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Abstract

Few-shot image generation seeks to generate more data of a given domain, with
only few available training examples. As it is unreasonable to expect to fully infer
the distribution from just a few observations (e.g., emojis), we seek to leverage a
large, related source domain as pretraining (e.g., human faces). Thus, we wish to
preserve the diversity of the source domain, while adapting to the appearance of the
target. We adapt a pretrained model, without introducing any additional parameters,
to the few examples of the target domain. Crucially, we regularize the changes
of the weights during this adaptation, in order to best preserve the “information”
of the source dataset, while fitting the target. We demonstrate the effectiveness
of our algorithm by generating high-quality results of different target domains,
including those with extremely few examples (e.g., <10). We also analyze the
performance of our method with respect to some important factors, such as the
number of examples and the dissimilarity between the source and target domain.

1 Introduction

The success of generative adversarial networks (GANs) [8] has typically been illustrated with large
amounts of training data, for example, 70,000 images for just a specific domain (aligned faces) [16]
or 1.3M images across different classes [34]. However, many practical use cases provide limited data.
For example, in the artistic domain, it is at best cumbersome, and at times prohibitive, to hire artists
to make thousands of creations. While generative models currently struggle in this low-data regime,
our goal is to generalize from a few, new examples.

A key component to this is the ability to leverage prior experience. For example, we can use our
knowledge of variations in the appearance of natural faces to easily imagine variations of a specific,
given cartoon face. In this work, we aim to give generative models the same ability, as shown
in Figure [I| More formally, we study the problem of few-shot image generation in a continuous
learning framework — training an algorithm to generate more data of a target domain, given only a few
examples. An underlying assumption with this setup is that the source and target domains share some
latent factors, with some differences related to their distinct difference in appearance. For example,
when transferring from real natural faces to emojis, variations in pose and expression can be naturally
extended to the target domain.

To achieve this goal, we propose a straightforward and effective adaptation technique. That is,
we adapt the pretrained model’s weights, without introducing additional parameters. Fixing the
architecture implies that tedious manual designs on new parameters (e.g., number of parameters,
their position, etc.) are not necessary. Instead, the challenge is how to adapt the weights to fit the
appearance of the limited target domain data, while retaining as much transferred knowledge, or
diversity from the source.
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Figure 1: Pipeline of our few-shot image generation. We first pretrain a generative model on the
source domain (e.g., real faces) with a lot of data. We then adapt it to the target domain (e.g., Moise
Kisling faces [44])) with just a few examples to generate more data in target domain (all images are of
size 256x256).

A key property to note is that weights have different levels of importance; thus, each parameter should
not be treated equally in the adaptation, or tuning process. We propose to quantify the “importance”
of each parameter, emphasizing preservation of important parameters during the tuning process. In
the discriminative modeling setting, Kirkpatrick et al. propose Elastic Weight Consolidation
(EWC), which evaluates the importance of each parameter by estimating its Fisher Information
relative to the objective likelihood. A key difference is in the generative setting, the training objective
is not fixed. Nonetheless, we demonstrate that the Fisher Information can be estimated from a proxy
objective (a frozen discriminator) and are able to generate high-quality results of different target
domains, even with extremely few examples (<10).

In addition, we consider there will always be an inherent trade-off between preserving information
from the source and adapting to the target domain. We conduct an in-depth analysis on the perfor-
mance of our method, with respect to important factors, such as the number of target examples and
the dissimilarity between the source and target domain.

The main contributions of this work are summarized as follows:

e We propose to adapt a pretrained generative model to a new target domain without introducing
additional parameters, producing diverse generations even with limited data.

o We demonstrate the effectiveness of the proposed method in artistic domains, where practical use
cases often have limited data.

e We evaluate our method on several cross-domain source/target pairs, in contrast to previous
methods which mostly focus on the photo domain.

2 Related Work

Few-shot learning. Few-shot learning [18]] is first explored in discriminative tasks where the target
class contains limited labelled instances, known as few-shot image classification. It attracts consid-
erable attention and a number of work have been done to improve the generalization performance
on the target class while preventing the model from being over-fitted to the few examples. Several
representative schemes include metric learning methods [37]), meta-learning methods [3, 27],
and dynamically weight prediction methods [[7]. For the target class in few-shot classification, the
term few refers to few labels, which means there can be plenty of unlabelled images. This also leads
to some semi-supervised learning methods [19]. However, in few-shot image generation, we assume
that there are only a few images. No other information about the target domain is available. Another



big difference with classification is that the generation aims at generating diverse results while the
classification only targets on predicting a consistent semantic label.

