
A Additional details for experiment presented in Section 3 Motivation

We trained each agent i with online Q-learning [33] on the Qi(ai, s) table using Boltzmann
exploration [18]. The Boltzmann temperature is fixed to 1 and we set the learning rate to 0.05
and the discount factor to 0.99. After each learning episode we evaluate the current greedy policy
on 10 episodes and report the mean return. Curves are averaged over 20 seeds and the shaded area
represents the standard error.

B Tasks descriptions

SPREAD (Figure 4a): In this environment, there are 3 agents (small orange circles) and 3 landmarks
(bigger gray circles). At every timestep, agents receive a team-reward rt = n − c where n is the
number of landmarks occupied by at least one agent and c the number of collisions occurring at that
timestep. To maximize their return, agents must therefore spread out and cover all landmarks. Initial
agents’ and landmarks’ positions are random. Termination is triggered when the maximum number
of timesteps is reached.

BOUNCE (Figure 4b): In this environment, two agents (small orange circles) are linked together
with a spring that pulls them toward each other when stretched above its relaxation length. At
episode’s mid-time a ball (smaller black circle) falls from the top of the environment. Agents must
position correctly so as to have the ball bounce on the spring towards the target (bigger beige circle),
which turns yellow if the ball’s bouncing trajectory passes through it. They receive a team-reward
of rt = 0.1 if the ball reflects towards the side walls, rt = 0.2 if the ball reflects towards the top of
the environment, and rt = 10 if the ball reflects towards the target. At initialisation, the target’s and
ball’s vertical position is fixed, their horizontal positions are random. Agents’ initial positions are
also random. Termination is triggered when the ball is bounced by the agents or when the maximum
number of timesteps is reached.

COMPROMISE (Figure 4c): In this environment, two agents (small orange circles) are linked
together with a spring that pulls them toward each other when stretched above its relaxation length.
They both have a distinct assigned landmark (light gray circle for light orange agent, dark gray circle
for dark orange agent), and receive a reward of rt = 10 when they reach it. Once a landmark is
reached by its corresponding agent, the landmark is randomly relocated in the environment. Initial
positions of agents and landmark are random. Termination is triggered when the maximum number
of timesteps is reached.

CHASE (Figure 4d): In this environment, two predators (orange circles) are chasing a prey (turquoise
circle). The prey moves with respect to a scripted policy consisting of repulsion forces from the
walls and predators. At each timestep, the learning agents (predators) receive a team-reward of
rt = n where n is the number of predators touching the prey. The prey has a greater max speed and
acceleration than the predators. Therefore, to maximize their return, the two agents must coordinate in
order to squeeze the prey into a corner or a wall and effectively trap it there. Termination is triggered
when the maximum number of time steps is reached.

C Training details

In all of our experiments, we use the Adam optimizer [19] to perform parameter updates. All
models (actors, critics and coach) are parametrized by feedforward networks containing two hidden
layers of 128 units. We use the Rectified Linear Unit (ReLU) [27] as activation function and layer
normalization [2] on the pre-activations unit to stabilize the learning. We use a buffer-size of 106

entries and a batch-size of 1024. We collect 100 transitions by interacting with the environment for
each learning update. For all tasks in our hyper-parameter searches, we train the agents for 15, 000
episodes of 100 steps and then re-train the best configuration for each algorithm-environment pair for
twice as long (30, 000 episodes) to ensure full convergence for the final evaluation. The scale of the
exploration noise is kept constant for the first half of the training time and then decreases linearly to 0
until the end of training. We use a discount factor γ of 0.95 and a gradient clipping threshold of 0.5
in all experiments. Finally for CoachReg, we fixed K to 4 meaning that agents could choose between
4 sub-policies. Since policies’ hidden layers are of size 128 the corresponding value for C is 32. All
experiments were run on Intel E5-2683 v4 Broadwell (2.1GHz) CPUs in less than 12 hours.

