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Abstract

In multi-agent reinforcement learning, discovering successful collective behaviors
is challenging as it requires exploring a joint action space that grows exponentially
with the number of agents. While the tractability of independent agent-wise
exploration is appealing, this approach fails on tasks that require elaborate
group strategies. We argue that coordinating the agents’ policies can guide their
exploration and we investigate techniques to promote such an inductive bias. We
propose two policy regularization methods: TeamReg, which is based on inter-
agent action predictability and CoachReg that relies on synchronized behavior
selection. We evaluate each approach on four challenging continuous control tasks
with sparse rewards that require varying levels of coordination as well as on the
discrete action Google Research Football environment. Our experiments show
improved performance across many cooperative multi-agent problems. Finally, we
analyze the effects of our proposed methods on the policies that our agents learn
and show that our methods successfully enforce the qualities that we propose as
proxies for coordinated behaviors.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) refers to the task of training an agent to maximize its
expected return by interacting with an environment that contains other learning agents. It represents a
challenging branch of Reinforcement Learning (RL) with interesting developments in recent years
[11]. A popular framework for MARL is the use of a Centralized Training and a Decentralized
Execution (CTDE) procedure [24, 8, 14, 7, 28]. Typically, one leverages centralized critics to
approximate the value function of the aggregated observations-actions pairs and train actors restricted
to the observation of a single agent. Such critics, if exposed to coordinated joint actions leading to
high returns, can steer the agents’ policies toward these highly rewarding behaviors. However, these
approaches depend on the agents luckily stumbling on these collective actions in order to grasp their
benefit. Thus, it might fail in scenarios where such behaviors are unlikely to occur by chance. We
hypothesize that in such scenarios, coordination-promoting inductive biases on the policy search
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could help discover successful behaviors more efficiently and supersede task-specific reward shaping
and curriculum learning. To motivate this proposition we present a simple Markov Game in which
agents forced to coordinate their actions learn remarkably faster. For more realistic tasks in which
coordinated strategies cannot be easily engineered and must be learned, we propose to transpose this
insight by relying on two coordination proxies to bias the policy search. The first avenue, TeamReg,
assumes that an agent must be able to predict the behavior of its teammates in order to coordinate
with them. The second, CoachReg, supposes that coordinated agents collectively recognize different
situations and synchronously switch to different sub-policies to react to them.2.

Our contributions are threefold. First, we show that coordination can crucially accelerate multi-agent
learning for cooperative tasks. Second, we propose two novel approaches that aim at promoting such
coordination by augmenting CTDE MARL algorithms through additional multi-agent objectives
that act as policy regularizers and are optimized jointly with the main return-maximization objective.
Third, we design two new sparse-reward cooperative tasks in the multi-agent particle environment
[26]. We use them along with two standard multi-agent tasks to present a detailed evaluation of our
approaches’ benefits when they extend the reference CTDE MARL algorithm MADDPG [24]. We
validate our methods’ key components by performing an ablation study and a detailed analysis of
their effect on agents’ behaviors. Finally, we verify that these benefits hold on the more complex,
discrete action, Google Research Football environment [20].

Our experiments suggest that our TeamReg objective provides a dense learning signal that can help
guiding the policy towards coordination in the absence of external reward, eventually leading it
to the discovery of higher performing team strategies in a number of cooperative tasks. However
we also find that TeamReg does not lead to improvements in every single case and can even be
harmful in environments with an adversarial component. For CoachReg, we find that enforcing
synchronous sub-policy selection enables the agents to concurrently learn to react to different agreed
upon situations and consistently yields significant improvements on the overall performance.

2 Background

2.1 Markov Games

We consider the framework of Markov Games [23], a multi-agent extension of Markov Decision
Processes (MDPs). A Markov Game of N agents is defined by the tuple 〈S, T ,P, {Oi,Ai,Ri}Ni=1〉
where S, T , and P are respectively the set of all possible states, the transition function and the
initial state distribution. While these are global properties of the environment, Oi, Ai and Ri are
individually defined for each agent i. They are respectively the observation functions, the sets of all
possible actions and the reward functions. At each time-step t, the global state of the environment
is given by st ∈ S and every agent’s individual action vector is denoted by ait ∈ Ai. To select
their action, each agent i only has access to its own observation vector oit which is extracted by the
observation function Oi from the global state st. The initial state s0 is sampled from the initial
state distribution P : S → [0, 1] and the next state st+1 is sampled from the probability distribution
over the possible next states given by the transition function T : S × S ×A1 × ...×AN → [0, 1].
Finally, at each time-step, each agent receives an individual scalar reward rit from its reward function
Ri : S × S × A1 × ... × AN → R. Agents aim at maximizing their expected discounted return
E
[∑T

t=0 γ
trit

]
over the time horizon T , where γ ∈ [0, 1] is a discount factor.

