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Abstract

We present a transductive learning algorithm that takes as input training examples
from a distribution P and arbitrary (unlabeled) test examples, possibly chosen by
an adversary. This is unlike prior work that assumes that test examples are small
perturbations of P . Our algorithm outputs a selective classifier, which abstains from
predicting on some examples. By considering selective transductive learning, we
give the first nontrivial guarantees for learning classes of bounded VC dimension
with arbitrary train and test distributions—no prior guarantees were known even
for simple classes of functions such as intervals on the line. In particular, for any
function in a class C of bounded VC dimension, we guarantee a low test error
rate and a low rejection rate with respect to P . Our algorithm is efficient given
an Empirical Risk Minimizer (ERM) for C . Our guarantees hold even for test
examples chosen by an unbounded white-box adversary. We also give guarantees
for generalization, agnostic, and unsupervised settings.

1 Introduction

Consider binary classification where test examples are not from the training distribution. Specifically,
consider learning a binary function f ∶ X → {0, 1} where training examples are assumed to be iid
from a distribution P over X, while the test examples are arbitrary. This includes both the possibility
that test examples are chosen by an adversary or that they are drawn from a distribution Q ≠ P
(sometimes called “covariate shift”). For a disturbing example of covariate shift, consider learning to
classify abnormal lung scans. A system trained on scans prior to 2019 may miss abnormalities due to
COVID-19 since there were none in the training data. As a troubling adversarial example, consider
explicit content detectors which are trained to classify normal vs. explicit images. Adversarial
spammers synthesize endless variations of explicit images that evade these detectors for purposes
such as advertising and phishing [Yuan et al., 2019].

A recent line of work on adversarial learning has designed algorithms that are robust to imperceptible
perturbations. However, perturbations do not cover all types of test examples. In the explicit image
detection example, Yuan et al. [2019] find adversaries using conspicuous image distortion techniques
(e.g., overlaying a large colored rectangle on an image) rather than imperceptible perturbations. In
the lung scan example, Fang et al. [2020] find noticeable signs of COVID in many scans.

In general, there are several reasons why learning with arbitrary test examples is actually impossible.
First of all, one may not be able to predict the labels of test examples that are far from training
examples, as illustrated by the examples in group (1) of Figure 1. Secondly, as illustrated by group (2),
given any classifier ℎ, an adversary or test distribution Q may concentrate on or near an error. High
error rates are thus unavoidable since an adversary can simply repeat any single erroneous example
they can find. This could also arise naturally, as in the COVID example, if Q contains a concentration
of new examples near one another–individually they appear “normal” (but are suspicious as a group).
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This is true even under the standard realizable assumption that the target function f ∈ C is in a
known class C of bounded VC dimension d = VC(C).

As we now argue, learning with arbitrary test examples requires selective classifiers and transductive
learning, which have each been independently studied extensively. We refer to the combination as
classification with redaction, a term which refers to the removal/obscuring of certain information
when documents are released. A selective classifier (SC) is one which is allowed to abstain from
predicting on some examples. In particular, it specifies both a classifier ℎ and a subset S ⊆ X of
examples to classify, and rejects the rest. Equivalently, one can think of a SC as ℎ|S ∶ X → {0, 1,▮}
where ▮ indicates x ∉ S, abstinence.

ℎ|S (x) ∶=
{

ℎ(x) if x ∈ S
▮ if x ∉ S.

We say the learner classifies x if x ∈ S and otherwise it rejects x. Following standard terminology, if
x ∉ S (i.e., ℎ|S (x) = ▮) we say the classifier rejects x (the term is not meant to indicate anything
negative about the example x but merely that its classification may be unreliable). We sat that ℎ|S
misclassifies or errs on x if ℎ|S (x) = 1 − f (x). There is a long literature on SCs, starting with the
work of Chow [1957] on character recognition. In standard classification, transductive learning refers
to the simple learning setting where the goal is to classify a given unlabeled test set that is presented
together with the training examples [see e.g., Vapnik, 1998]. We will also consider the generalization
error of the learned classifier.

This raises the question: When are unlabeled test examples available in advance? In some appli-
cations, test examples are classified all at once (or in batches). Otherwise, redaction can also be
beneficial in retrospect. For instance, even if image classifications are necessary immediately, an
offensive image detector may be run daily with rejections flagged for inspection; and images may later
be blocked if they are deemed offensive. Similarly, if a group of unusual lung scans showing COVID
were detected after a period of time, the recognition of the new disease could be valuable even in
hindsight. Furthermore, in some applications, one cannot simply label a sample of test examples. For
instance, in learning to classify messages on an online platform, test data may contain both public
and private data while training data may consist only of public messages. Due to privacy concerns,
labeling data from the actual test distribution may be prohibited.