Most recently, a few works [28l 41] shift the attention to few-shot from discriminative to generative
tasks, especially based on GANs. Some works focus on few-shot density estimation based on
matching networks [[1]], sequential generative models [32], or autoregressive models [31] but they are
limited to generating simple patterns and low resolution results. The work of [28] 41]] showed first
promising high resolution results on complex natural images given the recent success in high-quality
GAN training. Both start from fine-tuning a pretrained GAN model and add additional parameters
in some parts of the original network for learning. Such a pipeline involves many tedious manual
designs and as we show later, works less effectively in extremely low-data cases. Though it preserves
the ability of generating the source domain data, our goal focuses more on generating the target
domain data while preserving the diversity of the source domain.

Style transfer. An alternative approach to generate more data of the target domain is to apply existing
style transfer techniques to transfer the style of given examples (e.g., emoji style) to the abundant data
of the source domain (e.g., face). There are mainly two types of style transfer methods, i.e., example-
based and domain-based. Example-based schemes work with only one style example but have
limitations, such as requiring alignment [9]] or only transferring the color and texture [6} 12} 120, [21].
However, the style of a single example cannot fully represent a consistent style of a domain and the
style of target domain sometimes is more than just color and texture, but includes the higher-level
geometric shape for example. Meanwhile, domain translation methods [[13} 149,150, 38| require plenty
of data for both source and target domain and thus are not directly applicable to the few-shot task.
Recently some few-shot domain-based transfer work [23/!45]] are proposed to solve the low-data issue
in the target domain. However, their methods construct multiple source domains with style labels to
either perform meta-learning or learn to disentangle the content and style representations. Different
from their work, we assume only a single source domain is given.

Continuous learning. Since we aim at adapting a GAN model pretrained on the source domain
to the target domain, this is naturally a process of sequentially learning two tasks and thus related
to continuous learning. Continuous learning mainly deals with the “catastrophic forgetting” phe-
nomenon, i.e., learning consecutive tasks without forgetting how to perform previously trained tasks.
Most previous efforts are done for classification tasks, including distillation-based [22]], memory-
based [235]], attention-based [36], and regularization-based [17}46] methods. Based on that, several
recent work [35, 147, 43| extend these to the generative domain, i.e., learning different distributions
sequentially without forgetting. However, all sequential tasks learned in those work are assumed to
contain enough data. The biggest difference of our focus is that for the target domain there are only a
few examples. It is therefore necessary to distill knowledge learned from the previous source domain.
It is also noted that after the adaptation, we are no longer able to generate the data in source domain.
What we are not trying to forget here is the diversity in source domain so that we could combine it
with the style from the limited data of target domain to generate more diverse results.

3 Proposed Method

The goal of our approach is to adapt the weights of a generative model pretrained on the source
domain to the target domain with a few examples only. A direct adaptation without any regularization
on the changes of weights results in over-fitting (i.e., re-generating the given examples), because the
number of parameters is significantly larger than the number of examples. Therefore, the remaining
questions are (i) which weights are more important to preserve or have more freedom to change
and (ii) how to quantify such an importance factor so that we could regularize them via a loss
function. Below we present the details of our understanding on the importance of different weights
and proposed adaptation approach.

3.1 Rate of changes on weights

We first assume there is an abundant data in the target domain to learn a decent generative model and
expect to get some inspirations on what good weights look like. With a large number of examples
available, both training from scratch and fine-tuning from a pretrained model could lead to a good
generative model for the target domain, while the fine-tuning simply gets faster convergence [42].
However, for the few-shot scenario, while it is unlikely to train the model from scratch with a few



1000
0.000200

0.000175

0.000150

0.000125

0.000100

0.000075

Fisher information

0.000050

0.000025

0.000000 -

Rate of changes on weights (%)

Convl Conv2 Conv3 Conv4  Convs Convl Conv2 Conv3 Conv4  Convs

Figure 2: Analysis on weights of generative models. Left: Adapting the pretrained face model to
emoji where there are abundant emoji data. Middle: The rate of changes on weights (%) at different
layers between G and G. Right: The average Fisher information of weights at different layers in G.

