Supplementary Material:
Disentangling Human Error from Ground Truth in
Segmentation of Medical Images

A Additional results

A.1 Annotation Simulation Details

We generate synthetic annotations from an assumed GT on MNIST, MS lesion and BraTS datasets,
to generate efficacy of the approach in an idealised situation where the GT is known. We simulate
a group of 5 annotators of disparate characteristics by performing morphological transformations
(e.g., thinning, thickening, fractures, etc) on the ground-truth (GT) segmentation labels, using
Morpho-MNIST software [19]. In particular, the first annotator provides faithful segmentation
(“good-segmentation”) with approximate GT, the second tends over-segment (‘“over-segmentation’),
the third tends to under-segment (“under-segmentation”), the fourth is prone to the combination of small
fractures and over-segmentation (‘“‘wrong-segmentation”) and the fifth always annotates everything
as the background (“blank-segmentation”). To create synthetic noisy labels in multi-class scenario, we
first choose a target class and then apply morphological operations on the provided GT mask to create
4 synthetic noisy labels at different patterns, namely, over-segmentation, under-segmentation, wrong
segmentation and good segmentation. We create training data by deriving labels from the simulated
annotators. We also experimented with varying the levels of morphological operations on MNIST
and MS lesion datasets, to test the robustness of our methods to varying degrees of annotation noise.

A.2 Additional Qualitative Results on MNIST and MS Dataset

Here we provide additional qualitative comparison of segmentation results and CM visualization
results on MNIST and MS datasets. We examine the ability of our method to learn the CMs of
annotators and the true label distribution on single label per image. Fig.[7]and Fig. 0] show the
segmentation results on MNIST dataset on single label per image. Our model achieved a higher dice
similarity coefficient than STAPLE and Spatial STAPLE, even prominently, our model outperformed
STAPLE and Spatial STAPLE without or with trace norm, in terms of CM estimation. Fig.[§and
Fig.[10illustrate our model on single label still can capture the patterns of mistakes.

Naive CNN on Naive CNN on Seperate CNN ial
5 m in Labels ma Labels on annotators STAPLE suPLz Our CNN

GEHEAGE

N
P
N

"N
.:

HEEEEEEER
DI NIEEIETCEN

o
s

S
=N
0

SR ENE P N
BRNEDER

: H) H

SINIREIErLYS
O &)

Q%N SN R &N
NOISIREIESrN
ISR
NI ISEIEAEEN
n)

NEI IS
NCITIRErNE
Q)

Q9 OIS ¢k =N E
NIEIEIRCTSFIENEN

g v 4

Figure 7: Visualisation of segmentation labels on MNIST dataset for single label per image: (a) GT and simulated
annotator’s segmentations (Annotator 1 - 5); (b) the predictions from the supervised models.

g

F) Fi

D
G

Average over 5

CMs Annotator Annotator
(Ground Truth) predictions labels

CMs
(Our Prediction)

(yanay punosn) agew indu|
uonejuawges

paid inQ)
uonejuawgas

3

-
0
El

Figure 8: Visualisation of estimated true labels and confusion matrices for single label per image on MNIST
datasets (Best viewed in colour: white is the true positive, green is the false negative, red is the false positive and

black is the true negative)

Spatial
STAPLE

Naive CNN on Naive CNN on Seperate CNN
Mean Labels Mode Labels on annotators

STAPLE

RDEnD
T
EEODRAD

=

o
g
Q
z
=

(X =0)

wa

)) 9
iy i% 8
s

Figure 9: Visualisation of segmentation labels on MS lesion dataset for single label per image: (a) GT and
simulated annotator’s segmentations (Annotator 1 - 5); (b) the predictions from the supervised models.

Good-Segmentation Over-Segmentation

Annotator
labels

Ann
predictions

s
(Ground Truth)

z
S
ket

Under-Segmentation

Average over 5

Wrong-Segmentation

06
04

'n)
o

08
06
04
02
0

(arer3)
28ew 3nduy

(11)
a8ew anduy

(y3nay punoio)

(uopaipasd ano)

uopeuswsas

uopejuawsas

Figure 10: Visualisation of estimated true labels and confusion matrices for single label per image on MS lesion
datasets (Best viewed in colour: white is the true positive, green is the false negative, red is the false positive and

black is the true negative).