2.2 Multi-Agent Deep Deterministic Policy Gradient

MADDPG [24] is an adaptation of the Deep Deterministic Policy Gradient algorithm [22] to the multi-
agent setting. It allows the training of cooperating and competing decentralized policies through the
use of a centralized training procedure. In this framework, each agent i possesses its own deterministic
policy µi for action selection and critic Qi for state-action value estimation, which are respectively
parametrized by θi and φi. All parametric models are trained off-policy from previous transitions
ζt := (ot,at, rt,ot+1) uniformly sampled from a replay buffer D. Note that ot := [o1

t , ..., o
N
t ] is the

joint observation vector and at := [a1
t , ..., a

N
t ] is the joint action vector, obtained by concatenating

2Source code for the algorithms and environments will be made public upon publication of this work.
Visualisations of CoachReg are available here: https://sites.google.com/view/marl-coordination/
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the individual observation vectors oit and action vectors ait of all N agents. Each centralized critic is
trained to estimate the expected return for a particular agent i from the Q-learning loss [33]:

Li(φi) = Eζt∼D
[

1

2

(
Qi(ot,at;φ

i)− yit
)2]

yit = rit + γQi(ot+1,at+1; φ̄i)
∣∣∣ajt+1=µj(ojt+1;θ̄j) ∀j

(1)

For a given set of weights w, we define its target counterpart w̄, updated from w̄ ← τw + (1− τ)w̄
where τ is a hyper-parameter. Each policy is updated to maximize the expected discounted return of
the corresponding agent i :

J iPG(θi) = Eot∼D

Qi(ot,at)∣∣∣∣ait=µi(oit; θ
i),

ajt=µj(ojt ; θ̄j) ∀j 6=i

 (2)

By taking into account all agents’ observation-action pairs when guiding an agent’s policy, the
value-functions are trained in a centralized, stationary environment, despite taking place in a multi-
agent setting. This mechanism can allow to learn coordinated strategies that can then be deployed
in a decentralized way. However, this procedure does not encourage the discovery of coordinated
strategies since high-return behaviors have to be randomly experienced through unguided exploration.

3 Motivation
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Figure 1: (Top) The tabular Q-learning
agents learn much more efficiently when
constrained to the space of coordinated
policies (solid lines) than in the original
action space (dashed lines). (Bottom)
Simple Markov Game consisting of a chain
of length L leading to a terminal state (in
grey). Agents can be seen as the two wheels
of a vehicle so that their actions need to be
in agreement for the vehicle to move. The
detailed experimental setup is reported in
Appendix A.

In this section, we aim to answer the following question:
can coordination help the discovery of effective policies
in cooperative tasks? Intuitively, coordination can be
defined as an agent’s behavior being informed by the
behavior of another agent, i.e. structure in the agents’
interactions. Namely, a team where agents behave
independently of one another would not be coordinated.

Consider the simple Markov Game consisting of a chain
of length L leading to a termination state as depicted
in Figure 1. At each time-step, both agents receive
rt = −1. The joint action of these two agents in
this environment is given by a ∈ A = A1 × A2,
where A1 = A2 = {0, 1}. Agent i tries to go right
when selecting ai = 0 and left when selecting ai = 1.
However, to transition to a different state both agents
need to perform the same action at the same time (two
lefts or two rights). Now consider a slight variant of
this environment with a different joint action structure
a′ ∈ A′. The former action structure is augmented
with a hard-coded coordination module which maps the
joint primitive ai to ai′ like so:

a′ =

(
a1′ = a1

a2′ = a1a2 + (1− a1)(1− a2)

)
,

(
a1

a2

)
∈ A

While the second agent still learns a state-action value
function Q2(s, a2) with a2 ∈ A2, the coordination
module builds a2′ from (a1, a2) so that a2′ effectively
determines whether the second agent acts in agreement
or in disagreement with the first agent. In other words,
if a2 = 1, then a2′ = a1 (agreement) and if a2 = 0,
then a2′ = 1− a1 (disagreement).

