical result and a better treatment of Wy (-) for the subregions
that contains stationary points.

D.2 Bizarre peaks in the Gaussian mixture distribution

A bizarre peak always indicates that there is a stationary point of the same energy in somewhere of
the sample space, as the sample space is partitioned according to the energy function in CSGLD. For
example, we study a mixture distribution with asymmetric modes w(x) = 1/6 N(—6,1)+5/6N (4, 1).
Figure|S1|shows a bizarre peak at x. Although z is not a local minimum, it has the same energy as
“-6” which is a local minimum. Note that in CSGLD, x and “-6” belongs to the same subregion.

— Original energy

20
Modified energy ({=0.5)
— Modified energy ({=0.75)
1% Modified energy ({=1)
>
<y
210
]

-12.5 -6 4 10
Sample space

Figure S1: Explanation of bizarre peaks.

D.3 Simulations of multi-modal distributions

We run all the algorithms with 200,000 iterations and assume the energy and gradient follow the
Gaussian distribution with a variance of 0.1. We include an additional quadratic regularizer (||z||? —
7)1||z|)2>7 to limit the samples to the center region. We use a constant learning rate 0.001 for SGLD,
reSGLD, and CSGLD; We adopt the cyclic cosine learning rates with initial learning rate 0.005
and 20 cycles for cycSGLD. The temperature is fixed at 1 for all the algorithms, excluding the
high-temperature process of reSGLD, which employs a temperature of 3. In particular for CSGLD,
we choose the step size wy = min{0.003,10/(k%® 4 100)} for learning the latent vector. We fix
100 partitions and each energy bandwidth is set to 0.25. We choose ¢ = 0.75.

D.4 Extension to the scenarios with high-(

In some complex experiments (e.g. computer vision) with a high-loss function, the fixed point 8,
can be very close to the vector (1,0, ...,0), i.e., the first subregion contains almost all the probability
mass, if the sample space is not appropriately partitioned. As a result, estimating 6()’s for the high
energy subregions can be quite difficult due to the limitation of floating points. If a small value of ¢
is used, the gradient multiplier 1 + (7 289-()= log 0. (G=DVD) s close to 1 for any 4 and the algorithm
will perform similarly to SGLD, except with dlfferent weights. When a large value of ( is used, the
convergence of 8, can become relatively slow. To tackle this issue, we include a high-order bias item
in the stochastic approximation as follows:

Or41(i) = 0k (i) + Wit (t‘)i(f(mm) + Wk+11i2j(mk+l)P)> (h;j(mkﬂ) - 9k(’i)) ;o (42)

fori =1,2,...,m, where p is a constant. As shown early, our convergence theory allows inclusion
of such a high-order bias term. In simulations, the high-order bias term w? 11l F(@ein)P penalized
more on the higher energy regions, and thus accelerates the convergence of 8, toward the pattern
(1,0,0,...,0) especially in the early period.

In all computation for the computer vision examples, we set the momentum coefficient to 0.9 and
the weight decay to 25, and employed the data augmentation scheme as in |[Zhong et al.| [2017]].
In addition, for CSGHMC and saCSGHMC, we set wy, = 1&75174(:@.00 and p = 1in for both
CIFAR10 and CIFAR100, and set ¢ = 1 x 10° for CIFAR10 and 3 x 10° for CIFAR100.

13



D.S Number of partitions

A fine partition will lead to a smaller discretization error, but it may increase the risk in stability.
In particular, it leads to large bouncy jumps around optima (a large negative learning rate, i.e.,

w < 0in formula (8) may be caused there). Empirically, we suggest to partition the
sample space into a moderate number of subregions, e.g. 10-1000, to balance between stability and

discretization error.
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