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1 Proof of Lemma 1

We first introduce the following Lemma , which is used to complete the proof of Lemma 1.

Lemma. Consider an MDP with countable state and action spaces. Let Z1, Z2 be value distributions
such that each state-action distribution of Z1(s, a) or Z2(s, a) is a single Dirac. Consider the
particular case where rewards are identically 0, and let τ ∈ [0, 1]. Denote by Πτ the projection
operator that maps a probability distribution onto a Dirac delta located as its τ -th quantile. Then

d̄∞ (ΠτT πZ1,ΠτT πZ2) ≤ γd̄∞ (Z1, Z2) , (1)

Proof. The proof is similar to the argument of that of Lemma 3 of [1]. Let Z1(s, a) = δq(s,a) and
Z2(s, a) = δψ(s,a)

for each state-action pair (s, a) ∈ S ×A, for some functions ψ, q : S ×A → R.
Let (s′, a′) be a state-action pair, and let ((si, ai))i∈I be all the state-action pairs that are accessible
from (s′, a′) in a single transition, with I an indexing set. To simplify notations, we write qi for
q(si, ai) and ψi for ψ(si, ai). Furthermore, let the probability of transiting from (s′, a′) to (si, ai)
be pi, for all i ∈ I .

Then we have
(T πZ1)(s′, a′) = γ

∑
i∈I

piδqi ,

(T πZ2)(s′, a′) = γ
∑
i∈I

piδψi .
(2)

Now consider the τ -th quantile of each of these distributions, for τ ∈ [0, 1] arbitrary. Let u ∈ I be
the index such that qu is the τ -th quantile of

∑
i∈I piδqi , and let v ∈ I be the index such that ψv is

the τ -th quantile of
∑
i∈I piδψi . Thus, we obtain that

d̄∞ (ΠτT πZ1,ΠτT πZ2) = γ|qu − ψv|. (3)

We now show that the inequality

|qu − ψv| ≤ |qi − ψi|, ∀i ∈ I, (4)

holds, by which it follows that

d̄∞ (ΠτT πZ1(s′, a′),ΠτT πZ2(s′, a′)) ≤ γd̄∞ (Z1, Z2) , (5)

and the result of Lemma 1 then follows by taking maxima over state-action pairs (s′, a′).
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To obtain the inequality (4), without loss of generality we take qu ≤ ψv. We now introduce the
following partitions of the indexing set I . Let

I≤qu = {i ∈ I|qi ≤ qu} ,
I>qu = {i ∈ I|qi > qu} ,
I<ψv = {i ∈ I|ψi < ψv} ,
I≥ψv = {i ∈ I|ψi ≥ ψv} ,

(6)

and we then have the following disjoint unions:

I = I≤qu ∪ I>qu
I = I<ψv ∪ I≥ψv .

(7)

If the inequality (4) does not hold, then we must have I≤qu ∩ I≥ψv = ∅. It then follows that
I≤qu ⊆ I<ψv . Thus, since qu is the τ -th quantile of

∑
i∈I piδqi , we obtain that∑

i∈I≤qu

pi ≥ τ, (8)

and so consequently ∑
i∈I<ψv

pi ≥ τ, (9)

which implies that the τ -th quantile of
∑
i∈I piδψi is less than ψv, and leads to a contraction.

Therefore, the inequality (4) holds, which completes the proof.

Now we give the proof of Lemma 1.
Lemma 1. Let ΠW1

be the quantile projection defined as above, and when applied to value dis-
tributions gives the projection for each state-value distribution. For any two value distributions
Z1, Z2 ∈ Z for an MDP with countable state and action spaces,

d̄∞ (ΠW1T πZ1,ΠW1T πZ2) ≤ γd̄∞ (Z1, Z2) , (10)

where
d̄p(Z1, Z2) := sup

s,a
Wp(Z1(s, a), Z2(s, a)), (11)

and Z be the space of action-value distributions with finite moments:

Z = {Z : S ×A →P(R)| E [|Z(s, a)|p] <∞,∀(s, a), p ≥ 1}. (12)

Proof. The proof is similar to the argument of that of Proposition 2 of [1]. We assume that instanta-
neous rewards given a state-action pair are deterministic, and the general case is a straight-forward
generalization with the regular probability argument. Furthermore, since Wasserstein distances are
invariant under translation of the support of distributions, it is sufficient to consider the case where
r(s, a) ≡ 0 for all (s, a) ∈ S ×A. The proof then proceeds by first considering the case where every
value distribution consists only of single Diracs based on the result of Lemma 1.