While it is true that this additional structure does not
modify the action space nor the independence of the action selection, it reduces the stochasticity of
the transition dynamics as seen by agent 2. In the first setup, the outcome of an agent’s action is
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conditioned on the action of the other agent. In the second setup, if agent 2 decides to disagree, the
transition becomes deterministic as the outcome is independent of agent 1. This suggests that by
reducing the entropy of the transition distribution, this mapping reduces the variance of the Q-updates
and thus makes online tabular Q-learning agents learn much faster (Figure 1).

This example uses a handcrafted mapping in order to demonstrate the effectiveness of exploring in
the space of coordinated policies rather than in the unconstrained policy space. Now, the following
question remains: how can one softly learn the same type of constraint throughout training for any
multi-agent cooperative tasks? In the following sections, we present two algorithms that tackle this
problem.

4 Coordination and Policy regularization 3

4.1 Team regularization

        𝝁1   𝝁2

Figure 2: Illustration of TeamReg
with two agents. Each agent’s policy
is equipped with additional heads that
are trained to predict other agents’
actions and every agent is regularized
to produce actions that its teammates
correctly predict. The method is
depicted for agent 1 only to avoid
cluttering.

This first approach aims at exploiting the structure present
in the joint action space of coordinated policies to attain a
certain degree of predictability of one agent’s behavior with
respect to its teammate(s). It is based on the hypothesis
that the reciprocal also holds i.e. that promoting agents’
predictability could foster such team structure and lead to
more coordinated behaviors. This assumption is cast into the
decentralized framework by training agents to predict their
teammates’ actions given only their own observation. For
continuous control, the loss is the mean squared error (MSE)
between the predicted and true actions of the teammates,
yielding a teammate-modelling secondary objective. For
discrete action spaces, we use the KL-divergence (DKL)
between the predicted and real action distributions of an
agent pair.

While estimating teammates’ policies can be used to enrich
the learned representations, we extend this objective to also
drive the teammates’ behaviors towards the predictions by
leveraging a differentiable action selection mechanism. We
call team-spirit this objective pair J i,jTS and Jj,iTS between
agents i and j:

J i,jTS-continuous(θ
i, θj) = −Eot∼D

[
MSE(µj(ojt ; θ

j), µ̂i,j(oit; θ
i))
]

(3)

J i,jTS-discrete(θ
i, θj) = −Eot∼D

[
DKL

(
πj(·|ojt ; θj)||π̂i,j(·|oit; θi)

)]
(4)

where µ̂i,j (or π̂i,j in the discrete case) is the policy head of agent i trying to predict the action of
agent j. The total objective for a given agent i becomes:

J itotal(θ
i) = J iPG(θi) + λ1

∑
j

J i,jTS(θi, θj) + λ2

∑
j

Jj,iTS(θj , θi) (5)

where λ1 and λ2 are hyper-parameters that respectively weigh how well an agent should predict its
teammates’ actions, and how predictable an agent should be for its teammates. We call TeamReg this
dual regularization from team-spirit objectives. Figure 2 summarizes these interactions.

4.2 Coach regularization

In order to foster coordinated interactions, this method aims at teaching the agents to recognize
different situations and synchronously select corresponding sub-behaviors.

3Pseudocodes of our implementations are provided in Appendix D (see Algorithms 1 and 2).
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𝝁1
Coach

𝝁2

Figure 3: Illustration of CoachReg
with two agents. A central model, the
coach, takes all agents’ observations
as input and outputs the current mode
(policy mask). Agents are regularized
to predict the same mask from their
local observations and optimize the
corresponding sub-policy.

