
Figure 2: Pictorial illustration of the example that validates Claim 1.1. The black “+” and “�”
represent positive and negative examples according to the label system induced by w1, and the solid
line represents the corresponding separating hyperplane. The dashed line represents the hyperplane
whose normal vector is w2, which, along with the solid line, partition that � space into four quadrants.
The red “+” and “�” represents the positive and negative examples under the new label system.

A Technical Details

A.1 A Example Validating Claim 1.1

We first formally define the notion of a “label system”:
Definition A.1 (Label system). Let (X,Y ) be a fresh sample from the data distribution. The label
system is the function ⌘ : Rd

! [0, 1] defined by
⌘(x) = P(Y = 1 | X = x).

Let �(·) be the feature map corresponding to K, so that K(x,x0) = h�(x),�(x0)i, where h·, ·i is
the inner product in the �-space. By our assumption, � is also label-agnostic.

Suppose � works well on the label system ⌘1. This means that a simple linear fit in the � space
suffices to achieve satisfactory accuracy. Geometrically, this translates to the existence of a hyperplane
which can almost perfectly separate the two classes. In other words, we can find a normal vector w1

6,
such that P⌘1

�
Y · hw1,�(X)i > 0

�
⇡ 1, where we use P⌘1 to stress that Y comes from the label

system ⌘1.

Now, choose any vector w2 in the � space, such that w2 is orthogonal to w1. We consider the
following relabelling procedure, which produces another label system ⌘2:

⌘2(x) =

⇢
1 if hw1,�(x)i · hw2,�(x)i < 0
0 otherwise.

(10)

Under ⌘2, the �-space is partitioned into four quadrants, which we label as I, II, III, IV counterclock-
wise. Then, any x in I and III is labelled as �1, and any x in II and IV is labelled as +1. Obviously,
there is no hyper-plane that can separate the +1 and �1 examples, meaning that � can be arbitrarily
bad under ⌘2, hence validating Claim. See Fig. 2 for a pictorial illustration.

A.2 Exact integrability of the approximate K(2)
t

In this subsection, we prove the following result:
6Here we implicitly assume this hyperplane crosses the origin. The construction without this assumption is

similar.
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Proposition A.2 (Exact integrability of the approximate K(2)
t ). Assume f0 = 0n

7, then the first
three terms in RHS of (4) is equal to

K(2)
0 (x,x0) +

⌧
K(3)

0 (x,x0, ·), (K(2)
0 )�1

✓
In � e�tK(2)

0 /n

◆
y

�

+ y>(K(2)
0 )�1

✓
In � e�tK(2)

0 /n

◆
K(4)

0 (x,x0, ·, ·)(K(2)
0 )�1y � y>PQ(x,x0)P>y,

where
✓
Q(x,x0)

◆

ij

= (1� e�t(Dii+Djj)/n)⇥

✓
P

>K(4)
0 (x,x0, ·, ·)PD

�1

◆

ij

�✓
Dii +Djj

◆
,

and PDP
> is the eigen-decomposition of K(2)

0 .

Proof. For notational simplicity, we let H ⌘ K
(2)
0 . We have

Z t

0
hu � ydu =

Z t

0
e�uH/nydu = �nH�1y + nH�1e�tH/ny.

Hence, the second term in the RHS of (4) is

�
1

n

Z t

0

⌧
K(3)

0 ,hu � y

�
du =

⌧
K(3)

0 ,H�1

✓
In � e�tH/n

◆
y

�
.

We now deal with the third term in the RHS of (4). We have
Z t

0

Z u

0
(hu � y)>K(4)

0 (hv � y)dvdu

= y>
Z t

0

Z u

0
e�uH/nK(4)

0 e�vH/nydvdu

= y>
Z t

0
e�uH/nK(4)

0 (nH�1
� nH�1e�uH/n)y

= n2y>H�1

✓
In � e�tH/n

◆
K(4)

0 H
�1y � ny>

Z t

0
e�uH/nK(4)

0 H
�1e�uH/nydu.

Let PDP
> be an eigen-decomposition of H. Then we have
Z t

0
e�uH/nK(4)

0 H
�1e�uH/ndu =

Z t

0
Pe�uD/n

P
>K(4)

0 PD
�1

| {z }
:=M

e�uD/n
P

>du

= P

Z t

0
e�tD/n

Me�D/nduP>.

Note that ✓
e�tD/n

Me�D/n

◆

ij

= Mije
�u(di+dj)/n,

here di := Dii. Hence,
Z t

0

✓
e�tD/n

Me�D/n

◆

ij

du = Mij ·

✓
n

di + dj
�

n

di + dj
e�t(di+dj)/n

◆
,

which yields Z t

0
e�uH/nK(4)

0 H
�1e�uH/ndu = nPQP

>.

Putting the above equations together gives the desired result.
7The formula for nonzero f0 can be obtained by similar but lengthier calculations. Since this is not the focus

of this paper, we omit the details.
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A.3 Proof of Lemma 2.2

Note that the finite variance assumption in the definition of GA is vacuous, because our label is binary.
The rest of the proof is standard (see, e.g., Section 11.4 of Van der Vaart 2000).

A.4 Proof of Theorem 2.1

Assumption A. There exists a small constant c > 0 such that c < kxik2  c�1 for all i 2 [n].
Moreover, there exists an integer p � 4 such that for any 1  r  2p+ 1, the following two things
happen:

1. the activation function has a bounded r-th derivative;

2. there exists a constant cr > 0 such that for any distinct indices 1  ↵1,↵2, · · · ,↵r  n,
the smallest singular value of the data matrix [x↵1 ,x↵2 , · · · ,x↵r ] is at least cr.

To prove Theorem 2.1, we first collect some useful details into the following lemma.
Lemma A.3. Under the assumptions of Theorem 2.1, with high probability, for any u  t, we have

kK(3)
u k1 = Õ

✓
1 + u

m

◆
, kK(4)

u k1 = Õ

✓
1

m

◆
, kK(5)

u k1 = Õ

✓
1 + u

m2

◆
,

kfu � huk2 . u(1 + u)
p
n

m

✓
u ^

n

�

◆
, kfu � yk2 = O(

p
n).

Proof. This is implied by Equations (C.12), (C.13), (C.16), and (C.28) in Huang & Yau (2019).

We are now ready to present the proof.