13

D Algorithms

Algorithm 1 Team

Randomly initialize N critic networks Qi and actor networks µi
Initialize the target weights
Initialize one replay buffer D
for episode from 0 to number of episodes do

Initialize random processes N i for action exploration
Receive initial joint observation o0

for timestep t from 0 to episode length do
Select action ai = µi(oit) +N i

t for each agent
Execute joint action at and observe joint reward rt and new observation ot+1

Store transition (ot, at, rt, ot+1) in D
end for
Sample a random minibatch of M transitions from D
for each agent i do

Evaluate Li and J iPG from Equations (1) and (2)
for each other agent (j 6= i) do

Evaluate J i,jTS from Equations (3, 4)
Update actor j with θj ← θj + αθ∇θjλ2J

i,j
TS

end for
Update critic with φi ← φi − αφ∇φiLi

Update actor i with θi ← θi + αθ∇θi
(
J iPG + λ1

∑N
j=1 J

i,j
TS

)
end for
Update all target weights

end for

Algorithm 2 Coach

Randomly initialize N critic networks Qi, actor networks µi and one coach network pc
Initialize N target networks Qi′ and µi′
Initialize one replay buffer D
for episode from 0 to number of episodes do

Initialize random processes N i for action exploration
Receive initial joint observation o0

for timestep t from 0 to episode length do
Select action ai = µi(oit) +N i

t for each agent
Execute joint action at and observe joint reward rt and new observation ot+1

Store transition (ot, at, rt, ot+1) in D
end for
Sample a random minibatch of M transitions from D
for each agent i do

Evaluate Li and J iPG from Equations (1) and (2)
Update critic with φi ← φi − αφ∇φiLi
Update actor with θi ← θi + αθ∇θiJ iPG

end for
for each agent i do

Evaluate J iE and J iEPG from Equations (8) and (7)
Update actor with θi ← θi + αθ∇θi

(
λ1J

i
E + λ2J

i
EPG

)
end for
Update coach with ψ ← ψ + αψ∇ψ 1

N

∑N
i=1

(
J iEPG + λ3J

i
E

)
Update all target weights

end for

14

E Hyper-parameter search

E.1 Hyper-parameter search ranges

We perform searches over the following hyper-parameters: the learning rate of the actor αθ, the
learning rate of the critic ωφ relative to the actor (αφ = ωφ ∗ αθ), the target-network soft-update
parameter τ and the initial scale of the exploration noise ηnoise for the Ornstein-Uhlenbeck noise
generating process [32] as used by Lillicrap et al. [22]. When using TeamReg and CoachReg, we
additionally search over the regularization weights λ1, λ2 and λ3. The learning rate of the coach is
always equal to the actor’s learning rate (i.e. αθ = αψ), motivated by their similar architectures and
learning signals and in order to reduce the search space. Table 2 shows the ranges from which values
for the hyper-parameters are drawn uniformly during the searches.

Table 2: Ranges for hyper-parameter search, the log base is 10

HYPER-PARAMETER RANGE
log(αθ) [−8,−3]
log(ωφ) [−2, 2]
log(τ) [−3,−1]
log(λ1) [−3 , 0]
log(λ2) [−3 , 0]
log(λ3) [−1 , 1]
ηnoise [0.3, 1.8]

E.2 Model selection

During training, a policy is evaluated on a set of 10 different episodes every 100 learning steps. At
the end of the training, the model at the best evaluation iteration is saved as the best version of the
policy for this training, and is re-evaluated on 100 different episodes to have a better assessment of its
final performance. The performance of a hyper-parameter configuration is defined as the average
performance (across seeds) of the best policies learned using this set of hyper-parameter values.

15

E.3 Selected hyper-parameters

Tables 3, 4, 5, and 6 shows the best hyper-parameters found by the random searches for each of the
environments and each of the algorithms.

