
We thank the reviewers for their valuable comments. We will fix all typos and re-organize the contents in the final1

nine-page paper, as advised. We will add the suggested related work, clarify the iterative module, and include more2

descriptions of PathGNN and more experimental details in the main text of the final paper.3

Comparison to Iter-Path and 3/10/100-layer GNNs (R1& R2 & R3): A: We first compare with Iter-Path (a baseline4

w.o. homogeneous prior) on more tasks. The conclusions remain unchanged. Currently, the available results are:
Shortest Path Component Cnt. Physical sim. Image-based Navi.

0.0005 (ER) 0.09 (Lob) 89.2% (ER) 89.5% (Lob) 0.13 (50) 5.78 (100) 89.4% (16× 16) 78.6% (33× 33)
5

We also evaluate 3/10/100-layer PathGNNs. Their generalization performances on the shortest path (Lob) are 0.52, 0.26,6

0.13, respectively, which are not as accurate as our IterGNN (0.02). We will include other results in the revised version.7

R1: Difference between our IterGNN and ACT [31]. A: Compared with ACT, several important differences enable8

IterGNN to achieve much larger iteration numbers so that it can generalize to very large graphs. As illustrated in Figure9

3, our IterGNN can iterate for 2500 times during inference while ACT only iterates for less than 30 times (more analysis10

in Section E.1.2 and C.1.2). Not perfect performance on component counting. A: Ordinary GNNs need random11

node features to increase representation power for solving the component counting problem, which makes optimization12

difficult (due to the high variance) and causes imperfect performance. Other shortest path problems. A: Our model13

can easily solve one of the multi-source shortest path problems, i.e., finding the distance to the nearest source nodes.14

We do not know any straightforward way to find pairwise distances efficiently. Related works reporting notable15

generalization performance w.r.t. graph scales. A: We will include them in the revised version. [r1] only evaluated16

on graphs with limited diameters (≤ 5) so that their fixed-depth paradigm would work. [r2] manually set the number17

of iterations as large as possible for all samples to achieve more generalizability. This approach is computationally18

expensive and makes performance worse in our experiments (Shared-Homo-Path in Table 3) possibly because of the19

accumulated errors after unnecessary iterations.20

R2: Reasons for not returning the last h & Rephrase the iterative module with examples. A: We cannot return21

the last hK at the step K because if so, the terminal signal ci = g(hi), where g is the stopping criterion function, is not22

involved in the computation of hK = f ◦ f ◦ · · · f(h0) and no gradients would be propagated to train the function g.23

Instead, we return the expected value of h as h =
∑∞

i=1 c
k
∏k−1

i=1 (1− ci)hk so that there are gradients to ci, enabling24

us to train the function g end-to-end without extra supervisions. We can interpret h as the expectation of the following25

random process: at each step i, we stop the iteration and output hi with probability ci. Then, starting from step 1, the26

probability for the random process to stop at step k and output hk is pk = ck
∏k−1

i=1 (1− ci). The expectation is then27

h. The iteration number is the number of iterations. We will include an example in the main text. Training/using28

deep GNNs. A: We agree it would not work well. The layer numbers of those deep GNNs are still fixed or bounded.29

Therefore, they cannot solve many simple graph-related tasks, as proved in [19]. Deep GNNs are also computationally30

expensive and difficult to train. Moreover, the works that aim at training deep GNNs are orthogonal to our work. We31

may incorporate those techniques, e.g. for better convergence. Using L∞ norm for Theorem 2. A: Yes. We provide32

an arbitrary-width version of Theorem 2 (Theorem B.2.2 in Appendix) that can incorporate the L∞ norm.33

R3: Why does homogeneous prior seem to help with generalizing over graph size? A: In general, for graphs of34

larger sizes, we expect that the scale of some internal features will also be large to capture those graph properties related35

to the graph size, e.g., the distances or community numbers (Detailed example in L33-40). The homogeneous prior36

helps handle those out-of-range features which then improves the generalizability w.r.t. graph sizes.37

R4: Contributions and generalizability of the elements. A: The generalization performances are shown in Table38

1,2,3. We did extensive ablation studies by adding components one-by-one and by removing each part from our39

best model. We fixed all other hyper-parameters for a fair comparison, and the results showed the contribution of40

each element clearly. Non-standard benchmarks with only a few very basic GNN variants compared. A: We41

have already compared our models with the most popular GNN variants. As for the benchmark, there is no such42

standard benchmark evaluating the generalizability of GNNs w.r.t. scales, so we adopt common practices in related43

fields when designing experiments, such as diverse graph generators for the shortest path problem and the exact same44

TSP-problem generators as the benchmark paper mentioned by the reviewer R4. Comparison with the gates in45

LSTM/GatedGNN. A: Although our IterGNN involves multiplications of hidden representations (like the gates), it is46

significantly different from LSTM/Gated-GNNs in terms of internal structures and usages. LSTM and Gated-GNNs47

require extra supervisions of the stopping conditions during training, e.g., the End-of-Sequence (EoS) symbol. Other48

related works. A: Flow-based models (e.g., Graph ODE or Continuous GNNs), as stated in L99-101, do not explicitly49

learn the iteration controller. It is unclear whether they can solve the shortest path problem on graphs of arbitrary sizes.50

By the way, Graph ODE and Continuous GNNs are not published at the submission time. The Position-aware GNN is51

proposed to improve the representation power of GNNs, similar to our random node features, instead of improving the52

generalizability w.r.t. scales. PathGNN is bespoke for specific types of problems. A: PathGNN is not the focus and53

main contribution of our work. We focus on the IterGNN and the homogeneous prior to improve the generalizability of54

GNNs w.r.t. graph scales, as stated in the introduction.55