Proof of Theorem 2.1. We have

K(2)
t (x↵,x�)

= K(2)
0 (x↵,x�)�

1

n

⌧
K(3)

0 ,

Z t

0
hu � y + fu � hudu

�

+
1

n2

Z t

0

Z u

0
(hu � y + fu � hu)

>(K(4)
0 +K(4)

v �K(4)
0 )(hv � y + fv � hv)dvdu

= K(2)
0 (x↵,x�)�

1

n

⌧
K(3)

0 ,

Z t

0
hu � ydu

�
+

1

n2

Z t

0

Z u

0
(hu � y)>K(4)

0 (hv � y)dvdu+ E ,

where the error term E is given by

E = �
1

n

⌧
K(3)

0 ,

Z t

0
fu � hudu

�
+

1

n2

Z t

0

Z u

0
(hu � y)>K(4)

0 (fv � hv)dvdu

+
1

n2

Z t

0

Z u

0
(hu � y)>(K(4)

v �K(4)
0 )(fv � y)dvdu

+
1

n2

Z t

0

Z u

0
(fu � hu)

>K(4)
v (fv � y)dvdu.

We label the four terms in the RHS above as I, II, III, and IV. By lemma A.3, for the first term, w.h.p.
we have

I 
1

n
kK(3)

0 (x↵,x� , ·)k2 ·

Z t

0
kfu � huk2du

. 1

m
kK(3)

0 k1 ·

Z t

0
u(1 + u)

✓
u ^

n

�

◆
du

. (logm)c

m2
·

✓
(t3 + t4) ^

n(t2 + t3)

�

◆

. (logm)c · t2(1 + t)

m2

✓
t ^

n

�

◆
.
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For the second term, we have

II 
1

n2

Z t

0

Z u

0
khu � yk2kfv � hvk2kK

(4)
0 (x↵,x� , ·, ·)kdvdu

. 1

m

Z t

0

Z u

0
v(1 + v)

✓
v ^

n

�

◆
kK(4)

0 k1dvdu

. (logm)c

m2

Z t

0

Z u

0
v(1 + v)

✓
v ^

n

�

◆

. (logm)c

m2
(t4 + t5) ^

n(t3 + t4)

�

=
(logm)c · t3(1 + t)

m2

✓
t ^

n

�

◆
.

For the third term, we have

III 
1

n2

Z t

0

Z u

0
khu � yk2kfv � yk2kK

(4)
v (x↵,x� , ·, ·)�K(4)

0 (x↵,x� , ·, ·)k2dvdu.

Note that

khu � yk2  khu � fuk2 + kfu � yk2 . u(1 + u)
p
n

m

✓
u ^

n

�

◆
+
p
n,

kfv � yk2 .
p
n,

and
kK(4)

v (x↵,x� , ·, ·)�K(4)
0 (x↵,x� , ·, ·)k2

 n max
i,j2[n]

|K(4)
v (x↵,x� ,xi,xj)�K(4)

0 (x↵,x� ,xi,xj)|

 n

Z v

0
max
i,j2[n]

|K̇(4)
w (x↵,x� ,xi,xj)|dw

= n

Z v

0
max
i,j2[n]

1

n

����
X

k2[n]

K(5)
w (x↵,x� ,xi,xj ,xk)(fw(xk)� yk)

����dw

 n

Z v

0
kK(5)

w k1
1
p
n
kfw � yk2dw

. n(logm)c

m2

Z v

0
(1 + w)dw

. n(logm)c · (v + v2)

m2
.

Hence, we can bound the third term by

III . (logm)c

m2

Z t

0

Z u

0
(v + v2)

✓
1 +

u(1 + u)(u ^ n/�)

m

◆
dvdu

. (logm)c · t3(1 + t)

m2
+

(logm)c · t4(1 + t+ t2)

m3

✓
t ^

n

�

◆
.

Finally, we bound the fourth term by

IV 
1

n2

Z t

0

Z u

0
kfu � huk2kfv � yk2kK

(4)
v (x↵,x� , ·, ·)k2dvdu

. (logm)c

m2

Z t

0

Z u

0
u(1 + u)

✓
u ^

n

�

◆
dvdu

. (logm)c · t3(1 + t)

m2

✓
t ^

n

�

◆
.

Combining the above four bounds gives the desired bound on E . The bounds for the three terms in
the RHS of (4) are derived similarly, and we omit the details.

16



B NTH-Related Calculations

B.1 An Symbolic Program to Compute NTH

In this section, we develop a recursive program to symbolically compute K(r)
t , the r-th order kernel

in NTH. For simplicity, we consider neural nets without biases 8:

f(x,w) = W
(L)�

✓
W

(L�1)
· · ·
�
W

(2)�(W(1)x)
�◆

.

We begin by noting that K(2)
t can be written as an inner product of two gradients. We will see that

K(3)
t can be written as a quadratic form, and K(4) can be written as a cubic form, etc.

To this end, let us denote rf(x,w) to be the partial derivative of f(x,w) w.r.t. w. We sometimes
drop the dependence on t and write f(x↵,wt) ⌘ f↵ when there is no ambiguity.

We will regard w = W = {W
(`)
jk : ` 2 [L], j 2 [p`], j 2 [q`]} as a rank-3 tensor. We write

W
(`)
jk ⌘ W`jk when there is no ambiguity. In our current notations, rf(x,w) = {

�
rf(x,w)

�
`jk

:

` 2 [L], j 2 p`, k 2 q`} is also a rank-3 tensor. We begin by writing

K(2)
t (x↵,x�) = hrf(x↵,wt),rf(x� ,wt)i

=
X

`2[L]

X

j2[p`]

X

k2[q`]

@f(x↵,wt)

@W(`)
jk

·
@f(x� ,wt)

@W(`)
jk

= (rf↵)
`jk(rf�)`jk,

where in the last line we have used the Einstein notation 9. Taking derivative w.r.t. t gives

d

dt
K(2)

t (x↵,x�) = (
d

dt
rf↵)

`jk(rf�)`jk + (rf↵)
`jk(

d

dt
rf�)`jk.

We have

(
d

dt
rf↵)`jk =

@(rf↵)`jk
@Wsuv

·
dWsuv

dt

=
@(rf↵)`jk
@Wsuv

·
�dL(wt)

dWsuv

=
@(rf↵)`jk
@Wsuv

·

✓
�

1

n

X

�2[n]

(f� � y�) · (rf�)suv

◆

= �
1

n

X

�2[n]

(f� � y�) ·
@(rf↵)`jk
@Wsuv

· (rf�)suv

=�
1

n

X

�2[n]

(f� � y�) · (r
2f↵)

`jk
suv · (rf�)suv,

where we denote r
2f to be the rank-6 tensor, whose (`, j, k, s, u, v)-th entry is given by

@(rf)`jk/@Wsuv =
@2f

@WsuvW`jk
.