It is clear that a SC is necessary to guarantee few test misclassifications, e.g., if P is concentrated on
a single point x, rejection is necessary to guarantee few errors on arbitrary test points. However, no
prior guarantees (even statistical guarantees) were known even for learning elementary classes such
as intervals or halfspaces with arbitrary P ≠ Q. This is because learning such classes is impossible
without unlabeled examples.

To illustrate how redaction (transductive SC) is useful, consider learning an interval [a, b] on X = ℝ
with arbitrary P ≠ Q. This is illustrated below with (blue) dots indicating test examples:

With positive training examples as in (a), one can guarantee 0 test errors by rejecting the two (grey)
regions adjacent to the positive examples. When there are no positive training examples,2 as in (b),
one can guarantee ≤ k test errors by rejecting any region with > k test examples and no training
examples; and predicting negative elsewhere. Of course, one can guarantee 0 errors by rejecting
everywhere, but that would mean rejecting even future examples distributed like P . While our error
objective will be an � test error rate, our rejection objective will be more subtle since we cannot
absolutely bound the test rejection rate. Indeed, as illustrated above, in some cases one should reject
many test examples.

Note that our redaction model assumes that the target function f remains the same at train and test
times. This assumption holds in several (but not all) applications of interest. For instance, in explicit

2Learning with an all-negative training set (trivial in standard learning) is a useful “anomaly detection” setting
in adversarial learning, e.g., when one aims to classify illegal images without any illegal examples at train time
or abnormal scans not present at train time.
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image detection, U.S. laws regarding what constitutes an illegal image are based solely on the image
x itself [U.S.C., 1996]. Of course, if laws change between train and test time, then f itself may
change. Label shift problems where f changes from train to test is also important but not addressed
here. Our focus is primarily the well-studied realizable setting, where f ∈ C , though we analyze an
agnostic setting as well.

1.1 Redaction model and guarantees

Our goal is to learn a target function f ∈ C of VC dimension d with training distribution P over
X. In the redaction model, the learner first chooses ℎ ∈ C based on n iid training examples x ∼ Xn

and their labels f (x) =
(

f (x1), f (x2),… , f (xn)
)

∈ {0, 1}n. (In other words, it trains a standard
binary classifier.) Next, a “white box” adversary selects n arbitrary test examples x̃ ∈ Xn based on
all information including x, f , ℎ, P and the learning algorithm. Using the unlabeled test examples
(and the labeled training examples), the learner finally outputs S ⊆ X. Errors are those test examples
in S that were misclassified, i.e., ℎ|S (x) = 1 − f (x).

Rather than jumping straight into the transductive setting, we first describe the simpler generalization
setting. We define the PQmodel in which x̃ ∼ Qn are drawn iid by nature, for an arbitrary distribution
Q. While it will be easier to quantify generalization error and rejections in this simpler model, the
PQ model does not permit a white-box adversary to choose test examples based on ℎ. To measure
performance here, define rejection and error rates for distribution D, respectively:

▮D(S) ∶= Pr
x∼D

[x ∉ S] (1)

errD(ℎ|S ) ∶= Pr
x∼D

[ℎ(x) ≠ f (x) ∧ x ∈ S] (2)

We write ▮D and errD when ℎ and S are clear from context. We extend the definition of PAC learning
to P ≠ Q as follows:
Definition 1.1 (PQ learning). Learner L (�, �, n)-PQ-learns C if for any distributions P ,Q over X
and any f ∈ C , its output ℎ|S = L(x, f (x), x̃) satisfies

Pr
x∼P n,x̃∼Qn

[

▮P +errQ ≤ �
]

≥ 1 − �.

L PQ-learns C if L runs in polynomial time and if there is a polynomial p such that L (�, �, n)-PQ-
learns C for every �, � > 0, n ≥ p(1∕�, 1∕�).

Now, at first it may seem strange that the definition bounds ▮P rather than ▮Q, but as mentioned ▮Q
cannot be bound absolutely. Instead, it can be bound relative to ▮P and the total variation distance
(also called statistical distance) |P −Q|TV ∈ [0, 1], as follows:

▮Q ≤ ▮P +|P −Q|TV.
This new perspective, of bounding the rejection probability of P , as opposed to Q, facilitates the
analysis. Of course when P = Q, |P − Q|TV = 0 and ▮Q = ▮P , and when P and Q have disjoint
supports (no overlap), then |P −Q|TV = 1 and the above bound is vacuous. We also discuss tighter
bounds relating ▮Q to ▮P .