data, we choose to analyze the fine-tuning model to identify the trend of weight changes because
there are more correspondences under the same way of learning. We analyze the rate of change of the
generator weights between the source and the target-adapted model. For example, it is interesting
to know which weights change significantly when switching to learning another distribution. We
select real faces as the source domain using the CelebA dataset [24] (~200k images). For the target
domain, we use emoji faces that depict stylized human-like heads. We use the Bitmoji API [[11] to
collect ~80k emoji images. We design a five-layer DCGAN [30] network (denoted as the generator
G, associated with a discriminator D) in Figure 2] (left). We first pretrain a generative model on faces
and then fine-tune it on the emoji domain, both using the following adversarial loss [8]]:

Lodgw = m(%n max Empanta (@) 108 D(x)] 4+ E.up_ () [log(1 — D(G(2)))], (D

where pgaiq () and p,(z) represent the distributions of noise variables z and real data x. Some
generated examples of faces and emoji faces are shown in Figure 2] (left).

Given a pretrained G and the adapted G, we compute the average change rate of weights at
each convolution layer (here, we omit the bias and other parameters in the normalization layers):

A= % > wj(;leil where IV is number of parameters, ; and 9; is the i-th parameter in model G and

G'. From the results shown in Figure [2| (middle), we observe that the weights in the last layer of
the network change the least on average compared to other early layers. Similar observations are
also found in other GAN architectures (e.g., LapGAN [4], StyleGAN [16]]) using other source-target
domain pairs. This implies that if we do the adaptation with a few examples, some weights in the last
layer are more important and should be better preserved than those in other layers.

3.2 Importance measure

After confirming that weights in different layers should be regularized differently during the adaptation
based the previous analysis, the next question is how to quantify or measure the importance of each
weight. Recall that in mathematical statistics, the Fisher Information F' could tell how well we
estimate the model parameters given the observations [26]. Given a pretrained generative model on
the source domain, by generating a certain amount of data X given the learned values of network
parameters 6g, the Fisher information F' can be computed as:

2
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where £(X|0) is the log-likelihood function which is equivalent to computing the binary cross-
entropy loss using the output of a discriminator. We also experiment with the reconstruction or
perceptual loss [14]] between the generated image and itself as the log-likelihood and obtain similar
values for F'. For simplicity, we use the output of the discriminator and show the average F' of
weights at different layers in the G model trained on real faces in Figure 2] (right). We notice that the
weights in the last layer have much higher F' than those in other layers. Considering our previous
observation on the rate of change of weights in Figure 2] (middle), we could directly use F' as an
importance measure for weights and add a regularization loss to penalize the weight change during
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Figure 3: The effectiveness of EWC loss. On the right, we show an example of 10-shot (3 examples
are shown) generation results for an artistic target domain called Fernand Léger [44], adapted from
the real face domain (all images are of size 256x256). Note that adding the EWC loss preserves the
variation from source, and prevents the model from fitting the three examples exactly.

Iteration

the adaptation to the target domain as follows:

Ladapt - Ladv + )\ZFZ(ez - es,i)za (3)

where 0g represents the weights learned from the source domain, 7 is the index of each parameter of
the model, and A is the regularization weight to balance different losses. The second term in Equation
(3) was first proposed in [17] for the classification task and called the Elastic Weight Consolidation
(EWC) loss. While the work of [[17] uses the EWC loss to avoid forgetting how to classify old classes
after learning new classes and there is sufficient data for all classes, here we want to demonstrate its
effectiveness in the few-shot generative setting. Without this regularization to preserve the diversity
from the source, the model adaptation with a few examples in the target domain will quickly result in
over-fitting, which manifests as re-generating almost-replicas of only the given target examples.

To demonstrate the effectiveness of regularization during target adaptation, we specifically ablate the
second term (i.e., the EWC loss) in Equation (3). The blue curve in Figure 3] (left) shows how fast the
weights are changing without any regularization. Here we compute the EWC loss for visualization
but do not use it, by setting A = 0. It clearly illustrates that the weights rapidly deviate from the
original weight in just a few hundreds of iterations. We show the adapted results without EWC in the
second column of Figure [3] (right), which is close to re-generating some of the 10 given examples
on top and indicates that over-fitting is happening. In contrast, the orange curve in Figure 3] (left)
shows that with the regularization, the weights change slowly in the beginning which also results in
the increase of EWC loss, but gradually saturates. From the comparison of loss values in Figure[3]
(left), we learn that adapting a few new examples only should not alter the original weight too much
so that the information (e.g., diversity) from the source domain could be preserved. Adapted results
with EWC in the third column of Figure [3] (right) also validate this, as our method generates new
examples of the target domain.