A similar computation gives

(
d

dt
rf�)`jk = �

1

n

X

�2[n]

(f� � y�) · (r
2f�)

`jk
suv · (rf�)suv.

8The method developed in this section applies to neural nets with biases, but with lengthier calculations.
9That is, if an index appears twice, we take the sum over this index.
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Hence, we arrive at

K(3)
t (x↵,x� ,x�)

= (r2f↵)
`jk
suv(rf�)`jk(rf�)suv + (rf↵)`jk(r

2f�)
`jk
suv(rf�)suv

=
X

`2[L]

X

j2[p`]

X

k2[q`]

X

s2[L]

X

u2[ps]

X

v2[qs]

@f(x� ,wt)

@W`jk
·
@2f(x↵,wt)

@W`jk@Wsuv
·
@f(x� ,wt)

@Wsuv

+
@f(x↵,wt)

@W`jk
·
@2f(x� ,wt)

@W`jk@Wsuv
·
@f(x� ,wt)

@Wsuv
.

Note that the above expression is a quadratic form:

K(3)
t (x↵,x� ,x�) = (rf�)

>(r2f↵)(rf�) + (rf↵)
>(r2f�)(rf�).

We have already seen some patterns showing up. To obtain K(3)
t from K(2)

t , we simply conduct the
following program:

1. Start with K(2)
t = (rf↵)`jk(rf�)`jk in Einstein notation, which is a function of r = 2

gradients;
2. Introduce a new index � for data points, and a new set of indices (suv) for weights;

3. Replicate K(2)
t for r = 2 times, and append (rf�)suv to the end of each term:

(rf↵)
`jk(rf�)`jk(rf�)suv + (rf↵)

`jk(rf�)`jk(rf�)suv;

4. Choose a term from a total of r = 2 terms in K(2)
t , raise its gradient to one higher level, add

the new indices (suv) to this term, and do this operation in all possible ways:

K(3)
t = (r2f↵)

`jk
suv(rf�)`jk(rf�)suv + (rf↵)`jk(r

2f�)
`jk
suv(rf�)suv.

We now apply the above program to obtain K(4)
t from K(3)

t :

1. Introduce a new index ⇠ for data points, and a new set of indices (abc);

2. Since K(3) is a function of r = 3 gradients, we replicate K(3)
t for 3 times, and append

(rf⇠)abc to the end of each term:

(r2f↵)
`jk
suv(rf�)`jk(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(rf�)`jk(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(rf�)`jk(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
2f�)

`jk
suv(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
2f�)

`jk
suv(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
2f�)

`jk
suv(rf�)suv(rf⇠)abc;

3. Raise a term’s gradient (from the former 3 terms) to a higher level, add the new indices, and
do it in all possible ways:

K(4)
t =(r3f↵)

`jk
suv,abc(rf�)`jk(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(r

2f�)
`jk
abc(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(rf�)`jk(r

2f�)
suv
abc (rf⇠)abc

+ (r2f↵)
`jk
abc(r

2f�)
`jk
suv(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
3f�)

`jk
suv,abc(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
2f�)

`jk
suv(r

2f�)
suv
abc (rf⇠)abc. (11)
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In the above program, we have regarded r
3f as a rank-9 tensor, whose (`, j, k, s, u, v, a, b, c)-th

entry is given by
@3f

@Wabc@Wsuv@W`jk
.

The correctness of the above recursive symbolic program can be proved by straightforward induction,
and we omit the details.

B.2 Explicit Expressions for NTH for Two-Layer Nets

Taking advantage of the recursive program, it’s relatively easy to get explicit expressions for K(r)

when r is not too large. We focus on the following two-layer net

f(x,w) =
1

p
m
a
>�(Wx). (12)

Proposition B.1 (Expression for K(2)
t ,K(3)

t and K(4)
t in a two-layer net). For the two layer neural

network f(x,w) = 1p
m
a
>�(Wx), where a 2 Rm,W 2 Rm⇥d, and � an activation function, we

have

K(2)
t (x↵,x�)

=
1

m
x>
↵x� ·

⌧
�0(Wx↵)� at,�

0(Wx�)� at

�
+

1

m

⌧
�(Wx↵),�(Wx�)

�
, (13)

K(3)
t (x↵,x� ,x�)

=
1

m
p
m
x>
↵x� · x>

↵x� ·

⌧
at � at � at,�

00(Wx↵)� �0(Wx�)� �0(Wx�)

�

+
1

m
p
m
x>
� x� · x>

↵x� ·

⌧
at � at � at,�

0(Wx↵)� �00(Wx�)� �0(Wx�)

�

+
2

m
p
m
x>
↵x� ·

⌧
at,�

0(Wx↵)� �0(Wx�)� �(Wx�)

�

+
1

m
p
m
x>
↵x� ·

⌧
at,�

0(Wx↵)� �(Wx�)� �0(Wx�)

�

+
1

m
p
m
x>
� x� ·

⌧
at,�(Wx↵)� �0(Wx�)� �0(Wx�)

�
, (14)

K(4)
t (x↵,x� ,x� ,x⇠)

=
1

m2
x>
↵x� · x>

↵x� · x>
↵x⇠ ·

⌧
a
�4
t ,�000(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
� x↵ · x>

� x� · x>
� x⇠ ·

⌧
a
�4
t ,�0(Wx↵)� �000(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
↵x� · (x>

↵x� · x>
� x⇠ + x>

↵x⇠ · x
>
� x�) ·

⌧
a
�4,�00(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
↵x� · x>

↵x� · x>
� x⇠ ·

⌧
a
�4,�00(Wx↵)� �0(Wx�)� �00(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
� x� · x>

� x↵ · x>
� x⇠ ·

⌧
a
�4,�0(Wx↵)� �00(Wx�)� �00(Wx�)� �0(Wx⇠)

�

+
3

m2
x>
↵x� · x>

↵x� ·

⌧
a
�2,�00(Wx↵)� �0(Wx�)� �0(Wx�)� �(Wx⇠)

�

+
3

m2
x>
� x↵ · x>

� x� ·

⌧
a
�2,�0(Wx↵)� �00(Wx�)� �0(Wx�)� �(Wx⇠)

�

+
2

m2
x>
↵x� · x>

↵x⇠ ·

⌧
a
�2,�00(Wx↵)� �0(Wx�)� �(Wx�)� �0(Wx⇠)