Table 3: Best found hyper-parameters for the SPREAD environment
HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 5.3 ∗ 10−5 2.1 ∗ 10−5 9.0 ∗ 10−4 2.5 ∗ 10−5 1.2 ∗ 10−5

ωφ 53 79 0.71 42 82
τ 0.05 0.083 0.076 0.098 0.0077
λ1 - - - 0.054 0.13
λ2 - - - 0.29 0.24
λ3 - - - - 8.4
ηnoise 1.0 0.5 0.7 1.2 1.6

Table 4: Best found hyper-parameters for the BOUNCE environment
HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 8.1 ∗ 10−4 3.8 ∗ 10−5 1.2 ∗ 10−4 1.3 ∗ 10−5 6.8 ∗ 10−5

ωφ 2.4 87 0.47 85 9.4
τ 0.089 0.016 0.06 0.055 0.02
λ1 - - - 0.06 0.0066
λ2 - - - 0.0026 0.23
λ3 - - - - 0.34
ηnoise 1.2 0.9 1.2 1.0 1.1

Table 5: Best found hyper-parameters for the CHASE environment
HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 4.5 ∗ 10−4 2.0 ∗ 10−4 9.7 ∗ 10−4 1.3 ∗ 10−5 1.8 ∗ 10−4

ωφ 32 64 0.79 85 90
τ 0.031 0.021 0.032 0.055 0.011
λ1 - - - 0.06 0.0069
λ2 - - - 0.0026 0.86
λ3 - - - - 0.76
ηnoise 0.6 1.0 1.5 1.0 1.1

Table 6: Best found hyper-parameters for the COMPROMISE environment
HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 6.1 ∗ 10−5 3.1 ∗ 10−4 6.2 ∗ 10−4 1.5 ∗ 10−5 3.4 ∗ 10−4

ωφ 1.7 0.94 0.58 90 29
τ 0.065 0.045 0.007 0.02 0.0037
λ1 - - - 0.0013 0.65
λ2 - - - 0.56 0.5
λ3 - - - - 1.3
ηnoise 1.1 0.7 1.3 1.6 1.6

Table 7: Best found hyper-parameters for the 3-vs-1-with-keeper Google Football environment
HYPER-PARAMETER MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 1.6 ∗ 10−6 3.4 ∗ 10−5 3.5 ∗ 10−6 9.4 ∗ 10−5

ωφ 3.1 13 0.96 2.9
τ 0.004 0.0014 0.0066 0.018
λ1 - - 0.1 0.027
λ2 - - 0.02 0.027
λ3 - - - 2.4

16

E.4 Selected hyper-parameters (ablations)

Tables 8, 9, 10, and 11 shows the best hyper-parameters found by the random searches for each of the
environments and each of the ablated algorithms.

Table 8: Best found hyper-parameters for the SPREAD environment
HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.3 ∗ 10−5 6.8 ∗ 10−5

ωφ 85 9.4
τ 0.055 0.02
λ1 0.06 0
λ2 0 0
λ3 - 0
ηnoise 1.0 1.1

Table 9: Best found hyper-parameters for the BOUNCE environment
HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.3 ∗ 10−5 2.5 ∗ 10−4

ωφ 85 0.52
τ 0.055 0.0077
λ1 0.06 0
λ2 0 0
λ3 - 0
ηnoise 1.0 1.3

Table 10: Best found hyper-parameters for the CHASE environment
HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 2.5 ∗ 10−5 6.8 ∗ 10−5

ωφ 42 9.4
τ 0.098 0.02
λ1 0.054 0
λ2 0 0
λ3 - 0
ηnoise 1.2 1.1

Table 11: Best found hyper-parameters for the COMPROMISE environment
HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.2 ∗ 10−4 2.5 ∗ 10−4

ωφ 0.71 0.52
τ 0.0051 0.0077
λ1 0.0075 0
λ2 0 0
λ3 - 0
ηnoise 1.8 1.3

17

E.5 Hyper-parameter search results

The performance distributions across hyper-parameters configurations for each algorithm on each
task are depicted in Figure 9 using box-and-whisker plot. It can be seen that, while most algorithms
can perform reasonably well with the correct configuration, TeamReg, CoachReg as well as their
ablated versions boost the performance of the third quartile, suggesting an increase in the robustness
across hyper-parameter compared to the baselines.