15

A.3 Quantitative and Extra Qualitative Results on BraTS and LIDC-IDRI

Here we provide the quantitative comparison of our method and other baselines on BraTS and
LIDC-IDRI datasets, which have been precluded from the main text due to the space limit (see Table. 4]
and Table. [5). We also provide additional qualitative examples (see Fig. on both datasets.
Lastly, we compare the segmentation performance on 3 different subgroups of LIDC-IDRI with
varying levels of inter-reader variability; Fig.[I5]illustrates our method attains consistent improvement
over the baselines in all cases, indicating its ability to segment more robustly even the hard examples
where the experts in reality have disagreed to a large extent.

BraTsS 2019 is a multi-class segmentation dataset, containing 259 cases with high grade (HG) and
76 cases with low grade (LG) glioma (a type of brain tumour). For each case, four MRI modalities
are available, FLAIR, T1, T1-contrast and T2. The datasets are pre-processed by the organizers
and co-registered to the same anatomical template, interpolated to the same resolution (1 mm?) and
skull-stripped. We used only high grade cases and centre cropped 2D images (192 x 192 pixels)
and hold 1600 2D images for training, 300 images for validation, 500 images for testing, we apply
Gaussian normalization on each case of each modality, to have zero-mean and unit variance. Fig.
shows another tumor case in four different modality with different target label. We also present several
example results on different methods in Fig.[12]

To demonstrate the performance on a dataset with real-world annotations, we have also evaluated
our model on LIDC-IDRI. The “ground truth” labels in the experiments are generated by aggregating
the multiple labels via Spatial STAPLE[14] as used in the curation of existing public datasets e.g.,
ISLES [10], MSSeg [[11]], Gleason’ 19 [12]. Fig.@]presents several examples of segmentation results
from different methods. We also measure the inter-reader consensus level by computing the IoU of
annotations, and compare in Fig.[T4]the estimates from our model against the values meansured on
the real annotations. Furthermore, we divide the test dataset into low consensus (30% to 65%), middle
consensus (65% to 75%) and high consensus (75% to 90%) subgroups and compare the performance
in Fig.[I5] Our method shows competitive ability to segment the challenging examples with low
consensus values. Here we note that the consensus values in our test data range from 30% to 90%,,
and compared the dice coefficient of our model with baselines.

On both BraTS and LIDC-IDRI dataset, our proposed model consistenly achieves a higher dice
similarity coefficient than STAPLE on both of the dense labels and single label scenarios (shown
in Table. [Z_f] and Table. E]) In addition, our model (with trace) outperforms STAPLE in terms of CM
estimation by a large margin at 14.4% on BraTS. In Fig. we visualized the segmentation results
on BraTS$ and the corresponding annotators’ predictions. Fig. [I2] presents four examples of the
segmentation results and the corresponding annotators’ predictions, as well as the baseline methods.
As shown in both figures, our model successfully predicts the both the segmentation of lesions and
the variations of each annotator in different cases.

BraTS BraTS LIDC-IDRI LIDC-IDRI

Models DICE (%) CM estimation DICE (%) CM estimation
Naive CNN on mean labels 2942 +0.58 n/a 56.72 £ 0.61 n/a

Naive CNN on mode labels 34124045 n/a 58.64 +0.47 n/a

Probabilistic U-net [24] 40.53+0.75 n/a 61.26 + 0.69 n/a

STAPLE [9] 46.73+0.17 02147 +0.0103 69.34 +0.58 0.0832 £+ 0.0043
Spatial STAPLE [14] 4731+0.21 0.1871 4 0.0094 70.92 +0.18 0.0746 + 0.0057
Ours with Global CMs 4733+0.28 0.1673 £ 0.1021 70.94 +0.19 0.1386 % 0.0052
Ours without Trace 49.03+0.34 0.1569 4 0.0072 71254+ 0.12 0.0482 £+ 0.0038
Ours 5347 +0.24 0.1185 £ 0.0056 74.12 + 0.19 0.0451 + 0.0025

Oracle (Ours but with known CMs) ~ 67.13 +0.14 0.0843 £ 0.0029 79.41 +0.17 0.0381 % 0.0021

Table 4: Comparison of segmentation accuracy and error of CM estimation for different methods trained with
dense labels (mean + standard deviation). The best results are shown in bald. Note that we count out the Oracle
from the model ranking as it forms a theoretical upper-bound on the performance where true labels are known on
the training data.