�
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+
2

m2
x>
� x↵ · x>

� x⇠ ·

⌧
a
�2,�0(Wx↵)� �00(Wx�)� �(Wx�)� �0(Wx⇠)

�

+
2

m2
x>
↵x� · x>

� x⇠ ·

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
↵x� · x>

↵x⇠ ·

⌧
a
�2,�00(Wx↵)� �(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
� x↵ · x>

� x⇠ ·

⌧
a
�2,�0(Wx↵)� �(Wx�)� �00(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
� x� · x>

� x⇠ ·

⌧
a
�2,�(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
1

m2
x>
� x� · x>

� x⇠ ·

⌧
a
�2,�(Wx↵)� �0(Wx�)� �00(Wx�)� �0(Wx⇠)

�

+
1

m2
(x>

↵x� · x>
� x⇠ + x>

↵x⇠ · x
>
� x�) ·

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

+
2

m2
x>
↵x� ·

⌧
1m,�0(Wx↵)� �0(Wx�)� �(Wx�)� �(Wx⇠)

�

+
1

m2
x>
↵x� ·

⌧
1m,�0(Wx↵)� �(Wx�)� �0(Wx�)� �(Wx⇠)

�

+
1

m2
x>
� x� ·

⌧
1m,�(Wx↵)� �0(Wx�)� �0(Wx�)� �(Wx⇠)

�
, (15)

where we let a�r to be the vector whose i-th entry is ari .

Proof. Computation of K(2)
t . We first compute K(2)

t (x↵,x�) = (rf↵)`jk(rf�)`jk. We have

@f(x,w)

@a
=

1
p
m
�(Wx)

@f(x,w)

@W
=

1
p
m

diag(�0(Wx)ax> =
1

p
m

✓
�0(Wx� a)

◆
x>.

Then Equation (13) follows by trivial algebra.

Computation of K(3)
t . Now consider K(3)

t . We have

K(3)
t (x↵,x� ,x�) = (r2f↵)

`jk
suv(rf�)`jk(rf�)suv + (rf↵)`jk(r

2f�)
`jk
suv(rf�)suv.

For the ` = s = 2 term, we have (r2f)2jk2uv = 0, since @f/@a is constant in a. For the ` = s = 1
term, we have

(r2f)1jk1uv =
@2f(x,w)

@WuvWjk

=
@

@Wuv

1
p
m
�0(Wxj)ajxk

=
1

p
m
�00(Wxj)�juxvajxk,

where �ju is the Kronecker delta function. Hence we have

(r2f↵)
1jk
1uv(rf�)1jk(rf�)1uv =

1

m
p
m
�00(Wx↵)j�

0(Wx�)j�
0(Wx�)ja

3
jx↵,vx�,vx↵,kx�,k

=
1

m
p
m
x>
↵x� · x>

↵x� ·

⌧
a� a� a,�00(Wx↵)� �0(Wx�)� �0(Wx�)

�
.

A similar computation gives

(rf↵)1jk(r
2f�)

1jk
1uv(rf�)1uv =

1

m
p
m
x>
� x� ·x

>
↵x� ·

⌧
a�a�a,�0(Wx↵)��

00(Wx�)��
0(Wx�)

�
.
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For the ` = 1, s = 2 term, note that a is a vector (also a row matrix), so u = 1. This gives

(r2f↵)
1jk
21v(rf�)1jk(rf�)21v =

@

@av

✓
1

p
m
�0(Wx↵)jajx↵,k

◆
·

1
p
m
�0(Wx�)jajx�,k ·

1
p
m
�(Wx�)v

=
1

m
p
m
�0(Wx↵)j�jvx↵,k · �0(Wx�)jajx�,k · �(Wx�)v

=
1

m
p
m
�0(Wx↵)j�

0(Wx�)j�(Wx�)jajx↵,kx�,k

=
1

m
p
m
x>
↵x� ·

⌧
a,�0(Wx↵)� �0(Wx�)� �(Wx�)

�
.

By symmetry, the term (rf↵)1jk(r2f�)
1jk
21v(rf�)21v is also equal to the above quantity. Finally, we

calculate the ` = 2, s = 1 term. Note that in this case, j = 1. Hence, we have

(r2f↵)
21k
1uv(rf�)21k(rf�)1uv =

@

@Wuv

✓
1

p
m
�(Wx↵)k

◆
·

1
p
m
�(Wx�)k ·

1
p
m
�0(Wx�)uaux�,v

=
1

m
p
m
�0(Wx↵)k�ukx↵,v · �(Wx�)k · �0(Wx�)uaux�,v

=
1

m
p
m
�0(Wx↵)k�(Wx�)k�

0(Wx�)kakx↵,vx�,v

=
1

m
p
m
x>
↵x� ·

⌧
a,�0(Wx↵)� �(Wx�)� �0(Wx�)

�
.

A similar computation gives

(rf↵)21k(r
2f�)

21k
1uv(rf�)1uv =

1

m
p
m
x>
� x� ·

⌧
a,�(Wx↵)� �0(Wx�)� �0(Wx�)

�
.

Combining above terms proves Equation (14).

Computation of K(4)
4 . Recall that

K(4)
t =(r3f↵)

`jk
suv,abc(rf�)`jk(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(r

2f�)
`jk
abc(rf�)suv(rf⇠)abc

+ (r2f↵)
`jk
suv(rf�)`jk(r

2f�)
suv
abc (rf⇠)abc

+ (r2f↵)
`jk
abc(r

2f�)
`jk
suv(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
3f�)

`jk
suv,abc(rf�)suv(rf⇠)abc

+ (rf↵)`jk(r
2f�)

`jk
suv(r

2f�)
suv
abc (rf⇠)abc.

We denote the six terms above as I, II, III, IV,V,VI. We first calculate some useful quantities. Recall
that

(rf)21k =
1

p
m
�(Wxk), (rf)1jk =

1
p
m
�0(Wxj)ajxk.

In the calculation for K(3)
t , we have shown that

(r2f)21k21v = 0

(r2f)21k1uv = (r2f)1uv21k =
1

p
m
�0(Wxk)�ukxv

(r2f)1jk1uv = (r2f)1uv1jk =
1

p
m
�00(Wxj)aj�juxkxv.
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For the third derivative, we note that the expression (r3f)`jksuv,abc is invariant to permutations of the
three triplets (`jk), (suv), (abc). Some algebra gives the following identities:

(r3f)21k21v,21c = (r3f)21k21v,1bc = 0

(r3f)1jk1uv,21c =
1

p
m
�00(Wxj)�ju�jcxkxv

(r3f)1jk1uv,1bc =
1

p
m
�000(Wxj)aj�bj�juxkxvxc.