0

50

100

150

200

av
er

ag
e

re
tu

rn

SPREAD

0

2

4

6

8

BOUNCE

MADDPG

+ C
oa

chR
eg

 (o
urs

)

MADDPG

+ p
olic

y m
ask

MADDPG

+ T
ea

mReg
 (o

urs
)

MADDPG

+ a
ge

nt
mod

elli
ng

MADDPG

+ sh
ari

ng
MADDPG

DDPG

0

5

10

15

20

25

av
er

ag
e

re
tu

rn

COMPROMISE

MADDPG

+ C
oa

chR
eg

 (o
urs

)

MADDPG

+ p
olic

y m
ask

MADDPG

+ T
ea

mReg
 (o

urs
)

MADDPG

+ a
ge

nt
mod

elli
ng

MADDPG

+ sh
ari

ng
MADDPG

DDPG

0

200

400

600

800

1000
CHASE

Figure 9: Hyper-parameter tuning results for all algorithms. There is one distribution per (algorithm,
environment) pair, each one formed of 50 data-points (hyper-parameter configuration samples). Each
point represents the best model performance averaged over 100 evaluation episodes and averaged over
the 3 training seeds for one sampled hyper-parameters configuration. The box-plots divide in quartiles
the 49 lower-performing configurations for each distribution while the score of the best-performing
configuration is highlighted above the box-plots by a single dot.

18

F The effects of enforcing predictability (additional results)

0

5

10

15

20

25

|
pe

rf
|

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg (ours)

10 3 10 2 10 1 100

2

Figure 10: Average performance differ-
ence (∆perf) between the two agents
in COMPROMISE for each 150 runs
of the hyper-parameter searches (left).
All occurrences of abnormally high per-
formance difference are associated with
high values of λ2 (right).

The results presented in Figure 5 show that MADDPG +
TeamReg is outperformed by all other algorithms when
considering average return across agents. In this section
we seek to further investigate this failure mode.

Importantly, COMPROMISE is the only task with a
competitive component (i.e. the only one in which
agents do not share their rewards). The two agents being
strapped together, a good policy has both agents reach
their landmark successively (e.g. by having both agents
navigate towards the closest landmark). However, if one
agent never reaches for its landmark, the optimal strategy
for the other one becomes to drag it around and always
go for its own, leading to a strong imbalance in the return
cumulated by both agents. While such scenario doesn’t
occur for the other algorithms, we found TeamReg to often
lead to cases of domination such as depicted in Figure 11.

Figure 10 depicts the performance difference between
the two agents for every 150 runs of the hyperparameter
search for TeamReg and the baselines, and shows that
(1) TeamReg is the only algorithm that leads to large
imbalances in performance between the two agents and
(2) that these cases where one agent becomes dominant are all associated with high values of λ2,
which drives the agents to behave in a predictable fashion to one another.

Looking back at Figure 11, while these domination dynamics tend to occur at the beginning of
training, the dominated agent eventually gets exposed more and more to sparse reward gathered by
being dragged (by chance) onto its own landmark, picks up the goal of the task and starts pulling in
its own direction, which causes the average return over agents to drop as we see happening midway
during training in Figure 5. These results suggest that using a predictability-based team-regularization
in a competitive task can be harmful; quite understandably, you might not want to optimize an
objective that aims at making your behavior predictable to your opponent.

0 5000 10000 15000 20000 25000 30000
0

15

30

45

Av
er

ag
e

Re
tu

rn

DDPG
agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
0

15

30

45

MADDPG
agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
Episodes

0

15

30

45

Av
er

ag
e

Re
tu

rn

MADDPG + sharing
agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
Episodes

0

15

30

45

MADDPG + TeamReg
agent 0
agent 1

Figure 11: Learning curves for TeamReg and the three baselines on COMPROMISE. We see that
while both agents remain equally performant as they improve at the task for the baseline algorithms,
TeamReg tends to make one agent much stronger than the other one. This domination is optimal as
long as the other agent remains docile, as the dominant agent can gather much more reward than if
it had to compromise. However, when the dominated agent finally picks up the task, the dominant
agent that has learned a policy that does not compromise see its return dramatically go down and the
mean over agents overall then remains lower than for the baselines.