16

BraTS BraTS LIDC-IDRI LIDC-IDRI

Models DICE (%) CM estimation DICE (%) CM estimation
Naive CNN on mean & mode labels 36.12 £ 0.93 n/a 48.36 +0.79 n/a

STAPLE [9] 38.74 £0.85 0.2956 £ 0.1047 57.324+0.87 0.1715 4+ 0.0134
Spatial STAPLE [14] 41.59+0.74 0.2543 4 0.0867 62.35+0.64 0.1419 4 0.0207
Ours with Global CMs 41.76 £0.71 0.2419 4 0.0829 63.25+0.66 0.1382 4+ 0.0175
Ours without Trace 4374+ 049 0.1825 1+ 0.0724 66.95 4+ 0.51 0.0921 £ 0.0167
Ours 46.21 +0.28 0.1576 + 0.0487 68.12 +0.48 0.0587 £ 0.0098

Table 5: Comparison of segmentation accuracy and error of CM estimation for different methods trained with
only one label available per image (mean = standard deviation). The best results are shown in bald.

Input Image (T1) Input Image (T2) Input Image (T1CE) Input Image (Flair)

Annotator 1 label Annotator 2 label Annotator 3 label Annotator 4 label
Ground Truth (Good (Over) (Under Segmentation) (Wrong Segmentation)

|

Annotator 1 prediction Annotator 2 prediction Annotator 3 prediction Annotator 4 prediction
Our Prediction (Good Segmentation) (Over ion) (Under ion) (Wrong Segmentation)

7’

ion)

Figure 11: The final segmentation of our model on BraTS and each annotator network predictions
visualization. (Best viewed in colour: the target label is green.)

Naive CNN on Naive CNN on
Mean Labels Mode Labels STAPLE Spatial STAPLE OurCNN Our CNN (A=0) oracle

Input Image
(FLAR) Ground Truth

-..

.
(a) (b)

Figure 12: Visualisation of segmentation labels on BraTS dataset: (a) GT and simulated annotator’s
segmentations (Annotator 1 - 5); (b) the predictions from the supervised models.)

Amnotator Liabel Annotator2label Annotator 3label Amotator label Naive CNNon Naive CNN on
(Mean Labels Mode Labels STAPLE Spatial STAPLE Our CNN Our CNN (A=0) Oracle

(a) (b)

Figure 13: Visualisation of segmentation labels on LIDC-IDRI dataset: (a) GT and simulated annota-
tor’s segmentations (Annotator 1 - 5); (b) the predictions from the supervised models.)

Ground Truth e e

Input Image

‘l T T T T T
'
'
09 r (6] 000 7 1
08 N O o) 7
L e} 4
0.7 o
©O o
E ° o
2 0.6 . o 1
4
% @] . (@] o OO
c 051 s, @] o) d
8 y °
=04 7 ! 1
o 7,
. o
0.3r . 7 d
s ©) (o)
021 4 .
O Consensus
0.1 - = =Truth .
Our estimation
Il Il Il

0 | | | | | I
0 0.1 02 03 0.4 05 06 07 08 09 1

Estimated Consensus

Figure 14: The consensus level amongst the estimated annotators is plotted against the ground truth on LIDC-IDRI
dataset. The strong positive linear correlation shows that the variation in the inter-reader variability on different
input examples (e.g., some examples are more ambiguous than others) is captured well. We do note, however, that
the inter-reader variation seems more under-estimated for “easy” (i.e., higher consensus) samples.