We provide two redactive learning algorithms: a supervised algorithm called Rejectron, and an
unsupervised algorithm URejectron. Rejectron takes as input n labeled training data (x, y) ∈ Xn ×
{0, 1}n and n test data x̃ ∈ Xn (and an error parameter �). It can be implemented efficiently using any
ERMC oracle that outputs a function c ∈ C of minimal error on any given set of labeled examples.
It is formally presented in Figure 2. At a high level, it chooses ℎ = ERM(x, y) and chooses S in an
iterative manner. It starts with S = X and then iteratively chooses c ∈ C that disagrees significantly
with ℎ|S on x̃ but agrees with ℎ|S on x; it then rejects all x’s such that c(x) ≠ ℎ(x). As we show in
Lemma 4.1, choosing c can be done efficiently given oracle access to ERMC .

Theorem 4.2 shows that Rejectron PQ-learns any class C of bounded VC dimension d, specifically
with � = Õ(

√

d∕n). (The Õ notation hides logarithmic factors including the dependence on the
failure probability �.) This is worse than the standard � = Õ(d∕n) bound of supervised learning when
P = Q, though Theorem 4.4 shows this is necessary with an Ω(

√

d∕n) lower-bound for P ≠ Q.

Our unsupervised learning algorithm URejectron, formally presented in Figure 3, computes S only
from unlabeled training and test examples, and has similar guarantees (Theorem 4.5). The algorithm
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tries to distinguish training and test examples and then rejects whatever is almost surely a test
example. More specifically, as above, it chooses S in an iterative manner, starting with S = X. It
(iteratively) chooses two functions c, c′ ∈ C such that c|S and c′|S have high disagreement on x̃ and
low disagreement on x, and rejects all x’s on which c|S , c′|S disagree. As we show in Lemma B.1,
choosing c and c′ can be done efficiently given a (stronger) ERMDIS oracle for the class DIS of
disagreements between c, c′ ∈ C . We emphasize that URejectron can also be used for multi-class
learning as it does not use training labels, and can be paired with any classifier trained separately.
This advantage of URejectron over Rejectron comes at the cost of requiring a stronger base classifier
to be used for ERM, and may lead to examples being unnecessarily rejected.

In Figure 1 we illustrate our algorithms for the class C of halfspaces. A natural idea would
be to train a halfspace to distinguish unlabeled training and test examples—intuitively, one can
safely reject anything that is clearly distinguishable as test without increasing ▮P . However, this
on its own is insufficient. See for example group (2) of examples in Figure 1, which cannot
be distinguished from training data by a halfspace. This is precisely why having test examples
is absolutely necessary. Indeed, it allows us to use an ERM oracle toC to PQ-learnC . We also present:

Transductive analysis A similar analysis of Rejectron in a transductive setting gives error and
rejection bounds directly on the test examples. The bounds here are with respect to a stronger
white-box adversary who need not even choose a test set x̃ iid from a distribution. Such an adversary
chooses the test set with knowledge of P , f , ℎ and x. In particular, first ℎ is chosen based on x and y;
then the adversary chooses the test set x̃ based on all available information; and finally, S is chosen.
We introduce a novel notion of false rejection, where we reject a test example that was in fact chosen
from P and not modified by an adversary. Theorem 4.3 gives bounds that are similar in spirit to
Theorem 4.2 but for the harsher transductive setting.

Agnostic bounds Thus far, we have considered the realizable setting where the target f ∈ C . In
agnostic learning (Kearns et al. [1992]), there is an arbitrary distribution � over X × {0, 1} and the
goal is to learn a classifier that is nearly as accurate as the best classifier in C . In our setting, we
assume that there is a known � ≥ 0 such that the train and test distributions � and �̃ over X × {0, 1}
satisfy that there is some function f ∈ C that has error at most � with respect to both � and �̃.
Unfortunately, we show that in such a setting one cannot guarantee less than Ω(

√

�) errors and
rejections, but we show that Rejectron nearly achieves such guarantees.

Experiments As a proof of concept, we perform simple controlled experiments on the task of
handwritten letter classification using lower-case English letters from the EMNIST dataset (Cohen
et al. [2017]). In one setup, to mimic a spamming adversary, after a classifier ℎ is trained, test
examples are identified on which ℎ errs and are repeated many times in the test set. Existing SC
algorithms (no matter how robust) will fail on such an example since they all choose S without using
unlabeled test examples—as long as an adversary can find even a single erroneous example, it can
simply repeat it. In the second setup, we consider a natural test distribution which consists of a mix
of lower- and upper-case letters, while the training set was only lower-case letters.