19

G Analysis of sub-policy selection (additional results)

G.1 Mask densities

We depict on Figure 12 the mask distribution of each agent for each (seed, environment) experiment
when collected on a 100 different episodes. Firstly, in most of the experiments, agents use at least 2
different masks. Secondly, for a given experiments, agents’ distributions are very similar, suggesting
that they are using the same masks in the same situations and that they are therefore synchronized.
Finally, agents collapse more to using only one mask on CHASE, where they also display more
dissimilarity between one another. This may explain why CHASE is the only task where CoachReg
does not improve performance. Indeed, on CHASE, agents do not seem synchronized nor leveraging
multiple sub-policies which are the priors to coordination behind CoachReg. In brief, we observe
that CoachReg is less effective in enforcing those priors to coordination of CHASE, an environment
where it does not boost nor harm performance.

Figure 12: Agent’s policy mask distributions. For each (seed, environment) we collected the masks of
each agents on 100 episodes.

20

G.2 Episodes rollouts with synchronous sub-policy selection

We display here and on https://sites.google.com/view/marl-coordination/ some inter-
esting sub-policy selection strategy evolved by CoachReg agents. On Figure 13, the agents identified
two different scenarios depending on the target-ball location and use the corresponding policy mask
for the whole episode. Whereas on Figure 13, the agents synchronously switch between policy masks
during an episode. In both cases, the whole group selects the same mask as the one that would have
been suggested by the coach.

(a) BOUNCE: The ball is on the left side of the target, agents both select the purple policy mask

t = 0, C = t = 5, C = t = 10, C = t = 15, C = t = 50, C = t = 59, C = t = 60, C = t = 65, C =

(b) BOUNCE: The ball is on the right side of the target, agents both select the green policy mask

t = 0, C = t = 5, C = t = 10, C = t = 15, C = t = 50, C = t = 58, C = t = 59, C = t = 65, C =

Figure 13: Visualization of two different BOUNCE evaluation episodes. Note that here, the agents’
colors represent their chosen policy mask. Agents have learned to synchronously identify two distinct
situations and act accordingly. The coach’s masks (not used at evaluation time) are displayed with
the timestep at the bottom of each frame.

(a) SPREAD

t = 0, C = t = 5, C = t = 20, C =t = 10, C = t = 15, C = t = 25, C = t = 30, C = t = 35, C =

(b) COMPROMISE

t = 0, C = t = 3, C = t = 17, C =t = 6, C = t = 7, C = t = 22, C = t = 32, C = t = 33, C =

t = 34, C = t = 37, C = t = 40, C = t = 42, C = t = 43, C = t = 48, C = t = 51, C = t = 52, C =

t = 53, C = t = 54, C = t = 64, C = t = 65, C = t = 66, C = t = 67, C = t = 68, C = t = 73, C =

Figure 14: Visualization of sequences on two different environments. An agent’s color represent its
current policy mask. The coach’s masks (not used at evaluation time) are displayed with the timestep
at the bottom of each frame. Agents synchronously switch between the available policy masks.

21

https://sites.google.com/view/marl-coordination/

G.3 Mask diversity and synchronicity (ablation)

As in Subsection 7.3 we report the mean entropy of the mask distribution and the mean Hamming
proximity for the ablated “MADDPG + policy mask” and compare it to the full CoachReg. With
“MADDPG + policy mask” agents are not incentivized to use the same masks. Therefore, in order
to assess if they synchronously change policy masks, we computed, for each agent pair, seed and
environment, the Hamming proximity for every possible masks equivalence (mask 3 of agent 1
corresponds to mask 0 of agent 2, etc.) and selected the equivalence that maximised the Hamming
proximity between the two sequences.