18

0.9
I Naive CNN on mean labels
0.8 |- | Naive CNN on mode labels
[CIsTAPLE —
07k I spatial STAPLE
: [Our model

_ 06
c
0
(]
& 05
©
8
O 04
9
o

0.3

0.2

0.1

0 [— | S 1

Low Consensus Middle Consensus High Consensus

Figure 15: Segmentation performance on 3 different subgroups of the LIDC-IDRI dataset with varying levels of
inter-reader agreement. Our method shows consistent improvement over the baselines and the competing methods
in all groups, showing its enhanced ability to segment challenging examples (i.e., low-consensus cases).

19

A4 Low-rank Approximation

Here we show our preliminery results on the employed low-rank approximation of confusion matrices
for BraT'S dataset, precluded in the main text. Table.[6|compares the performance of our method with the
default implementation and the one with rank-1 approximation. We see that the low-rank approximation
can halve the number of parameters in CMs and the number of floating-point-operations (FLOPs) in
computing the annotator prediction while resonably retaining the performance on both segmentation and
CM estimation. We note, however, the practical gain of this approximation in this task is limited since
the number of classes is limited to 4 as indicated by the marginal reduction in the overall GPU usage for
one example. We expect the gain to increase when the number of classes is larger as shown in Fig.[16]

Rank Dice CM estimation GPU Memory No. Parameters FLOPs
Default 53.47+0.24 0.1185+0.0056 2.68GB 589824 1032192
rank 1 50.56 £2.00 0.1925£0.0314 2.57GB 294912 405504

Table 6: Comparison between the default implementation and low-rank (=1) approximation on BraTS. GPU
memory consumption is estimated for the case with batch size = 1. Bot the total number of variables in the
confusion matrices, and the number of FLOPS required in computing the annotator predictions.

Lastly, we also describe the details of the devised low-rank approximation. Analogous to Chandra
and Kokkinos’s work [48]] where they employed a similar approximation for estimating the pairwise

terms in densely connected CRF, we parametrise the spatial CM, A((;) (x)= BY; (x) -Bi’ér) (x)asa

product of two smaller rectangular matrices BY; and Bgns5 of size W x H x L x[where l << L. In
this case, the annotator network outputs BY;5 and Bg; for each annotator in lieu of the full CM. Two
separate rectangular matrices are used here since the confusion matrices are not necessarily symmetric.
Such low-rank approximation reduces the total number of variables to 21 H LI from W H L? and the
number of floating-point operations (FLOPs) to W H (4L(1—0.25)—1) from W H(2L—1) L. Fig.
shows that the time and space complexity of the default method grow quadratically in the number
of classes while the low-rank approximations have linear growth.

(a) No. of Parameters (b) FLOPs

Number of parameters
Number of FLOPs

1 To— 2
Number of classes Number of classes

= Default Default
-~ Low-rank: 1 -- Low-rank: 1
== Low-rank: 2 == Low-rank: 2
== Low-rank: 3 1sof| =7 Low-rank: 3

Low-rank: 5 Low-rank: 5

Number of parameters
Number of FLOPs

T s e T 5 I T B S S T
Number of classes Number of classes

Figure 16: Comparison of time and space complexity between the default implementation and the low-rank
counterparts. (a) compares the number of parameters in the confusion matrices while (b) shows the number
of FLOPs required to compute the annotator predictions (the product between the confusion matrices and the
estimated true segmentation probabilities).

20

1
S
4

5

B Implementation details

Our method is implemented in Pytorch [49]. Our network is based on a 4 down-sampling stages 2D
U-net [S0]], the channel numbers for each encoders are 32, 64, 128, 256, we also replaced the batch
normalisation layers with instance normalisation. Our segmentation network and annotator network
share the same parameters apart from the last layer in the decoder of U-net, essentially, the overall
architecture is implemented as an U-net with multiple output last layers: one for prediction of true
segmentation; others for predictions of noisy segmentation respectively. For segmentation network, the
output of the last layer has ¢ channels where c is the number of classes. On the other hand, for annotator
network, by default, the output of the last layer has L x L number of channels for estimating confusion
matrices at each spatial location; when low-rank approximation is used, the output of the last layer
has 2 x L x! number of channels. The Probabilistic U-net implementation is adopted from https:
//github.com/stefanknegt/Probabilistic-Unet-Pytorch, for fair comparison, we adjusted
the number of the channels and the depth of the U-net backbone in Probabilistic U-net to match with
our networks. All of the models were trained on a NVIDIA RTX 208 for at least 3 times with different
random initialisations to compute the mean performance and its standard deviation (run 3 times of the
experiments with the same initialization). The Adam [S1]] optimiser was used in all experiments with
the default hyper-parameter settings. We also provide all of the hyper-parameters of the experiments for
each data set in Table[7] We also kept the training details the same between the baselines and our method.