2 Related work

The redaction model combines SC and transductive learning, which have each been extensively
studied, separately. We first discuss prior work on these topics, which (with the notable exception
of online SC) has generally been considered when test examples are from the same distribution as
training examples.

Selective classification Selective classification go by various names including “classification with a
reject option” and “reliable learning.” To the best of our knowledge, prior work has not considered
SC using unlabeled samples from Q ≠ P . Early learning theory work by Rivest and Sloan [1988]
required a guarantee of 0 test errors and few rejections. However, Kivinen [1990] showed that, for
this definition, even learning rectangles under uniform distributions P = Q requires exponential
number of examples (as cited by Hopkins et al. [2019] which like much other work therefore makes
further assumptions on P and Q). Most of this work assumes the same training and test distributions,
without adversarial modification. Kanade et al. [2009] give a SC reduction to an agnostic learner
(similar in spirit to our reduction to ERM) but again for the case of P = Q.
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Figure 1: Our algorithm (and unsupervised variant) for learning C=halfspaces. Rejectron (left) first
trains ℎ on labeled training data, then finds other candidate classifiers c1, c2, such that ℎ and ci have
high disagreement on x̃ and low disagreement on x, and rejects examples where ℎ and ci disagree.
URejectron (right) aims to distinguish unlabeled train and test examples using pairs of classifiers
ci, c′i that agree on training data but disagree on many tests. Both reject: (1) clearly unpredictable
examples which are very far from train and (2) a suspiciously dense cluster of tests which might all
be positive despite being close to negatives. URejectron also rejects (3).

A notable exception is the work in online SC, where an arbitrary sequence of examples is presented
one-by-one with immediate error feedback. This work includes the “knows-what-it-knows” algorithm
[Li et al., 2011], and Sayedi et al. [2010] exhibit an interesting trade-off between the number of
mistakes and the number of rejections in such settings. However, basic classes such as intervals on
the line are impossible to learn in these harsh online formulations. Interestingly, our division into
labeled train and unlabeled test seems to make the problem easier than in the harsh online model.

We now discuss related work which considers Q ≠ P , but where classifiers must predict everywhere
without the possibility of outputting ▮.

Robustness to Adversarial Examples There is ongoing effort to devise methods for learning pre-
dictors that are robust to adversarial examples [Szegedy et al., 2013, Biggio et al., 2013, Goodfellow
et al., 2015] at test time. Such work typically assumes that the adversarial examples are perturbations
of honest examples chosen from P . The main objective is to learn a classifier that has high robust
accuracy, meaning that with high probability, the classifier will answer correctly even if the test
point was an adversarially perturbed example. Empirical work has mainly focused on training deep
learning based classifiers to be more robust [e.g., Madry et al., 2018, Wong and Kolter, 2018, Zhang
et al., 2019]. Kang et al. [2019] consider the fact that perturbations may not be known in advance,
and some work [e.g., Pang et al., 2018] addresses the problem of identifying adversarial examples.
We emphasize that as opposed to this line of work, we consider arbitrary test examples and use SC.

Detecting adversarial examples has been studied in practice, but Carlini and Wagner [2017] study ten
proposed heuristics and are able to bypass all of them. Our algorithms also require a sufficiently large
set of unlabeled test examples. The use of unlabeled data for improving robustness has also been
empirically explored recently [e.g., Carmon et al., 2019, Stanforth et al., 2019, Zhai et al., 2019].

Covariate Shift The literature on learning with covariate shift is too large to survey here, see, e.g.,
the book by Quionero-Candela et al. [2009] and the references therein. To achieve guarantees, it
is often assumed that the support of Q is contained in the support of P . Like our work, many of
these approaches use unlabeled data from Q [e.g., Huang et al., 2007, Ben-David and Urner, 2012].
Ben-David and Urner [2012] show that learning with covariate-shift is intractable, in the worst case,
without such assumptions. In this work we overcome this negative result, and obtain guarantees for
arbitrary Q, using SC. In summary, prior work on covariate shift that guarantees low test/target error
requires strong assumptions regarding the distributions. This motivates our model of covariate shift
with rejections.
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3 Learning with redaction

Henceforth, we assume a fixed class C of c ∶ X → Y from domain X to Y = {0, 1},3 and let d be
the VC dimension of C . We now describe the two settings for SC. We use the same algorithm in both
settings, so it can be viewed as two justifications for the same algorithm. The PQ model provides
guarantees with respect to future examples from the test distribution, while the transductive model
provides guarantees with respect to arbitrary test examples chosen by an all-powerful adversary.
Interestingly, the transductive analysis is somewhat simpler and is used in the PQ analysis.