We can observe that while “MADDPG + policy mask” agents display a more diverse mask usage,
their selection is less synchronized than with CoachReg. This is easily understandable as the coach
will tend to reduce diversity in order to have all the agents agree on a common mask, on the other
hand this agreement enables the agents to synchronize their mask selection. To this regard, it should
be noted that “MADDPG + policy mask” agents are more synchronized that agents independently
sampling their masks from k-CUD, suggesting that, even in the absence of the coach, agents tend to
synchronize their mask selection.

Figure 15: (Left) Entropy of the policy mask distributions for each task and method, averaged over
agents and training seeds. Hmax,k is the entropy of a k-CUD. (Right) Hamming Proximity between
the policy mask sequence of each agent averaged across agent pairs and seeds. randk stands for
agents independently sampling their masks from k-CUD. Error bars are SE across seeds.

22

H Scalability with the number of agents

H.1 Complexity

In this section we discuss the increases in model complexity that our methods entail. In practice,
this complexity is negligible compared to the overall complexity of the CTDE framework. To that
respect, note that (1) the critics are not affected by the regularizations, so our approaches only increase
complexity for the forward and backward propagation of the actor, which consists of roughly half of
an agent’s computational load at training time. Moreover, (2) efficient design choices significantly
impact real-world scalability and performance: we implement TeamReg by adding only additional
heads to the pre-existing actor model (effectively sharing most parameters for the teammates’ action
predictions with the agent’s action selection model). CoachReg consists only of an additional linear
layer per agent and a unique Coach entity for the whole team (which scales better than a critic since
it only takes observations as inputs). As such, only a small number of additional parameters need to
be learned relatively to the underlying base CTDE algorithm. For a TeamReg agent, the number of
parameters of the actor increases linearly with the number of agents (additional heads) whereas the
critic model grows quadratically (since the observation size themselves usually depend on the number
of agents). In the limit of increasing the number of agents, the proportion of added parameters by
TeamReg compared to the increase in parameters of the centralised critic vanishes to zero. On the
SPREAD task for example, training 3 agents with TeamReg increases the number of parameters by
about 1.25% (with similar computational complexity increase). With 100 agents, this increase is only
of 0.48%. For CoachReg, the increase in an agent’s parameter is independent of the number of agent.
Finally, any additional heads in TeamReg or the Coach in CoachReg are only used during training
and can be safely removed at execution time, reducing the systems computational complexity to that
of the base algorithm.

H.2 Robustness

To assess how the proposed methods scale to greater number of agents, we increase the number of
agents in the SPREAD task from three to six agents. The results presented in Figure 16 show that
the performance benefits provided by our methods hold when the number of agents is increased.
Unsurprisingly, we also note how quickly learning becomes more challenging when the number
of agents rises. Indeed, with each new agent, the coordination problem becomes more and more
difficult, and that might explain why our methods that promote coordination maintain a higher degree
of performance. Nonetheless, in the sparse reward setting, the complexity of the task soon becomes
too difficult and none of the algorithms is able to solve it with six agents.

While these results show that our methods do not contribute to a quicker downfall when the number of
agents is increased, they are not however aimed at tackling the problem of massively-multi-agent RL.
Other approaches that use attention heads [14] or restrict one agent perceptual field to its n-closest
teammates are better suited to these particular challenges and our proposed regularisation schemes
could readily be adapted to these settings as well.

0 5000 10000 15000 20000 25000 30000

0

80

160

Re
tu

rn

SPREAD - 3 AGENTS

0 5000 10000 15000 20000 25000 30000
100

0

100

200
SPREAD - 4 AGENTS

0 5000 10000 15000 20000 25000 30000
Episodes

120

60

0

60

Re
tu

rn

SPREAD - 5 AGENTS

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg (ours) MADDPG + CoachReg (ours)

0 5000 10000 15000 20000 25000 30000
Episodes

120

60

0

SPREAD - 6 AGENTS

Figure 16: Learning curves (mean return over agents) for all algorithms on the SPREAD environment
for varying number of agents. Solid lines are the mean and envelopes are the Standard Error (SE)
across the 10 training seeds.

23

