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We thank all reviewers for the constructive feedback. We will incorporate the valuable suggestions from all reviewers2

(including a title change, as suggested by R2). In addition, we briefly address some of the comments below.3

Experiments4

All reviewers gave feedback or had questions about the experimental set up. We briefly recap the experiments and5

comment on the purpose and importance of each one, as well as address some reviewer specific comments.6

Purpose: The experiments highlight avenues toward bridging the gaps between the following standard theory7

assumptions and practice: (i) Asymptotic run-time analysis: Our PTAS is fantastic in theory but not practical. In8

practice we show that QR, which is very simple, is also near-optimal (Fig. 1). (ii) Constant-factor approximation:19

In practice, Greedy, QR, and KR all perform extremely well (in fact, they have comparable behavior despite the very10

different theoretical guarantees) and much better than the baseline of Expectation (Fig. 1). (iii) Availability of explicit11

distribution: Thanks R3 for bring this up! (See also Lines 292-4.) In practice explicit distributions typically only arise12

if we fit a model (e.g. Gaussians) to data. A slightly more realistic assumption are historical samples from the same13

distribution. In our real data experiments, we go one step further: We consider the practical scenario where we observe14

only one value for each feature vector. Here, we have an implicit distribution over our uncertainty. We develop a15

novel approach that allows us to successfully apply analogs of KR and QR in this setting (Fig. 3). (iv) Just maximize16

the objective: In theory, improving the objective function is always a better outcome. In practice, in particular in the17

context of the broader impact of ML research, it is important to explore the bias introduced by different algorithms. In18

particular we hypothesized that some algorithms for our problems will be biased by data scarcity, a well-documented19

bias in practical ML. In our second synthetic experiment each distribution gets a random label: l (less data) or m (more20

data); based on this label we only see a less or more samples from this distribution. In this experiment we measure the21

percentage of each population (l vs m) selected by each algorithm, as well as performance (expected largest/second22

largest value). We see that while the performance is almost identical, the choice of method and quantile (both for KR23

and QR) has major effects on the percentage of small sample candidates selected.24

25

R2 asks what the random variables are in the real data experiment. The random variables are our implicit uncertainty26

about the value corresponding to a feature vector. We estimate the quantiles (resp. expectation) of this implicit27

distribution using quantile (resp. squared loss) regression. For all methods we use neural nets (and hopefully this clears28

up a confusion of R4 regarding linear regression being treated differently: it isn’t), and as R2 correctly comments,29

“linear regression” should instead be “neural net with squared loss”; we have corrected this. R4 asks about neural net30

models; we will provide additional information, including the depth, loss function and platform used to train these31

neural nets, as well as our methodology for training and testing. R2 asks about the number of simulations in Fig. 3.32

Each feature vector/tweet in the test data is used only once. An experiment samples 500 tweets and picks k of them (we33

give figures for multiple values of k), and Fig. 3 is averaged over 8000 experiments (the 4000 number is a typo).34

As R1 and R4 point out, the first part of the synthetic experiments and the Twitter data experiments don’t give a clean35

separation between the algorithms. However, the surprise here is that despite the poor approximation guarantees of36

QR in theory, in practice it does just as well as the theoretically superior (better approximation guarantee without37

the MHR assumption, at least for expected maximum) KR algorithm. Furthermore, in terms of simplicity, the QR38

algorithm has the advantage as it has a strict subset of the steps of the KR algorithm. Finally, even though [KR18]39

introduced this score function (the score equals to the expectation over the top 1/k quantile), adapting it to the real data40

as two consecutive training steps (first quantile loss and then squared loss) is a contribution of this paper. We hope this41

addresses the comments of R3 and R4 about the applicability, significance and advantages of the proposed method.42

Additional Comments43

R2 asks about the optimal c/
√
k quantile. We do not know about the optimal one, but one can improve the approximation44

factor for the expected maximum objective by picking the 1/k quantile, using a similar analysis. Maximizing the45

expected maximum is indeed NP-hard; we will add this result.46

R2 and R4 ask about the running of the PTAS. The running time is O(n|V |polylog(k)), where |V | is the maximum47

size of the support of a random variable, so “near-linear”. This does, of course, take into account all operations,48

including simplifications, calculating conditional expectations and so on. We will clarify this.49

1We did not try to optimize the constant factors.