3.1 PQ learning

In the PQ setting, an SC learner ℎ|S = L(x, f (x), x̃) is given n labeled examples x = (x1,… , xn)
drawn iid x ∼ P n, labels f (x) = (f (x1),… , f (xn)) for some unknown f ∈ C , and n unlabeled
examples x̃ ∼ Qn. L outputs ℎ ∶ X → Y and S ⊆ X. The adversary (or nature) chooses Q based
only on f, P and knowledge of the learning algorithm L. The definition of PQ learning is given
in Definition 1.1. Performance is measured in terms of errQ on future examples from Q and ▮P
(rather than the more obvious ▮Q). Rejection rates on P (and Q) can be estimated from held out
data, if so desired. The quantities ▮P ,▮Q can be related and a small ▮P implies few rejections on
future examples from Q wherever it “overlaps” with P by which we mean Q(x) ≤ Λ ⋅ P (x) for some
constant Λ. In particular, for any Λ ≥ 0, S ⊆ X,

Pr
x∼Q

[

x ∉ S and Q(x) ≤ ΛP (x)
]

≤ Λ▮P (S). (3)

Lemma G.1 proves the above, in addition to ▮Q ≤ ▮P +|P −Q|TV. But this can be quite loose and
a tighter bound is given in Appendix G. If ▮P = 0 then all x ∼ Q that lie in P ’s support would
necessarily be classified (i.e., x ∈ S).

It is also worth mentioning that a PQ-learner can also be used to guarantee errP +▮P ≤ � meaning
that it has accuracy PrP [ℎ|S (x) = f (x)] ≥ 1 − � with respect to P (like a normal PAC learner) but is
also simultaneously robust to Q. Claim H.1 shows this and an additional property that PQ learners
can be made robust with respect to any polynomial number of different Q’s.

3.2 Transductive setting with white-box adversary

In the transductive setting, there is no Q and instead empirical analogs errx and ▮x of error and
rejection rates are defined as follows, for arbitrary x ∈ Xn:

errx(ℎ|S , f ) ∶=
1
n
|{i ∈ [n] ∶ f (xi) ≠ ℎ(xi) and xi ∈ S}| (4)

▮x(S) ∶=
1
n
|

|

|

{i ∈ [n] ∶ xi ∉ S}
|

|

|

(5)

Again, ℎ, f and S may be omitted when clear from context.

In this setting, the learner first chooses ℎ using only x ∼ P n and f (x). Then, a true test set z ∼ P n
is drawn. Based on all available information (x, z, f , ℎ, and the code for learner L) the adversary
modifies any number of examples from z to create arbitrary test set x̃ ∈ Xn. Finally, the learner
chooses S based on x, f (x), and x̃. Performance is measured in terms of err x̃ +▮z rather than
errQ +▮P , because z ∼ P n. One can bound ▮x̃ in terms of ▮z for any z, x̃ ∈ Xn and S ⊆ X, as
follows:

▮x̃ ≤ ▮z +Δ(z, x̃), where Δ(z, x̃) ∶= 1
n
|

|

|

{i ∈ [n] ∶ zi ≠ x̃i}
|

|

|

. (6)

The hamming distance Δ(z, x̃) is the transductive analog of |P −Q|TV. The following bounds the
“false rejections,” those unmodified examples that are rejected:

1
n
|

|

|

{i ∈ [n] ∶ x̃i ∉ S and x̃i = zi}
|

|

|

≤ ▮z(S). (7)

Both eqs. (6) and (7) follow by definition of ▮(⋅).

3For simplicity, the theoretical model is defined for binary classification, though our experiments illustrate a
multi-class application. To avoid measure-theoretic issues, we assume X is countably infinite or finite.
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Rejectron(train x ∈ Xn, labels y ∈ Y n, test x̃ ∈ Xn, error � ∈ [0, 1], weight Λ = n + 1) ∶
• ℎ ∶= ERM(x, y) # assume black box oracle ERM to minimize errors
• For t = 1, 2, 3,… ∶

1. St ∶= {x ∈ X ∶ ℎ(x) = c1(x) = … = ct−1(x)} # So S1 = X
2. Choose ct ∈ C to maximize st(c) ∶= err x̃(ℎ|St , c) − Λ ⋅ errx(ℎ, c) over c ∈ C

# Lemma 4.1 shows how to maximize st using ERM (err is defined in eq. (4))
3. If st(ct) ≤ �, then stop and return ℎ|St

Figure 2: The Rejectron algorithm takes labeled training examples and unlabeled test examples as
input, and it outputs a selective classifier ℎ|S that predicts ℎ(x) for x ∈ S (and rejects all x ∉ S).
Parameter � controls the trade-off between errors and rejections and can be set to � = Θ̃(

√

d∕n) to
balance the two. The weight Λ parameter is set to its default value of n + 1 for realizable (noiseless)
learning but should be lower for agnostic learning.