We now calculate expression for K(4)
t based on different configurations of layer indices (`, s, a) 2

{1, 2}3.

1. If ` = s = a = 2, or if ` = s = 2, a = 1, then all six terms are zero.

2. If ` = a = 2, s = 1, then I = II = IV = V = 0. The third term is
III = (r2f↵)

21k
1uv(rf�)21k(r

2f�)
1uv
21c (rf⇠)21c

=
1

m2
�0(Wx↵)k�ukx↵,v · �(Wx�)k · �0(Wx�)c�ucx�,v · �(Wx⇠)c

=
1

m2
x>
↵x�

⌧
1m,�0(Wx↵)� �(Wx�)� �0(Wx�)� �(Wx⇠)

�
.

A similar calculation gives

VI =
1

m2
x>
� x�

⌧
1m,�(Wx↵)� �0(Wx�)� �0(Wx�)� �(Wx⇠)

�
.

3. If s = a = 2, ` = 1, then I = III = V = VI = 0. And we have

II = (r2f↵)
1jk
21v(r

2f�)
1jk
21c(rf�)21v(rf⇠)21c

=
1

m2
x>
↵x�

⌧
1m,�0(Wx↵)� �0(Wx�)� �(Wx�)� �(Wx⇠)

�
.

A similar calculation shows that IV = II.

4. If ` = s = 1, a = 2, then we have

I = (r3f↵)
1jk
1uv,21c(rf�)1jk(rf�)1uv(rf⇠)21c

=
1

m2
x>
↵x� · x>

↵x�

⌧
a
�2,�00(Wx↵)� �0(Wx�)� �0(Wx�)� �(Wx⇠)

�
.

Meanwhile, we have
II = (r2f↵)

1jk
1uv(r

2f�)
1jk
21c(rf�)1uv(rf⇠)21c

=
1

m2
x>
↵x� · x>

↵x�

⌧
a
�2,�00(Wx↵)� �0(Wx�)� �0(Wx�)� �(Wx⇠)

�

= I.
A similar calculation shows that III = II = I. On the other hand, it’s easy to check that

IV = V = VI =
1

m2
x>
� x↵·x

>
� x�

⌧
a
�2,�0(Wx↵)��

00(Wx�)��
0(Wx�)��(Wx⇠)

�
.

5. If ` = a = 1, s = 2, then one can check that

I = IV =
1

m2
x>
↵x� · x>

↵x⇠

⌧
a
�2,�00(Wx↵)� �0(Wx�)� �(Wx�)� �0(Wx⇠)

�
,

and that

II = V =
1

m2
x>
� x↵ · x>

� x⇠

⌧
a
�2,�0(Wx↵)� �00(Wx�)� �(Wx�)� �0(Wx⇠)

�
,

On the other hand, we have

III = VI
1

m2
x>
↵x� · x>

� x⇠

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�
.
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6. If s = a = 1, ` = 2, then we have

I =
1

m2
x>
↵x� · x>

↵x⇠

⌧
a
�2,�00(Wx↵)� �(Wx�)� �0(Wx�)� �0(Wx⇠)

�

II =
1

m2
x>
↵x� · x>

� x⇠

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

III =
1

m2
x>
� x↵ · x>

� x⇠

⌧
a
�2,�0(Wx↵)� �(Wx�)� �00(Wx�)� �0(Wx⇠)

�

IV =
1

m2
x>
↵x⇠ · x

>
� x�

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

V =
1

m2
x>
� x� · x>

� x⇠

⌧
a
�2,�(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

VI =
1

m2
x>
� x� · x>

� x⇠

⌧
a
�2,�(Wx↵)� �0(Wx�)� �00(Wx�)� �0(Wx⇠)

�
.

7. If ` = a = s = 1, then we have

I = (r3f↵)
1jk
1uv,1bc(rf�)1jk(rf�)1uv(rf⇠)1bc

=
1

m2
�000(Wx↵)jaj�bj�jux↵,cx↵,vx↵,k · �0(Wx�)jajx�,k · �0(Wx�)uaux�,v · �

0(Wx⇠)babx⇠,c

=
1

m2
x>
↵x⇠ · x

>
↵x� · x>

↵x�

⌧
a
�4,�000(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�
.

Meanwhile, we have

II = (r2f↵)
1jk
1uv(r

2f�)
1jk
1bc (rf�)1uv(rf⇠)1bc

=
1

m2
�00(Wx↵)jaj�jux↵,kx↵,v · �

00(Wx�)jaj�jbx�,kx�,c · �
0(Wx�)uaux�,v · �

0(Wx⇠)babx⇠,c

=
1

m2
x>
↵x� · x>

↵x� · x>
� x⇠

⌧
a
�4,�00(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�
.

The other terms are calculated similarly:

III =
1

m2
x>
↵x� · x>

↵x� · x>
� x⇠

⌧
a
�4,�00(Wx↵)� �0(Wx�)� �00(Wx�)� �0(Wx⇠)

�

IV =
1

m2
x>
↵x� · x>

↵x⇠ · x
>
� x�

⌧
a
�4,�00(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

V =
1

m2
x>
� x↵ · x>

� x� · x>
� x⇠

⌧
a
�4,�0(Wx↵)� �000(Wx�)� �0(Wx�)� �0(Wx⇠)

�

VI =
1

m2
x>
� x� · x>

� x↵ · x>
� x⇠

⌧
a
�4,�0(Wx↵)� �00(Wx�)� �00(Wx�)� �0(Wx⇠)

�
.

Putting the above terms together gives Equation (15).

B.3 Expected Values w.r.t. Gaussian Initialization

We now consider the expected values of K(r)
t at initialization, where both a0 and W0 have i.i.d.

N (0, 1) entries. We will focus the ReLU activation:

�(x) = max(0, x). (16)

Technically, �(·) only has a subdifferential at zero, but since Gaussian initialization puts zero mass at
this point, we can safely write �0(x) = {x � 0}. Moreover, we have �00(x) = �(x), where �(·) is
the Dirac delta function, and �000(x) = �0(x), where �0(·) is the distributional derivative of �(·). In
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this sense, many terms in K(4)
t are not well-defined, if we don’t take expectation. For example, the

following terms are not well-defined functions:
⌧
a
�4
t ,�000(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

⌧
a
�4,�00(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

⌧
a
�4,�00(Wx↵)� �(Wx�)� �0(Wx�)� �0(Wx⇠)

�
.