4 Experimental Results

In this section, we first discuss the experimental settings. We then present qualitative and quantitative
comparisons between the proposed method and several competing methods. Finally, we analyze the
performance of our method with respect to some important factors such as the number of examples.

Dataset. We choose two objects of interests for generation, i.e., the face and landscape. We are trying
to adapt the generation from real to artistic ones for those objects (e.g., real to artistic faces). We
use the FFHQ dataset [16]] as the source for real faces and several other face databases as the target:
emoji faces from the Bitmoji API [[11]; animal faces from the AFHQ dataset [3]] and portrait paintings
from the Artistic-Faces dataset [44]. We use 10 cat and dog images from the, much larger, AFHQ
dataset. The Artistic-Faces dataset contains artistic portraits of 16 different artists and there are only
10 images per artist available. For the landscape, we use the CLP dataset [29] that contains thousands
of landscape photos as the source and 10 pencil landscape drawings as the target.
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Figure 4: Visual comparisons of different methods for few-shot generation. Top: FFHQ — Emoji;
Bottom: Natural landscape — Pencil landscape. In each example, Left: 10-shot training examples;
Right: 10 generated results by each method (all images are of size 256 x256).

Evaluated methods. We evaluate our method against three others: NST [6], BSA [28], and Mine-
GAN [41]). The Neural Style (NST) work of [6] represents a family of neural style transfer methods
as adaptation to a new domain can be also regarded as a style transfer task. As it is an example-based
method, we randomly select one image from the small amount of target examples to stylize an image
sampled from the source data. Both [28]] and [41]] also focus on adapting models from a source to a
target domain but they introduce additional parameters. The BSA method is adding new batch
norm layers into the original BigGAN generator [2] and learning new parameters only during the
adaptation. The MineGAN approach [41]] adds a small mining network M in front of the original
Progressive GAN generator and proposes a two-stage fine-tuning strategy (i.e., fine-tune M first
and then fine-tune M jointly with the generator). For all experiments of our method in this work, we
use the StyleGAN [16] framework.

4.1 Qualitative results

Figure ] shows a visual comparison between different methods. The top one is adapted from the real
face domain and the bottom one is adapted from the natural landscape domain. NST mostly transfers



Table 1: Quantitative comparisons between different few-shot generation methods. For FID and
LPIPS, each result is in the form of {mean =+ standard error}. For the user study, the result (i.e.,
fooling rate) is in the form of {probability £ confidence interval} with the 95% confidence level.

Source NST [6] BSA [28] MineGAN [41] Ours

FID] 4258 £1.76 204.16 £9.28 10556 £5.79 86.44 +4.38  74.87 £3.75
LPIPSt 0.46 + 0.03 0.57 £ 0.01 0.15 £ 0.01 0.21 £0.02 0.40 £ 0.02
User (%)1 - 15.28 £+ 5.58 4.86 +3.33 30.56 £7.14 4792 +7.38

Table 2: Quantitative comparisons between different few-shot generation methods with respect to the
number of shots (FIDJ).

Number of shots NST [6] BSA [28] MineGAN [41] Ours
1 21223 £9.77 10234 £5.70 102.57 +4.76 84.36 + 3.91
10 204.16 =9.28 10556 +5.79 86.44 =438  74.87 + 3.75
100 199.52 £9.02 110.24 £5.87 7623 +£4.05 67.55+ 3.48
1,000 19643 £8.83 11931 £596 69.20 +3.59  62.40 £+ 3.12
10,000 194.88 £8.71 131.20£6.04 58.69 £3.14  55.74 + 2.88

global color and texture of the target examples. The transferred results are relatively cluttered and do
not capture higher-level characteristics (e.g., geometric shape) of the target style. The results of BSA
look blurry at the first glance due to their reconstruction scheme. Moreover, it also shows the problem
of mode collapse by generating visually similar results. MineGAN is less effective in generating
more diverse examples. It is easy to spot re-generation of given examples in the sampled results,
which implies that MineGAN tends to overfit under the few-shot setting. In contrast, our method
generates results that are more faithful to the style of the few given examples, while exhibiting a good
amount of diversity.