White-box adversaries The all-powerful transductive adversary is sometimes called “white box” in
the sense that it can choose its examples while looking “inside” ℎ rather than using ℎ as a black box.
While it cannot choose x̃ with knowledge of S, it can know what S will be as a function of x̃ if the
learner is deterministic, as our algorithms are. Also, we note that the generalization analysis may be
extended to a white-box model where the adversary chooses Q knowing ℎ, but it is cumbersome even
to denote probabilities over x̃ ∼ Qn when Q itself can depend on x ∼ P n.

4 Algorithms and guarantees

We assume that we have a deterministic oracle ERM = ERMC which, given a set of labeled examples
from X × Y , outputs a classifier c ∈ C of minimal error. Figure 2 describes our algorithm Rejectron.
It takes as input a set of labeled training examples (x, y), where x ∈ Xn and y ∈ Y n, and a set of test
examples x̃ ∈ Xn along with an error parameter � > 0 that trades off errors and rejections. A value
for � that theoretically balances these is in Theorems 4.2 and 4.3.
Lemma 4.1 (Computational efficiency). For any x, x̃ ∈ Xn, y ∈ Y n, � > 0 and Λ ∈ ℕ,
Rejectron(x, y, x̃, �,Λ) outputs ST+1 for T ≤ ⌊1∕�⌋. Further, each iteration can be implemented
using one call to ERM on at most (Λ + 1)n examples and O(n) evaluations of classifiers in C .

The intuition behind this Lemma is as follows. To implement a single step of the algorithm, one runs
an ERM oracle on an artificial dataset consisting of: Λ copies of each training example (xi, ℎ(xi))
and 1 copy of each test example (x̃i, 1 − ℎ(x̃i)), where the training examples are labeled by ℎ and the
test examples have the opposite labels that would have been assigned by ℎ. It is not hard to see that
the error rate on this dataset is linearly related to st (defined in Step 2 in Rejectron) hence the ERM
oracle indirectly maximizes st. To bound the number of iterations T < 1∕�, note that during every
iteration Rejectron abstains on > � additional fraction of x̃. Proof is provided in Appendix H.

Note that since we assume ERM is deterministic, the Rejectron algorithm is also deterministic. This
efficient reduction to ERM, together with the following imply that Rejectron is a PQ learner:
Theorem 4.2 (PQ guarantees). For any n ∈ ℕ, � > 0, f ∈ C and distributions P ,Q over X:

Pr
x∼P n,x̃∼Qn

[errQ ≤ 2�∗ ∧ ▮P ≤ �∗] ≥ 1 − �,

where �∗ =
√

8d ln 2n
n + 8 ln 16∕�

n and ℎ|S = Rejectron(x, f (x), x̃, �∗).

More generally, Theorem A.5 shows that, by varying parameter �, one can achieve any trade-off
between errQ ≤ O(�) and ▮P ≤ Õ( dn� ). The analogous transductive guarantee is:

Theorem 4.3 (Transductive). For any n ∈ ℕ, � > 0, f ∈ C and dist. P over X:
Pr

x,z∼P n
[

∀x̃ ∈ Xn ∶ err x̃(ℎ|S ) ≤ �∗ ∧ ▮z(S) ≤ �∗
]

≥ 1 − �,

where �∗ =
√

2d
n log 2n +

1
n log

1
� and ℎ|S = Rejectron(x, f (x), x̃, �∗).
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URejectron(train x ∈ Xn, test x̃ ∈ Xn, error � ∈ [0, 1],weight Λ = n + 1) ∶
• For t = 1, 2, 3,… ∶

1. St ∶= {x ∈ X ∶ c1(x) = c′1(x) ∧⋯ ∧ ct−1(x) = c′t−1(x)} # So S1 = X
2. Choose ct, c′t ∈ C to maximize st(c, c′) ∶= err x̃(c′|St , c) − Λ ⋅ errx(c

′, c)
# Lemma B.1 shows how to maximize st using ERMDIS (DIS is defined in eq. (8))

3. If st(ct, c′t ) ≤ �, then stop and return St

Figure 3: The URejectron unsupervised algorithm takes unlabeled training examples and unlabeled
test examples as input, and it outputs a set S ⊆ X where classification should take place.