Dataset LearningRate Epoch BatchSize =~ Augmentation weight for regularisation (\)

MNIST le-4 60 2 Random flip 0.7
MS le-4 55 2 Random flip 0.7
BraTS le-4 60 8 Random flip 1.5
LIDC le-4 75 4 Random flip 0.9

Table 7: Hyper-parameters used for respective datasets.

B.1 Pytorch implementation of loss function

The following is the Pytorch implementation of the loss function in eq. (). We also intend to clean
up the whole codebase and release in the final version.

import torch
import torch.nn as nn

def loss_function(p, cms, ts, alpha):
Args:
p (torch.tensor): unnormalised probabilities from the segmentation network
of size (batch, num classes , height, width)
cms (list of torch.tensors): a list of estimated unnormalised (but positive)
confusion matrices from the annotator network, each with size
(batch, num classes , num classes , height, width)
ts (list of torch.tensors): a list of segmentation labels from noisy annotators,
each with size (batch, num classes, height, width)
alpha (float): weight for the trace regularisation
main_loss = 0.0
regularisation = 0.0
b, ¢, h, w = p.size() # b: batch size; c: class number, h: height, w: width
p = nn.Softmax (dim=1)(p)

reshape p: [b, ¢, h, w] => [bxhxw, c, 1]
p = p.view(b, ¢, h*w).permute(0, 2, 1).contiguous ()
p = p.view(bxhxw, c, 1)

iterate over the confusion matrices & noisy labels from different annotators
for j, (cm, t) in enumerate(zip(cms, ts)):

cm: confusion matrix of noisy annotator j

t: label for noisy segmentation of noisy annotator j

reshape cm: [b, c, c, h, w]=> [bxhxw, c, c]

cm = cm.view (b, c*%2, h * w).permute(0, 2, 1).contiguous()
cm = cm.view (bxhxw, c*%2).view(bxhxw, c, c¢)
cm = cm / cm.sum(l, keepdim=True) # normalise the confusion matrix along columns

compute the estimated annotator’s noisy segmentation probability

p_n = torch.bmm(cm, p).view(bxhxw, c)

reshape p_n: [bxhxw, ¢ , 1] => [b, ¢, h, w]

p_n = p_n.view(b, hxw, c).permute(0, 2, 1).contiguous().view(b, ¢, h, w)

calculate the pixelwise cross entripy loss

main_loss += nn.CrossEntropyLoss(reduction="mean’)(p_n, t.view(b, h, w).long())
calculate the mean trace

regularisation = torch.trace(torch.sum(ecm, dim=0)).sum() / (bxh*w)

regularisation = alphaxregularisation
return main_loss + regularisation

21

https://github.com/stefanknegt/Probabilistic-Unet-Pytorch
https://github.com/stefanknegt/Probabilistic-Unet-Pytorch

C Proof of Theorem(T]

We first show a specific case of Theorem[I]when there is only a single annotator, and subsequently
extend it to the scenario with multiple annotators. Without loss of generality, we show the result for
an arbitrary choice of a pixel in a given input image x € R *#*¢ Specifically, let us denote the
estimated confusion matrix (CM) of the annotator at the (7,7)™ pixel by A :=[A(x);;] € [0,1]7* %, and
suppose the true class of this pixel is k € [1,...,L] i.e., p(x) = e}, where e}, denotes the k™ elementary
basis. Let py(x) denote the L-dimensional estimated label distribution at the corresponding pixel
(instead of over all the whole image).