Sub-policy selection Firstly, to enable explicit sub-
behavior selection, we propose the use of policy masks as a
means to modulate the agents’ policies. A policy mask uj
is a one-hot vector of size K (a fixed hyper-parameter) with
its jth component set to one. In practice, we use these masks
to perform dropout [30] in a structured manner on h̃1 ∈ RM ,
the pre-activations of the first hidden layer h1 of the policy
network π. To do so, we construct the vector uj , which is
the concatenation of C copies of uj , in order to reach the
dimensionality M = C ∗ K. The element-wise product
uj � h̃1 is performed and only the units of h̃1 at indices
mmoduloK = j are kept for m = 0, . . . ,M − 1. Each
agent i generates eit, its own policy mask from its observation
oit, to modulate its policy network. Here, a simple linear layer
li is used to produce a categorical probability distribution
pi(eit|oit) from which the one-hot vector is sampled:

pi(eit = uj |oit) =
exp

(
li(oit; θ

i)j
)∑K−1

k=0 exp
(
li(oit; θ

i)k
) (6)

Synchronous sub-policy selection Although the policy
masking mechanism enables the agent to swiftly switch
between sub-policies it does not encourage the agents to
synchronously modulate their behavior. To promote synchronicity we introduce the coach entity,
parametrized by ψ, which learns to produce policy-masks ect from the joint observations, i.e.
pc(ect |ot;ψ). The coach is used at training time only and drives the agents toward synchronously
selecting the same behavior mask. Specifically, the coach is trained to output masks that (1) yield
high returns when used by the agents and (2) are predictable by the agents. Similarly, each agent is
regularized so that (1) its private mask matches the coach’s mask and (2) it derives efficient behavior
when using the coach’s mask. At evaluation time, the coach is removed and the agents only rely on
their own policy masks. The policy gradient objective when agent i is provided with the coach’s mask
is given by:

J iEPG(θi, ψ) = Eot,at∼D

[
Qi(ot,at)

∣∣∣∣∣ait=µ(oit,e
c
t ;θi)

ect∼p
c(·|ot;ψ)

]
(7)

The difference between the mask distribution of agent i and the coach’s one is measured from the
Kullback–Leibler divergence:

J iE(θi, ψ) = −Eot∼D
[
DKL

(
pc(·|ot;ψ)| |pi(·|oit; θi)

)]
(8)

The total objective for agent i is:

J itotal(θ
i) = J iPG(θi) + λ1J

i
E(θi, ψ) + λ2J

i
EPG(θi, ψ) (9)

with λ1 and λ2 the regularization coefficients. Similarly, the coach is trained with the following dual
objective, weighted by the λ3 coefficient:

Jctotal(ψ) =
1

N

N∑
i=1

(
J iEPG(θi, ψ) + λ3J

i
E(θi, ψ)

)
(10)

In order to propagate gradients through the sampled policy mask we reparameterized the categorical
distribution using the Gumbel-softmax [15] with a temperature of 1. We call this coordinated
sub-policy selection regularization CoachReg and illustrate it in Figure 3.

5 Related Work

Several works in MARL consider explicit communication channels between the agents and distinguish
between communicative actions (e.g. broadcasting a given message) and physical actions (e.g.
moving in a given direction) [6, 26, 21]. Consequently, they often focus on the emergence of
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language, considering tasks where the agents must discover a common communication protocol to
succeed. Deriving a successful communication protocol can already be seen as coordination in the
communicative action space and can enable, to some extent, successful coordination in the physical
action space [1]. Yet, explicit communication is not a necessary condition for coordination as agents
can rely on physical communication [26, 9].

TeamReg falls in the line of work that explores how to shape agents’ behaviors with respect to other
agents through auxiliary tasks. Strouse et al. [31] use the mutual information between the agent’s
policy and a goal-independent policy to shape the agent’s behavior towards hiding or spelling out its
current goal. However, this approach is only applicable for tasks with an explicit goal representation
and is not specifically intended for coordination. Jaques et al. [16] approximate the direct causal
effect between agent’s actions and use it as an intrinsic reward to encourage social empowerment.
This approximation relies on each agent learning a model of other agents’ policies to predict its
effect on them. In general, this type of behavior prediction can be referred to as agent modelling
(or opponent modelling) and has been used in previous work to enrich representations [12, 13], to
stabilise the learning dynamics [10] or to classify the opponent’s play style [29].