One thinks of z as the real test examples and x̃ as an arbitrary adversarial modification, not necessarily
iid. Equation (7) means that this implies ≤ �∗ errors on unmodified examples. As discussed earlier,
the guarantee above holds for any x̃ chosen by a white-box adversary, which may depend on x and f ,
and thus on ℎ (since ℎ = ERM(x, f (x)) is determined by x and f ). More generally, Theorem A.2
shows that, by varying parameter �, one can trade-off err x̃ ≤ � and ▮z ≤ Õ( dn� ).

We note that Theorems 4.2 and 4.3 generalize in a rather straightforward manner to the case in which
an adversary can inject additional training examples to form x′ ⊇ x which contains x. We give
the proof sketch of Theorem 4.3, since it is slightly simpler than Theorem 4.2. Full proofs are in
Appendix A.

Proof sketch for Theorem 4.3. To show err x̃ ≤ �∗, fix any f, x, x̃. Since ℎ = ERM(x, f (x)) and
f ∈ C , this implies that ℎ has zero training error, i.e., errx(ℎ, f ) = 0. Hence st(f ) = err x̃(ℎ|St , f )
and the algorithm cannot terminate with err x̃(ℎ|St , f ) > � since it could have selected ct = f .

To prove ▮z ≤ �∗, observe that Rejectron never rejects any training x. This follows from the fact that
Λ > n, together with the fact that ℎ(xi) = f (xi) for every i ∈ [n]which follows, in turn, from the facts
that f ∈ C and ℎ = ERM(x, f (x)). Now x and z are identically distributed. By a generalization-like
bound (Lemma A.1), with probability ≥ 1 − � there is no classifier for which selects all of x and yet
rejects with probability greater than �∗ on z for T ≤ 1∕�∗ (by Lemma 4.1).

Unfortunately, the above bounds are worse than standard Õ(d∕n) VC-bounds for P = Q, but the
following lower-bound shows that Õ(

√

d∕n) is tight for some class C .

Theorem 4.4 (PQ lower bound). There exists a constant K > 0 such that: for any d ≥ 1, there is a
concept class C of VC dimension d, distributions P and Q, such that for any n ≥ 2d and learner
L ∶ Xn × Y n ×Xn → Y X × 2X , there exists f ∈ C with

Ex∼P n
x̃∼Qn

[

▮P +errQ
]

≥ K
√

d
n
, where ℎ|S = L(x, f (x), x̃).

Note that since P and Q are fixed, independent of the learner L, the unlabeled test examples from
Q are not useful for the learner as they could simulate as many samples from Q as they would like
on their own. Thus, the lower bound holds even given n training examples and m unlabeled test
examples, for arbitrarily large m.

Theorem 4.4 implies that the learner needs at least n = Ω(d∕�2) labeled training examples to get
the � error plus rejection guarantee. However, it leaves open the possibility that many fewer than
m = Õ(d∕�2) test examples are needed. Theorem F.1 is a lower bound in the transductive case which
shows that both m, n must be at least Ω(d∕�2). This Ω(

√

d∕min{m, n}) lower bound implies that
one needs both Ω(d∕�2) training and test examples to guarantee � error plus rejections. This is partly
why, for simplicity, aside from the Theorem F.1, our analysis takes m = n. The proofs of these two
lower bounds are in Appendix F.

Unsupervised selection algorithm. Our unsupervised selection algorithm URejectron is described
in Figure 3. It takes as input only train and test examples x, x̃ ∈ Xn along with an error parameter �
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recommended to be Θ̃(
√

d∕n), and it outputs a set S of the selected elements. URejectron requires a
more powerful black-box ERM—we show that URejectron can be implemented efficiently if one can
perform ERM with respect to the family of binary classifiers that are disagreements (xors) between
two classifiers. For classifiers c, c′ ∶ X → Y , define disc,c′ ∶ X → {0, 1} and DIS as follows:

disc,c′ (x) ∶=
{

1 if c(x) ≠ c′(x)
0 otherwise

and DIS ∶= {disc,c′ ∶ c, c′ ∈ C}. (8)

Lemma B.1 shows how URejectron is implemented efficiently with an ERMDIS oracle. Also, we
show nearly identical guarantees to those of Theorem 4.3 for URejectron:
Theorem 4.5 (Unsupervised). For any n ∈ ℕ, any � ≥ 0, and any distribution P over X:

Pr
x,z∼P n

[

∀f ∈ C, x̃ ∈ Xn ∶
(

err x̃(ℎ|S ) ≤ �∗
)

∧
(

▮z(S) ≤ �∗
)]

≥ 1 − �,

where �∗ =
√

2d
n log 2n +

1
n log

1
� , S = URejectron(x, x̃, �∗) and ℎ = ERMC (x, f (x)).