4.2 Quantitative comparisons

While we only use a few examples from the target domain to perform the adaptation, we divide
the quantitative study into two parts, based on whether the target domain contains abundant data
for evaluation. If the target domain originally has a lot of real data, we select the commonly used
Fréchet Inception Distance (FID) [10] which measures the quality of generated images obtained by
the adapted model. For target domains that have only a few examples available, FID is not a good
metric for measuring the generation quality. Therefore, we conduct user studies to evaluate how
realistic our generated results are compared with real examples. At the top of the user study page, we
show a few real examples from the artistic domain as reference. Below, we show one real example
outside of the reference set and one generated result side by side. Each user is asked to select which
one is generated and do 10 rounds of selection. The user study is conducted per method and we use
the Amazon Mechanical Turk (AMT) platform to collect 300 votes from users in each study. A better
method should fool users more easily to make a wrong decision. For measuring diversity, we use the
LPIPS metric [48]] to measure the similarity among results, i.e. the distance between a number of
pairs of randomly generated images.

Table [T) shows the quantitative comparison results between different methods with 10-shot generation.
We first evaluate the pretrained models on the source domain and show their results as the reference.
The results in the first row of Table|[I|clearly show that our method achieves the lowest FID score
compared with other three schemes, which is consistent with the better results obtained by our method
shown in Figure[d] For the diversity evaluation results in the second row, it is noted that NST achieves
the highest LPIPS score which is, however, due to the cluttered transferred artifacts in their results.
Therefore it is more meaningful to compare with [28},41] and the comparisons show that our method
is able to generate more diverse results. The third row presents the user study results when evaluating
the realism of generated results for target domains with 10 examples only. Each result represents the
probability of being fooled (i.e., fooling rate) by selecting the wrong answer. The higher percentage
value means the results obtained by a certain method are more realistic so that they tend to fool the
users between real and generated examples. Our method obtains the highest fooling rate 47.92%,
which means our results are more indistinguishable from real images.



Table 3: Analysis on the performance with re- Table 4: Analysis on the performance with re-

spect to the regularization weight \. spect to dissimilarity between source and target.
A (x5) 108 107 108 10° 10 Female  Emoji Cat Landscape
FID| 7821 7562 7487 7779 8021 FID | 67.08 7625  107.67 164.83
LPIPS T 038 0391 0405 0412 0419 LPIPS T 0459  05% 0651 0.735

Figure 5: 1-shot (leftmost) adaptive generation from the real face domain FFHQ to the emoji domain.
Our method generates variations of the given example.

4.3 Discussion

Number of shots. As a key factor in few-shot generation, the number of examples in the target domain
plays an important role in affecting the performance. Generally, provided with more examples, we
expect better adaptation performance of the proposed method. If there is enough data, we could
directly learn the distribution from scratch instead of doing the adaptation. We additionally evaluate
our method against existing approaches on other shots in Table 2] The performance of NST will not
be improved obviously because the style transfer method itself cannot capture the target style well,
regardless of number of examples. An observation from the BSA [28]] work is that their performance
drops when increasing the number of examples. This is due to their strategy of reconstructing
training examples and more examples result in lower-quality reconstructions. The MineGAN and
our work behave similarly as both are distribution learning based methods. The more data, the better
performance and the closer these two methods are. However, our method clearly exhibits more
obvious advantage over MineGAN in extremely few data scenarios (e.g., <10).

We would like to highlight the special case of 1-shot. When the target domain contains one example
only, it is unlikely to expect big amount of diversity in results no matter how strongly we regularize
the weight. What we observe is that the adapted model is generating variations of the given example.
Figure [5|shows an example of 1-shot adaptation from the FFHQ source to the emoji target domain.
Though all generated results are with brown-like skin and red-like hair, they present meaningful
differences between each other, e.g., the glass, smile, tooth, pose, and gender. Our strategy is still
effective in inheriting the information from the source domain.

Regularization weight \. The parameter A in Equation (3) controls the power of regularization term
added during the adaptation. We show its effect on the performance in Table [3](10-shot). A larger
value of A would preserve too many details of the source, which hinders the adaptation to the target
domain but preserves more diversity. A smaller value of A gives too much freedom on the changes
of weight, which may result in the over-fitting to the target domain and reduce the diversity. This
represents the unavoidable trade-off we achieved between inheriting from the source and adapting
to the target. We empirically set A = 5 x 108 in all our experiments. In addition, we find that (i) if
the source and target are more similar (e.g., from the male face to female face), select a larger \ to
constrain the weight changes because a minor change might be enough for the adaptation, and (ii)
if more target data is given, select a smaller A\. An extreme case is that there is no need to do any
regularization (i.e., A = 0) if there is abundant data available in target domain.