With CoachReg, agents learn to unitedly recognize different modes in the environment and adapt
by jointly switching their policy. This echoes with the hierarchical RL litterature and in particular
with the single agent options framework [3] where the agent switches between different sub-policies,
the options, depending on the current state. To encourage cooperation in the multi-agent setting,
Ahilan and Dayan [1] proposed that an agent, the "manager", is extended with the possibility of
setting other agents’ rewards in order to guide collaboration. CoachReg stems from a similar idea:
reaching a consensus is easier with a central entity that can asymmetrically influence the group. Yet,
Ahilan and Dayan [1] guides the group in terms of "ends" (influences through the rewards) whereas
CoachReg constrains it in terms of "means" (the group must synchronously switch between different
strategies). Hence, the interest of CoachReg does not just lie in training sub-policies (which are
obtained here through a simple and novel masking procedure) but rather in co-evolving synchronized
sub-policies across multiple agents. Mahajan et al. [25] also looks at sub-policies co-evolution to
tackle the problem of joint exploration, however their selection mechanism occurs only on the first
timestep and requires duplicating random seeds across agents at test time. On the other hand, with
CoachReg the sub-policy selection is explicitly decided by the agents themselves at each timestep
without requiring a common sampling procedure since the mode recognition has been learned and
grounded on the state throughout training.

Finally, Barton et al. [4] propose convergent cross mapping (CCM) to measure the degree of effective
coordination between two agents. Although this represents an interesting avenue for behavior analysis,
it fails to provide a tool for effectively enforcing coordination as CCM must be computed over long
time series making it an impractical learning signal for single-step temporal difference methods.

To our knowledge, this work is the first to extend agent modelling to derive an inductive bias towards
team-predictable policies or to introduce a collective, agent induced, modulation of the policies
without an explicit communication channel. Importantly, these coordination proxies are enforced
throughout training only, which allows to maintain decentralised execution at test time.

6 Training environments

Our continuous control tasks are built on OpenAI’s multi-agent particle environment [26]. SPREAD
and CHASE were introduced by [24]. We use SPREAD as is but with sparse rewards. CHASE
is modified with a prey controlled by repulsion forces so that only the predators are learnable, as
we wish to focus on coordination in cooperative tasks. Finally we introduce COMPROMISE and
BOUNCE where agents are physically tied together. While positive return can be achieved in these
tasks by selfish agents, they all benefit from coordinated strategies and maximal return can only be
achieved by agents working closely together. Figure 4 presents a visualization and a brief description.
In all tasks, agents receive as observation their own global position and velocity as well as the relative
position of other entities. A more detailed description is provided in Appendix B. Note that work
showcasing experiments on these environments often use discrete action spaces and dense rewards
(e.g. the proximity with the objective) [14, 24, 17]. In our experiments, agents learn with continuous
action spaces and from sparse rewards which is a far more challenging setting.
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Figure 4: Multi-agent tasks we employ. (a) SPREAD: Agents must spread out and cover a set of
landmarks. (b) BOUNCE: Two agents are linked together by a spring and must position themselves
so that the falling black ball bounces towards a target. (c) COMPROMISE: Two linked agents
must compete or cooperate to reach their own assigned landmark. (d) CHASE: Two agents chase a
(non-learning) prey (turquoise) that moves w.r.t repulsion forces from predators and walls.

7 Results and Discussion

The proposed methods offer a way to incorporate new inductive biases in CTDE multi-agent policy
search algorithms. We evaluate them by extending MADDPG, one of the most widely used algorithm
in the MARL literature. We compare against vanilla MADDPG as well as two of its variants in the
four cooperative multi-agent tasks described in Section 6. The first variant (DDPG) is the single-agent
counterpart of MADDPG (decentralized training). The second (MADDPG + sharing) shares the
policy and value-function models across agents. Additionally to the two proposed algorithms and
the three baselines, we present results for two ablated versions of our methods. The first ablation
(MADDPG + agent modelling) is similar to TeamReg but with λ2 = 0, which results in only enforcing
agent modelling and not encouraging agent predictability. The second ablation (MADDPG + policy
mask) uses the same policy architecture as CoachReg, but with λ1,2,3 = 0, which means that agents
still predict and apply a mask to their own policy, but synchronicity is not encouraged.

To offer a fair comparison between all methods, the hyper-parameter search routine is the same for
each algorithm and environment (see Appendix E.1). For each search-experiment (one per algorithm
per environment), 50 randomly sampled hyper-parameter configurations each using 3 random seeds
are used to train the models for 15, 000 episodes. For each algorithm-environment pair, we then select
the best hyper-parameter configuration for the final comparison and retrain them on 10 seeds for twice
as long. This thorough evaluation procedure represents around 3 CPU-year. We give all details about
the training setup and model selection in Appendix C and E.2. The results of the hyper-parameter
searches are given in Appendix E.5. Interestingly, Figure 9 shows that our proposed coordination
regularizers improve robustness to hyper-parameters despite having more hyper-parameters to tune.