We write Z1(s, a) =
∑N−1
k=0

1
N δqk(s,a) and Z2(s, a) =

∑N−1
k=0

1
N δψk(s,a), where the functions

q, ψ : S × A → RN are shape-constrained for ensuring non-crossing quantiles. Let (s, a) be a
state-action pair, and let ((si, ai))i∈I be all the state-action pairs that are accessible from (s′, a′) in a
single transition, where I is a indexing set. Write pi for the probability of transitioning from (s′, a′)
to (si, ai), for each i ∈ I . We now construct a new MDP and new value distributions for this MDP in
which all distributions are given by single Diracs, with a view to applying Lemma 1. The new MDP is
of the following form. We take the stat-action pair (s′, a′), and define new states, actions, transitions
and a policy π̃, so that the state-action pairs accessible from (s′, a′) in this new MDP are given by
((s̃ji , ã

j
i )i∈I)

N−1
j=0 , and the probability of reaching the state-action pair (s̃ji , ã

j
i ) is pi/N . Furthermore,

we define new value distributions Z̃1, Z̃2 as follows. For each i ∈ I and j = 0, . . . , N − 1, we
consider

Z̃1

(
s̃ji , ã

j
i

)
= δqj(si,ai)

Z̃2

(
s̃ji , ã

j
i

)
= δψj(si,ai).

(13)
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Since the d̄∞ distance between the 1-Wasserstein projections of two real-valued distributions is
the max over the difference of a certain set of quantiles, we may appeal to Lemma 1 to obtain the
following result:

d̄∞

(
ΠW1

(
T π̃Z̃1

)
(s′, a′) ,ΠW1

(
T π̃Z̃2

)
(s′, a′)

)
≤ γ sup

i∈I
j=0,...,N−1

|qj (si, ai)− ψj (si, ai)|

= γ sup
i∈I

d̄∞ (Z1 (si, ai) , Z2 (si, ai)) .

(14)

Now note that by construction, (T π̃Z̃1)(s′, a′) has the same distribution as (T πZ)(s′, a′), and thus
we have

d̄∞

(
ΠW1(T π̃Z̃1)(s′, a′),ΠW1(T π̃Z̃2)(s′, a′)

)
=d̄∞ (ΠW1

(T πZ1)(s′, a′),ΠW1
(T πZ2)(s′, a′)) .

(15)

Therefore, substituting this into (14), we obtain

d̄∞ (ΠW1(T πZ1)(s′, a′),ΠW1(T πZ2)(s′, a′))

≤γ sup
i∈I

d̄∞ (Z1(si, ai), Z2(si, ai)) .
(16)

Taking suprema over the initial state (s′, a′) then yields the result.

2 Proof of Theorem 1

Theorem 1. The fixed point Z∗q is of the form as Z∗q (s, a) :=
∑N−1
i=0 (τi+1 − τi) δqi(s,a) with each

quantile qi satisfying the following equality

qi(s, a) = R(s, a) + γqi(s
′, a′), 0 ≤ i ≤ N − 1,

s′ ∼ p(·|s, a), a′ ∼ π (·|s′) ,
(17)

where π is a given policy. Let ΠW1Z
π =

∑N−1
i=0 (τi+1 − τi) δq̄i(s,a), with q̄i being the τ̂i-th quantile

of Zπ ,

we can obtain that
Z∗q

D
= ΠW1

Zπ. (18)

When N →∞, we further have

d̄∞(Zπ, Z∗q )→ 0 and Z∗q → Zπin distribution. (19)

Proof. Assume that the instantaneous rewards are deterministic given a stat-action pair and the total
return Zπ has a continuous CDF FZπ (z), which can also be generalized to the random case. For
ε > 0, let τ0 = ε, τN = 1− ε and τ0, . . . , τN are equidistant fractions, and τ̂i = τi+τi+1

2 . We firstly
verify that Z∗q is the fixed point of ΠW1

T π . In other words, we need to show that ΠW1
T πZ∗q = Z∗q .