Dissimilarity between source and target. An imperative assumption before doing the adaptation in
our method is that the source and target domain describe the same object (e.g., real faces and emoji
faces) so that they share latent factors (e.g., poses) except for their distinct difference in appearance.
It does not make too much sense if we want to adapt a face model to the landscape domain. Therefore
one conjecture is that the performance of the propose method will decrease when the source and
target domain become more dissimilar. To validate this, we select the FFHQ [[16] face dataset as the
source domain and several target domains for adaptation according to their dissimilarity with FFHQ:
the CelebA-Female face [24]], the emoji face [11]], the cat face [3]], and the color pencil landscape [29].
The dissimilarity between images in two domains is measured using the LPIPS [48] metric. We
conduct a 10-shot adaptation for each target domain and evaluate the results with the FID score (those
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Figure 6: 10-shot generation results of four different target domains all adapted from the same source
domain: real faces. From left to right, when the target domain is more and more dissimilar with the
real face domain, the adapted results become more and more unrealistic.

Figure 7: Generations of source and target domain by feeding the same latent code into the source
(FFHQ) and adapted target (the Moise Kisling faces in Figure[I)) model.

target domains all originally contain a lot of data for evaluation). Results in Table ] clearly validate
our previous conjecture.

We show examples of generated new results of those four target domains in Figure[6 On the leftmost,
the results of CelebA-Female face are the most realistic and diverse as this target domain is closest
to the source domain FFHQ. Simply changing some low-level facial textures could easily achieve
the altering of gender. On the rightmost, the results of color pencil landscape domain adapted from
FFHQ obviously do not make much sense as we could still observe the silhouette of face preserved.
Adding the EWC regularization is not sufficient to change the semantic shape from face to landscape.
This implies that to make the adaptation work more successfully, it is better to consider selecting a
similar source domain to do the pretraining.

Correspondence. To demonstrate whether the diversity is preserved from the source during the
adaptation, one straightforward way is to visualize if certain level of correspondence exists between
the generated results of source and target domain by feeding the same latent code into the source
and adapted target model. As shown in Figure[7, while the adaptation renders new appearance of
target domain, other attributes such as the pose, glass and hairstyle, are well inherited and preserved
from the source domain. Given that collecting real paired data is often labor intensive, one promising
aspect of our method is that we can obtain unlimited number of synthetic paired data by leveraging
the correspondence between the source and target model.

5 Conclusion

In this work, we focus on the challenging task of unconditional image generation in low-data regime.
Given a few examples only in the target domain, we adapt a pretrained generative model learned
on the source domain with abundant data to generate more data of the target domain. Inspired
by the continuous learning, we analyze the weight importance and quantify such a factor in order
to selectively regularize the weight changes during the adaptation. In this way, we achieve the
inheritance of diversity from the source domain as well as the adapting of new appearance from the
target domain, and avoid the over-fitting issue known to easily happen when data is limited. The
proposed method is simple and effective, and may shed light on more future understandings of the
learned parameters. We demonstrate the efficacy of the proposed method on various domains and
show that it performs favorably against existing methods. The new generated data could expand the
variety of the domain that is originally scarce in data and consequently facilitate many downstream
image synthesis tasks.



Broader Impact

Al for creativity. The motivation of this work is to expand the amount of data in domains where
originally there is limited data available. It is especially useful for artistic domains where manually
making a creation takes a lot of work and time. With the generated data, many existing Al-based
image synthesis pipelines could be facilitated with the large-scale training. We believe more creative
applications could benefit from our work in terms of constructing the indispensable dataset.

Detectability. While our use cases in this work are geared towards creative applications, a concern is
the generated imagery can be used for the purpose of deception. A potential mitigation is if generated
imagery can be reliably detected; there are recent efforts [40, [33] made in this area. The latest
work by Wang et al. [40]] shows that a classifier trained on images generated by one method, could
generalize to others, despite different architectural components or loss functions. As we are using
an architecture with many shared components, we expect this generalization ability to hold. We
conduct a small study, using the Blur+Jpeg(0.5) model from [40] on our Cat and CelebA-Female
datasets. We find the model achieves 94.9% and 99.6% average precision (AP), respectively, for
classifying generated images. This indicates our method is similarly detectable to already existing
CNN-generated methods.

While these results are strong, they are not 100%. Furthermore, performance can degrade as the
images are degraded in real use cases (e.g., compressed, re-scanned). The issue of content authenticity
remains a significant challenge, likely requiring multiple layers of solutions, from technical (such as
this detector from [40]]), to social, to regulatory.
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