7.1 Asymptotic Performance

Figure 5 reports the average learning curves and Table 1 presents the final performance. CoachReg is
the best performing algorithm considering performance across all tasks. TeamReg also significantly
improves performance on two tasks (SPREAD and BOUNCE) but shows unstable behavior on
COMPROMISE, the only task with an adversarial component. This result reveals one limitation of
this approach and is dicussed in details in Appendix F. Note that all algorithms perform similarly
well on CHASE, with a slight advantage to the one using parameter sharing; yet this superiority is
restricted to this task where the optimal strategy is to move symmetrically and squeeze the prey into a
corner. Contrary to popular belief, we find that MADDPG almost never significantly outperforms
DDPG in these sparse reward environments, supporting the hypothesis that while CTDE algorithms
can in principle identify and reinforce highly rewarding coordinated behavior, they are likely to fail
to do so if not incentivized to coordinate.

Regarding the ablated versions of our methods, the use of unsynchronized policy masks might result
in swift and unpredictable behavioral changes and make it difficult for agents to perform together and
coordinate. Experimentally, “MADDPG + policy mask" performs similarly or worse than MADDPG
on all but one environment, and never outperforms the full CoachReg approach. However, policy
masks alone seem sufficient to succeed on SPREAD, which is about selecting a landmark from a
set. Finally “MADDPG + agent modelling" does not drastically improve on MADDPG apart from
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Table 1: Final performance reported as mean return over agents averaged across 10 episodes and 10
seeds (± SE).

env
alg DDPG MADDPG MADDPG

+sharing
MADDPG

+agent modelling
MADDPG

+policy mask
MADDPG

+TeamReg (ours)
MADDPG

+CoachReg (ours)
SPREAD 133± 12 159± 6 47± 8 183± 10 221 ± 11 216 ± 12 210 ± 12
BOUNCE 3.6± 1.4 4.0± 1.6 0.0± 0.0 3.8± 1.5 3.7± 1.1 5.8 ± 1.3 7.4 ± 1.2
COMPROMISE 19.1± 1.2 18.1± 1.1 19.6± 1.5 12.9± 0.9 18.4± 1.3 8.8± 0.9 31.1 ± 1.1
CHASE 727± 87 834± 80 980 ± 64 946 ± 69 722± 82 917 ± 90 949 ± 54

one environment, and is always outperformed by the full TeamReg (except on COMPROMISE, see
Appendix F) which supports the importance of enforcing predictability alongside agent modeling.
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Figure 5: Learning curves (mean return over agents) for our two proposed algorithms, two ablations
and three baselines on all four environments. Solid lines are the mean and envelopes are the Standard
Error (SE) across the 10 training seeds.

7.2 Effects of enforcing predictable behavior

Here we validate that enforcing predictability makes the agent-modelling task more successful. To
this end, we compare, on the SPREAD environment, the team-spirit losses between TeamReg and
its ablated versions. Figure 6 shows that initially, due to the weight initialization, the predicted
and actual actions both have relatively small norms yielding small values of team-spirit loss. As
training goes on (∼1000 episodes), the norms of the action-vector increase and the regularization
loss becomes more important. As expected, MADDPG leads to the worst team-spirit loss as it is
not trained to predict the actions of other agents. When using only the agent-modelling objective
(λ1 > 0), the agents significantly decrease the team-spirit loss, but it never reaches values as low as
when using the full TeamReg objective (λ1 > 0 and λ2 > 0). Note that the team-spirit loss increases
when performance starts to improve i.e. when agents start to master the task (∼8000 episodes).
Indeed, once the return maximisation signal becomes stronger, the relative importance of the auxiliary
objective is reduced. Being predictable with respect to one-another may push agents to explore in
a more structured and informed manner in the absence of reward signal, as similarly pursued by
intrinsic motivation approaches [5].

7.3 Analysis of synchronous sub-policy selection

In this section we confirm that CoachReg yields the desired behavior: agents synchronously alternating
between varied sub-policies.