So it is necessary to integrate over the Gaussian measure to actually make sense of the above
expressions.

On the other hand, the following expressions are well-defined functions:

⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

⌧
1m,�0(Wx↵)� �(Wx�)� �0(Wx�)� �(Wx⇠)

�
,

because there is no expressions like �(·) and �0(·).

We now calculate the expectation of K(2)
0 ,K(3)

0 and K(4)
0 under Gaussian initialization. First, let us

note that EK(3)
0 = 0. In fact, since the r-th moment of N (0, 1) is zero for odd r, we have EK(r) = 0

for any odd r.

B.3.1 Expectation of the second-order kernel

For K(2)
0 , we need to calculate the following two quantities:

E
⌧
�0(Wx↵)� at,�

0(Wx�)� at

�
, E

⌧
�(Wx↵),�(Wx�)

�
.

For the first term, we have

E
⌧
�0(Wx↵)� at,�

0(Wx�)� at

�
= mEZ⇠N (0,Id)


�0(x>

↵Z)�0(x>
� Z)

�
,

whereas for the second term, we have

E
⌧
�(Wx↵),�(Wx�)

�
= mEZ⇠N (0,Id)


�(x>

↵Z)�(x>
� Z)

�
.

The above quantities are calculated in many literature (see, e.g., Cho & Saul 2010; Arora et al. 2019a;
Bietti & Mairal 2019). Let �↵� 2 [0,⇡) be the angle between x↵ and x� . We have

EZ⇠N(0,Id)


�0(x>

↵Z)�0(x>
� Z)

�
=
⇡ ��↵�

2⇡

EZ⇠N (0,Id)


�(x>

↵Z)�(x>
� Z)

�
=

kx↵k2kx�k2

2⇡
·

✓
sin�↵� + (⇡ ��↵�) cos�↵�

◆
.

Hence, we have

EK(2)
0 (x↵,x�) = x>

↵x� ·
⇡ ��↵�

2⇡
+ kx↵k2kx�k2 ·

sin�↵� + (⇡ ��↵�) cos�↵�

2⇡
.
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B.3.2 Expectation of the fourth-order kernel

We now try to compute EK(4)
0 . Inspecting Equation (15), we notice that it suffices to calculate the

expectation of the following quantities:

I =
⌧
a
�2,�0(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�

II =
⌧
1m,�0(Wx↵)� �0(Wx�)� �(Wx�)� �(Wx⇠)

�

III =
⌧
a
�2,�00(Wx↵)� �(Wx�)� �0(Wx�)� �0(Wx⇠)

�

IV =

⌧
a
�4,�00(Wx↵)� �00(Wx�)� �0(Wx�)� �0(Wx⇠)

�

V =

⌧
a
�4,�000(Wx↵)� �0(Wx�)� �0(Wx�)� �0(Wx⇠)

�
.

The rest of the terms can be calculated similarly.

The first term. For the first term, we have

E
⌧
a
�2,�0(Wx↵)��

0(Wx�)��
0(Wx�)��

0(Wx⇠)

�
= mP

✓
x>
↵Z � 0,x>

� Z � 0,x>
� Z � 0,x>

⇠ Z � 0

◆
,

Note that this term only depends on the angles, so we can WLOG assume that all four vectors lies
on the sphere. We reduce this d-dimensional integral to a four-dimensional one. For any orthogonal
matrix Q, we have

P
✓
x>
↵Z � 0,x>

� Z � 0,x>
� Z � 0,x>

⇠ Z � 0

◆
= P

✓
(Qx↵)

>Z � 0, (Qx�)
>Z � 0, (Qx�)

>Z � 0, (Qx⇠)
>Z � 0

◆
.

We choose a Q s.t (Qx↵)i = 0 for i � 2, (Qx�)i = 0 for i � 3, (Qx�)i = 0 for i � 4, and
(Qx⇠)i = 0 for i � 5. Moreover, we require (Qx↵)1 = 1. Those requirements specify a unique (up
to flips in one direction) rotation matrix Q. In order the preserve the angles, we necessarily have

Qx↵ = (1 0 0 0 0 · · · 0)
>

(Qx�)
>(Qx↵) = cos�↵� , kQx�k2 = 1

(Qx�)
>(Qx↵) = cos�↵� , (Qx�)

>(Qx�) = cos��� , kQx�k2 = 1

(Qx⇠)
>(Qx↵) = cos�↵⇠, (Qx⇠)

>(Qx�) = cos��⇠, (Qx⇠)
>(Qx�) = cos��⇠, kQx⇠k2 = 1.

Solving the above system of equations gives
(Qx�) = [cos�↵� , sin�↵� , 0, · · · , 0]

>

(Qx�) =


cos�↵� , (sin

�1 �↵�) · (cos��� � cos�↵� cos�↵�),
q
sin2 �↵� � (Qx�)22, 0, · · · , 0)

>

(Qx⇠) =


cos�↵⇠, (sin

�1 �↵�) · (cos��⇠ � cos�↵� cos�↵⇠),
cos��⇠ � (Qx�)2(Qx⇠)2

(Qx�)3
,

q
sin2 �↵⇠ � (Qx⇠)22 � (Qx⇠)23, 0, · · · , 0

�>
.

Let v↵, v� , v� , v⇠ be the vectors composed of the first four coordinates of Qx↵, Qx� , Qx� , Qx⇠,
respectively. Then we have

P
✓
x>
↵Z � 0,x>

� Z � 0,x>
� Z � 0,x>

⇠ Z � 0

◆
= P

✓
v>↵Z � 0, v>� Z � 0, v>� Z � 0, v>⇠ Z � 0

◆
,

where with a slight abuse of notation, the vector Z ⇠ N (0, I4) is now a four-dimensional standard
Gaussian. Let

V = V↵,�,�,⇠ =

0

BB@

v>↵
v>�
v>�
v⇠

1

CCA 2 R4⇥4. (17)
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Then the quantity of interest becomes P(V Z 2 H), where H is the positive orthant of R4. It’s clear
from the construction that V is invertible, so we are interested in P(Z 2 V �1

H). The set V �1
H is

the positive hull made by the four columns of V �1. Since the law of Z is spherically symmetric,
the measure of V �1H under the law of Z is the fraction of the unit sphere S3 in this hull, which is
equal to ⌦/(2⇡2), where 2⇡2 is the surface area of S3, and ⌦ is the solid angle for the four column
vectors of V �1. The solid angle for r vectors has analytical formulas if r  3. For r = 4 and
higher dimensional, there is a formula in terms of multivariate Taylor series (see, e.g., Aomoto 1977;
Ribando 2006), but no closed-form formulas are known to the best of our knowledge. However, the
probability we are interested in can be efficiently simulated by law of large numbers, because we
have reduce the d-dimensional Gaussian integral to a four-dimensional one.