The proof is given in Appendix B and follows from Theorem B.2 which shows that by varying
parameter �, one can achieve any trade-off err x̃ ≤ � and ▮z ≤ Õ( dn� ). Since one runs URejectron
without labels, it has guarantees with respect to any empirical risk minimizer ℎ which may be chosen
separately, and its output is also suitable for a multi-class problem.

Massart noise. We also consider two non-realizable models. First, we consider the Massart noise
model, where there is an arbitrary (possibly adversarial) noise rate �(x) ≤ � chosen for each example.
We show that Rejectron is a PQ learner in the Massart noise model with � < 1∕2, assuming an ERM
oracle and an additional N = Õ

(

dn2

�2(1−2�)2

)

examples from P . See Appendix C for details.

A semi-agnostic setting. We also consider the following semi-agnostic model. For an arbitrary
distribution D over X × Y , again with Y = {0, 1}, the analogous notions of rejection and error are:

▮D(S) ∶= Pr
(x,y)∼D

[x ∉ S] and errD(ℎ|S ) ∶= Pr
(x,y)∼D

[ℎ(x) ≠ y ∧ x ∈ S]

In standard agnostic learning with respect to D, we suppose there is some classifier f ∈ C with error
errD(f ) ≤ � and we aim to find a classifier whose generalization error is not much greater than �. In
that setting, one can of course choose �opt ∶= minf∈C errD(f ). For well-fitting models, where there
is some classifier with very low error, � may be small.

To prove any guarantees in our setting, the test distribution must somehow be related to the training
distribution. To tie together the respective training and test distributions �, �̃ over X × Y , we suppose
we know � such that both err�(f ) ≤ � and err�̃(f ) ≤ � for some f ∈ C . Even with these conditions,
Lemma D.1 shows that one cannot simultaneously guarantee error rate on �̃ and rejection rate on
� less than

√

�∕8, and Theorem D.2 shows that our Rejectron algorithm achieves a similar upper
bound. This suggests that PQ-learning (i.e., adversarial SC) may be especially challenging in settings
where ML is not able to achieve low error �.

5 Conclusions

The fundamental theorem of statistical learning states that an ERM algorithm for class C is asymptot-
ically nearly optimal requiring Θ̃(d∕n) labeled examples for learning arbitrary distributions when
P = Q [see, e.g., Shalev-Shwartz and Ben-David, 2014]. This paper can be viewed as a generalization
of this theorem to the case where P ≠ Q, obtaining Θ̃(

√

d∕n) rates. When P = Q, unlabeled samples
from Q are readily available by ignoring labels of some training data, but unlabeled test samples are
necessary when P ≠ Q. No prior such guarantee was known for arbitrary P ≠ Q, even for simple
classes such as intervals, perhaps because it may have seemed impossible to guarantee anything
meaningful in the general case.

The practical implications are that, to address learning in the face of adversaries beyond perturbations
(or drastic covariate shift), unlabeled examples and abstaining from classifying may be necessary.
In this model, the learner can beat an unbounded white-box adversary. Even the simple approach
of training a classifier to distinguish unlabeled train vs. test examples may be adequate in some
applications, though for theoretical guarantees one requires somewhat more sophisticated algorithms.
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Broader Impact

In adversarial learning, this work can benefit users when adversarial examples are correctly identified.
It can harm users by misidentifying such examples, and the misidentifications of examples as
suspicious could have negative consequences just like misclassifications. This work ideally could
benefit groups who are underrepresented in training data, by abstaining rather than performing
harmful incorrect classification. However, it could also harm such groups: (a) by providing system
designers an alternative to collecting fully representative data if possible; (b) by harmfully abstaining
at different rates for different groups; (c) when those labels would have otherwise been correct but are
instead being withheld; and (d) by identifying them when they would prefer to remain anonymous.

Our experiments on handwriting recognition have few ethical concerns but also have less ecological
validity than real-world experiments on classifying explicit images or medical scans.

A note of caution. Inequities may be caused by using training data that differs from the test
distribution on which the classifier is used. For instance, in classifying a person’s gender from a
facial image, Buolamwini and Gebru [2018] have demonstrated that commercial classifiers are highly
inaccurate on dark-skinned faces, likely because they were trained on light-skinned faces. In such
cases, it is preferable to collect a more diverse training sample even if it comes at greater expense, or
in some cases to abstain from using machine learning altogether. In such cases, PQ learning should
not be used, as an unbalanced distribution of rejections can also be harmful.4
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