Figure 7 shows the average entropy of the mask distributions for each environment compared to the
entropy of Categorical Uniform Distributions of size k (k-CUD). On all the environments, agents use
several masks and tend to alternate between masks with more variety (close to uniformly switching
between 3 masks) on SPREAD (where there are 3 agents and 3 goals) than on the other environments
(comprised of 2 agents). Moreover, the Hamming proximity between the agents’ mask sequences,
1−Dh whereDh is the Hamming distance (i.e. the ratio of timesteps for which the two sequences are
different) shows that agents are synchronously selecting the same policy mask at test time (without
a coach). Finally, we observe that some settings result in the agents coming up with interpretable
strategies, like the one depicted in Figure 13 in Appendix G.2 where the agents alternate between two
sub-policies depending on the position of the target4.

4See animations at https://sites.google.com/view/marl-coordination/
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agents to predict their teammates behavior.
Solid lines and envelope are average and
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7.4 Experiments on discrete action spaces

Table 2: Average Returns for 3v2 football
MADDPG 0.004 ± 0.002

MADDPG + sharing 0.005 ± 0.003
MADDPG + TeamReg (ours) 0.006 ± 0.003
MADDPG + CoachReg (ours) 0.088 ± 0.017

Figure 8: Snapshot of the google research
football 3vs1-with-keeper.

We evaluate our techniques on the more challenging
task of 3vs2 Google Research football environment
[20]. In this environment, each agent controls an
offensive player and tries to score against a defensive
player and a goalkeeper controlled by the engine’s
rule-based bots. Here agents have discrete action
spaces of size 21, with actions like moving direction,
dribble, sprint, short pass, high pass, etc. We use
as observations 37-dimensional vectors containing
players’ and ball’s coordinates, directions, etc.

The algorithms presented in Table 2 were trained
using 25 randomly sampled hyperparameter config-
urations. The best configuration was retrained using
10 seeds for 80,000 episodes of 100 steps. Table 2
shows the mean return (± standard error across seeds)
on the last 10,000 episodes. All algorithms but MAD-
DPG + CoachReg fail to reliably learn policies that
achieve positive return (i.e. scoring goals).

8 Conclusion

In this work we motivate the use of coordinated policies to ease the discovery of successful strategies
in cooperative multi-agent tasks and propose two distinct approaches to promote coordination for
CTDE multi-agent RL algorithms. While the benefits of TeamReg appear task-dependent – we
show for example that it can be detrimental on tasks with a competitive component – CoachReg
significantly improves performance on almost all presented environments. Motivated by the success
of this single-step coordination technique, a promising direction is to explore model-based planning
approaches to promote coordination over long-term multi-agent interactions.

Broader Impact

In this work, we present and study methods to enforce coordination in MARL algorithms. It goes
without saying that multi-agent systems can be employed for positive and negative applications alike.
We do not propose methods aimed at making new applications possible or improving a particular set
of applications. We instead propose methods that allow to better understand and improve multi-agent
RL algorithms in general. Therefore, we do not aim in this section at discussing the impact of Multi-
Agent Reinforcement Learning applications themselves but focus on the impact of our contribution:
promoting multi-agent behaviors that are coordinated.

We first observe that current Multi-Agent Reinforcement Learning (MARL) algorithms may fail to
train agents that leverage information about the behavior of their teammates and that even when
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explicitly given their teammates observations, action and current policy during the training phase.
We believe that this is an important observation worth raising some concern among the community
since there is a widespread belief that centralized training (like MADDPG) should always outperform
decentralize training (DDPG). Not only is this belief unsupported by empirical evidence (at least in
our experiments) but it also prevents the community from investigating and tackling this flaw that is
an important limitation for learning safer and more effective multi-agent behavior. By not accounting
for the behavior of its teammates, an agent could not adapt to a new teammate or even a change in
the teammates behavior. This prevents current methods to be applied in the real world where there
is external perturbations and uncertainties and where an artificial agent may need to interact with
various different individuals.

We propose to focus on coordination and sketch a definition of coordination: an agent behavior should
be predictable given its teammate behavior. While this definition is restrictive, we believe that it is a
good starting point to consider. Indeed, enforcing that criterion should make learning agents more
aware of their teammates in order to coordinate with them. Yet, coordination alone does not ensure
success, as agents could be coordinated in an unproductive manner. More so, coordination could have
detrimental effects if it enables an attacker to influence an agent through taking control of a teammate
or using a mock-up teammate. For these reasons, when using multi-agent RL algorithms (or even
single-agent RL for that matter) for real world applications, additional safeguards are absolutely
required to prevent the system from misbehaving, which is highly probable if out-of-distribution
states are to be encountered.
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