In summary, we have the following expression:

EI = mP(V Z ⌫ 0), Z ⇠ N (0, I4).

The second term. For the second term, we have

E
⌧
1m,�0(Wx↵)��

0(Wx�)��(Wx�)��(Wx⇠)

�
= mE


x>
� Z·x>

⇠ Z·

⇢
x>
↵Z � 0,x>

� Z � 0,x>
� Z � 0,x>

⇠ Z � 0

��
.

Similarly, we have

EZ⇠N (0,Id)


x>
� Z · x>

⇠ Z ·

⇢
x>
↵Z � 0,x>

� Z � 0,x>
� Z � 0,x>

⇠ Z � 0

��

= kx�k2kx⇠k2 · EZ⇠N (0,I4)


v>� Z · v>⇠ Z · {V↵,�,�,⇠Z 2 H}

�
,

which gives the following expression:

EII = mkx�k2kx⇠k2 · E

v>� Z · v>⇠ Z · {V↵,�,�,⇠Z ⌫ 0}

�
Z ⇠ N (0, I4).

The third term. For this term, we have

EIII = 3mE

�(x>

↵Z) · x>
� Z ·

⇢
x>
� Z � 0,x>

� Z � 0,x>
⇠ Z � 0

��
.

Using the same rotation trick, we have

III = 3mE

�(kx↵k2v

>
↵Z) · kx�k2v

>
� Z ·

⇢
v>� Z � 0, v>� Z � 0, v>⇠ Z � 0

��
, Z ⇠ N (0, I4).

Since v↵ = (1, 0, 0, 0)>, we have

E

�(kx↵k2Z1) · v

>
� Z ·

⇢
v>� Z � 0, v>� Z � 0, v>⇠ Z � 0

��

= EZ2,Z3,Z4

 Z 1

�1
dz1

1
p
2⇡

e�z2
1/2�(kx↵k2z1)h(z1, Z2, Z3, Z4)

�

= EZ2,Z3,Z4


1

kx↵k2

p
2⇡

h(0, Z2, Z3, Z4)

�

=
1

kx↵k2

p
2⇡

E

v>�,�1Z�1 ·

⇢
v>�,�1Z�1 � 0, v>�,�1Z�1 � 0, v>⇠,�1Z�1 � 0

��
,

where we let h(Z1, Z2, Z3, Z4) = v>� Z ·

⇢
v>� Z � 0, v>� Z � 0, v>⇠ Z � 0

�
, and in the second

equality, we used the fact that, for c 6= 0,
Z 1

�1
f(x)�(cx)dx =

Z 1

�1

1

c
f(

cx

c
)�(cx)dcx =

1

c

Z sign(u)·(+1)

sign(u)·(�1)
f(

u

c
)�(u)du =

1

|c|

Z 1

�1
f(

u

c
)�(u)du =

f(0)

|c|
.
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Note that the above computation isn’t too messy, because we rotate Z to align with x↵, and the delta
function appears only at the ↵ location. Other terms in K(4)

t with similar structures as III should be
handled similarly (i.e., rotate Z to align with the axis where the delta function appears).

In summary, we have

EIII =
3m
p
2⇡

·
kx�k2

kx↵k2
· E

v>�,�1Z�1 ·

⇢
v>�,�1Z�1 � 0, v>�,�1Z�1 � 0, v>⇠,�1Z�1 � 0

��
.

The fourth term. We have

EIV = 3mE

�(x>

↵Z)�(x>
� Z)

⇢
x>
� Z � 0,x>

⇠ Z � 0

��

= 3mE

�(kx↵k2 · Z1) · �

�
kx�k2 · (v�,1Z1 + v�,2Z2)

�
·

⇢
x>
� Z � 0,x>

⇠ Z � 0

��

= 3mEZ3,Z4

 Z 1

�1
dz2

1
p
2⇡

e�z2
2/2
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dz1

1
p
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e�z2
1/2 · �(kx↵k2z1) · �

�
kx�k2 · (v�,1z1 + v�,2z2)

�

·

⇢
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=
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dz2e
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2/2 · �(kx�k2v�,2z2)

·
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=
3m

2⇡kx↵k2kx�k2|v�,2|
P(v�,3Z3 + v�,4Z4 � 0, v⇠,3Z3 + v⇠,4Z4 � 0).

The probability in the RHS can be calculated explicitly. By spherical symmetry of Gaussian, we have

P(v�,3Z3 + v�,4Z4 � 0, v⇠,3Z3 + v⇠,4Z4 � 0) =
⇡ � \(v�,3:4, v⇠,3:4)

2⇡
,

where \(v�,3:4, v⇠,3:4) = arccos(
v>
�,3:4v⇠,3:4

kv�,3:4k2kv⇠,3:4k2
) 2 [0,⇡) is the angle between the two vectors

(v�,3, v�,4), (v⇠,3, v⇠,4). Hence, we arrive at

EIV =
3m[⇡ � \(v�,3:4, v⇠,3:4)]
4⇡2kx↵k2kx�k2|v�,2|

.

The fifth term. We have

EV = 3mE

�0(x>
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� Z � 0,x>
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��
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= �
3m

kx↵k2

p
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EZ2,Z3,Z4

⇢
d

du
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u=0

�
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where the last equality is by integration by part (which essentially defines �(·)). With some algebra,
one can see that the derivative term in the RHS is equal to (with u = 0)

v�,1
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· �(v>�,�1Z�1)�
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For the first term in the above display, we have
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Meanwhile, we have
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Using the following change of variables:

u = v�,2z2 + v�,3z3, w = z2,

so that
z2 = w, z3 =

u� v�,2w

v�,3
,

we have
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where W ⇠ N (0, 1
1+v2

�,2/v
2
�,3

). By rescaling, for (X,Y ) ⇠ N (0, I2), we have
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Now let us consider
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
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We use the following change of variables:
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Then we have
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where 1/|v⇠,2| is the Jacobian term when we do change of variables. Let us define ⌃⇠ via
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Integrating x out, we get
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where (Y, Z) ⇠ N (0,⌃⇠). Note that for another independent vector (Ỹ , Z̃) ⇠ N (0, I2), we have

(Y, Z) =d ⌃1/2
⇠ (Ỹ , Z̃).