Lemma 1. [fthe annotator’s segmentation probability is fully captured by the model for the (i,5)"
pixel in image x i.e., A Po(x)=A-p(x), and both A, A satisfy that a, > ayj for j £k and a;; > Q45
for all i,j such that j # i, then tr(A) is minimised when A = A. Furthermore, if tr(A) =1tr(A), then
the true label is fully recovererd i.e., p,(x) =p(x) and the k™ column in A, A are the same.

Proof. We first show that the k™ diagonal element in A is smaller than or equal to its estimate in A.
Since p(x) = e, is a one-hot vector, A- P, (x) =A-p(x) holds and ayx > ar,;Vj # k, it follows that:

are=([ap1,iine], By(x)))
< ([awnse-sinal: By(0)) =ans. ©

The possibility of equality in the above comes from the fact that all entries in p,(x) except the kth
element could be zeros. Now, the assumption that there is a single ground truth label & for the (i,5)™®
pixel means that all the values of the true CM, A are uniformly equal to 1/ L except the £ column. In
addition, since the diagonal dominance of the estimated CM means each d;; is at least 1/ L, we have that

L-1 .
tr(A):T+akk§2&jk+&kk:tr(A).
Jj#k

It therefore follows that when A = A holds, the trace of tr(A) is the smallest. Now, we show that when
this holds i.e., tr(A) =tr(A), then the k™ columns of the two matrices match up.

By way of contradiction, let us assume that there exists a class k’ # k for which the estimated label
probability is non-zero i.e., P := [Py (X)]x > 0. This implies that 1 —p, > 0. From eq. (6), if the trace
of A and A are the same, then ay, = G also holds and thus we have ag = Zj&k]ﬁj. By rearranging
this equality and dividing both sides by 1 — py, we obtain dxr = itk %d;@j. Now, as we have
Gkl > Qyj,J 7k, it follows that

1—

. . Dj .
Ak < kg E L =ayy,
: Dk
7k

which is false. Therefore, the trace quality implies pr = 1 and thus from A - p,(x) = A - p(x), we
conclude that the £ columns of A and A are the same.

O

We note that the equivalent result for the expectation of the annotator’s CM over the data population
was provided in [52]] and [28]. The main difference is, as described in the main text, that we show
a slightly weaker version of their result in a sample-specific scenario.

Now, we show that the main theorem follows naturally from the above lemma. As a reminder, we
recite the theorem below.

22

Theorem m For the (i,7)™ pixel in a given image x, we define the mean confusion matrix (CM)

« R (r) . . ok R 2 (r) . -
A":=>%"" 1A andits estimate A =) " m,A " where T, € [0,1] is the probability that the
annotator r labels image x. If the annotator’s segmentation probabilities are perfectly modelled by
the model for the given image i.e., A(T)ﬁe (x)=A"p(x)Vr=1,...,R, and the average true confusion
matrix A* at a given pixel and its estimate A" satisfy that ay,;. > ay ; for j #kand a3; > ay; for all i,j

~ %

such that j #1, then A™) ,...,A(R) =argmin ;) a(® {tr(A)} and such solutions are unique in the

k™ columns where k is the correct pixel class.

Proof. A direct application of Lemmamshows firstly that tr(A*) is minimised when A(T) =AM

forall r = 1,..., R (since that ensures A* =A"). Secondly, it implies that minimising tr(A) yields
P, (x) =p(x). Because we assume that annotators’ noisy labels are correctly modelled i.e., A " Py(x)=
A p(x)Vr=1,...,R, it therefore follows that the k™ column in A(T) and A" are the same.

O

23

	Introduction
	Related Work
	Method
	Problem Set-up
	Probabilistic Model and Proposed Architecture
	Learning Spatial Confusion Matrices and True Segmentation
	Justification for the Trace Norm

	Experiments
	MNIST and MS lesion segmentation datasets
	BraTS Dataset and LIDC-IDRI Dataset

	Discussion and Conclusion
	Additional results
	Annotation Simulation Details
	Additional Qualitative Results on MNIST and MS Dataset
	Quantitative and Extra Qualitative Results on BraTS and LIDC-IDRI
	Low-rank Approximation

	Implementation details
	Pytorch implementation of loss function

	Proof of Theorem 1