Hence, we have
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In summary, we get
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where
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where
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.

C Connections and Differences to Previous Works on Label-Aware Kernels

We discuss the relation between our proposed kernels and two lines of research on label-aware kernels,
namely the Kernel Target Alignment (KTA) and the Information Bottleneck (IB) principle.

Connections to KTA. Recall that our higher-order regression based kernel is

K(HR)(x,x0) := EinitK
(2)
0 (x,x0) + �Z(x,x0, S),

where Z(x,x0, S) is an estimator of (label of x) ⇥ (label of x0). From a high-level, this can be
regarded as a specific way to to align with the “optimal” kernel yy>, because

hK
(HR), yy>i = hEinit[K

(2)
0 ], yy>i+ �hZ, yy>i,

and the term hZ, yy>i is close to one as Z estimates yy> by construction.

Relations to IB. Consider the following the model fitting process: Y ! X ! T ! Ŷ . That is: 1)
The nature generates a label Y 2 {±1}, e.g., a cat; 2) Given the label Y , the nature further generates
a “raw” feature X , e.g., an image of a cat; 3) We try to find a feature map which maps X to T ; 4) We
use T to generate a prediction Ŷ .

The IB principle gives a way to justify “what kind of T is optimal”. More explicitly, it poses the
following optimization problem:

min
pT |X
pY |T
pT

I(pX ; pT )� �I(pT ; pY ),

where we let pA|B to be the conditional density of A conditional on B. Then the “optimal” feature T
is a randomized map which sends a specific realization X = x to a random feature T ⇠ pT |X=x.

Note that in the IB formulation, the optimal feature T has no explicit dependence on Y — it only
depends on Y through X . This is in sharp contrast to our formulation, where we allow the feature to
have explicit dependence on Y .

To further illustrate this point, it has been shown that any optimal solution to the IB optimization
problem must satisfy the following set of self-consistent equations (Tishby et al., 2000):

pT |X(t|x) =
pT (t)

Z(x;�)
exp

⇢
� �DKL(pY |XkpY |T )

�

p(t) =

Z
pT |X(t|x)pX(x)dx

pY |T (y|t) =

Z
pY |X(y|x)pX|T (x|t)dx.

Note that the distribution of the optimal feature T only has dependence on x, and has no explicit
dependence on Y , because Y is marginalized in the KL divergence term.
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D Experimental Details and Additional Results

D.1 Details on Figure 1(b) and 1(c)

To experiment with different label systems, we use the MS COCO object detection dataset (Lin et al.,
2014) because there can be various objects in the same image. In this experiment, we consider 50
images with both cats and chairs, 50 images with both cats and benches, 50 images with both dogs
and chairs, and 50 images with both dogs and benches. An image with cats and chairs will include
neither dogs nor benches, and similar for other cases. Therefore, in total, there are 100 images with
cats, 100 images with dogs, 100 images with chairs and 100 images with benches.

We then consider the same two-layer neural network as in Sec. 3.2 and plot the relative ratio (Eq. (9))
for K(2)

t as t increases, which gives Fig. 1(b) and Fig. 1(c).

D.2 The Architecture of CNN

The architecture of the CNN used in Sec. 3.1 is as follows: there are seven convolutional layers with
kernel size 3 and padding number 1, followed by a fully-connected layer. The output channels of
each convolutional layer are: 16k, 16k, 16k, 32k, 32k, 64k, and 64k, where by default k = 1. But
we increase k to 16, 8, 4 to get better CNN performance for multi-class classification with 2000,
5000, and 10000 training examples in Table 2. The strides for each convolutional layer is 1 except
the fourth and the last, which are 2.

D.3 Details on LANTK-HR

The hyper-parameter �. Based on our experiments, the test accuracy is usually a concave function
of �. So we simply choose the best value among {0.001, 0.01, 0.1, 1.0}.

Choice of Z(x,x0, S). Our first choice of Z is based on a kernel regression. Specifically, for
LANTK-KR-V1, we consider

Z(x,x0, S) =
X

i,j

yiyj (EinitK
(2)
0 (x,x0),EinitK

(2)
0 (xi,xj)),

and for LANTK-KR-V2, we consider

Z(x,x0, S) =
X

i,j

((EinitK
(2)
0 )�1y)i((EinitK

(2)
0 )�1y)j (EinitK

(2)
0 (x,x0),EinitK

(2)
0 (xi,xj)),

where

 (�ab,�ij) =
B � (�ab � �ij)2

n2B �
P

s,t(�ab � �st)2

is a normalized similarity measure (smaller (�ab � �ij)2 indicates larger similarity) and B is a
constant which is set to be the largest (�max � �min)2 in the training data. Note that the change
from y to (EinitK

(2)
0 )�1y in CNTK-V2 is inspired from the second term in K(NTH)(x,x0).

Our second choice of Z is based on a linear regression with Fast-Johnson-Lindenstrauss-Transform
(FJLT) (Ailon & Chazelle, 2009) and some hand-engineered features. FJLT is used to reduce the
computational cost because there are O(108) examples in the pairwise dataset10. And the hand-
engineered features are as follows:

1. For LANTK-FJLT-V1, we use the following features: EinitK
(2)
0 (x,x0) (the label-agnostic

kernel), cos hx,x0
i (cos of the angle), xTx0 (the inner product), ||x||2||x0

||2(the product
of L2 norms), ||x� x0

||
2
2 (Euclidean distance), |x� x0

|
1
1(L1 distance), hx,x0

i (the angle
between two vectors), sin hx,x0

i (sin of the angle), RBF (x,x0) (RBF distance between
two vectors), ⇢(x,x0) (the Pearson correlation coefficient between two vectors).

2. For LANTK-FJLT-V2, in addition to the ten features used in LANTK-FJLT-V2, we also
include the same 10 features based on the top five principle components from principal
component analysis (PCA).

10Our implementation is based on https://github.com/michaelmathen/FJLT and https://github.

com/dingluo/fwht.
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D.4 Details on Training

We use the Adam optimizer (Kingma & Ba, 2015) with learning rates 3e�4 for 300 epochs for the
CNN in Sec. 3.1 and for 500 epochs for the 2-layer neural network in Sec. 3.2. For simplicity, we use
the parameter with best test performance during the whole training trajectory.
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