For any state-action pair (s, a) , (s′, a′) is accessible from (s, a) in a single transition, by the definition
of qi, which is the τ̂i-th quantile value, we have

P
(
Z∗q (s′, a′) ≤ qi(s′, a′)

)
=P

(
R(s, a) + γZ∗q (s′, a′) ≤ R(s, a) + γqi(s

′, a′)
)

=τ̂i.

(20)

By (17), we obtain that P
(
R(s, a) + γZ∗q (s′, a′) ≤ qi(s, a)

)
= τ̂i. Note that

P
(
Z∗q (s, a) ≤ qi(s, a)

)
= τ̂i. We then get that Z∗q (s, a)

D
= R(s, a) + γZ∗q (s′, a′) on each

quantile fraction. Thus T πZ∗q = Z∗q holds. On the other hand, it is clear that Z∗q is an element of ZQ,
then the fixed point result follows.
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Furthermore, due to the fact that q̄i is the τ̂i-th quantile of Zπ , we have

P (Zπ(s, a) ≤ q̄i(s, a)) = τ̂i. (21)

Recall the definition of Zπ , we then have

Zπ(s, a) = R(s, a) + γZπ(s′, a′), for all s′ ∼ P (·|s, a), a′ ∼ π (·|s′) . (22)

By (21) and (22), we obtain that

P (Zπ(s, a) ≤ q̄i(s, a))

=P (R(s, a) + γZπ(s′, a′) ≤ q̄i(s, a))

=P (Zπ(s′, a′) ≤ (q̄i(s, a)−R(s, a)) /γ)

=τ̂i, for all s′ ∼ P (·|s, a), a′ ∼ π (·|s′) .

Therefore,

q̄i(s, a) = R(s, a) + γq̄i(s
′, a′), for all s′ ∼ P (·|s, a), a′ ∼ π (·|s′) . (23)

Due to the uniqueness of fixed point, we have Z∗q
D
= ΠW1

Zπ .

At last, it is straight to show d̄∞(Zπ,ΠW1
Zπ)→ 0 as N →∞. In fact, the monotonicity of F−1

Zπ (τ)
implies that

d̄∞(Zπ,ΠW1
Zπ) = sup

i

(
max(

∣∣F−1
Zπ (τi)− F−1

Zπ (τ̂i)
∣∣ , ∣∣F−1

Zπ (τi+1)− F−1
Zπ (τ̂i)

∣∣)) . (24)

Since the quantile function F−1
Zπ (τ) is uniformly continuous on [ε, 1 − ε] because the distribution

function FZπ (z) is assumed to be continuous, therefore, let N → ∞, we have |τ̂i − τi| → 0
and |τ̂i − τi+1| → 0, then max(

∣∣F−1
Zπ (τi)− F−1

Zπ (τ̂i)
∣∣ , ∣∣F−1

Zπ (τi+1)− F−1
Zπ (τ̂i)

∣∣) → 0, for each
i = 0, . . . N − 1, the result follows.

For ∀z ∈ (F−1
Zπ (τ0), F−1

Zπ (τN )) , we could find the index i such that F−1
Zπ (τ̂i) ≤ z ≤ F−1

Zπ (τ̂i+1).
Then |FZ∗q (z)−FZπ (z)| ≤ |τ̂i+1−τ̂i| → 0 asN →∞. ThusZ∗q converges toZπ in distribution.
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3 Figures 1 and 2

N=100

N=200

Iteration 1 Iteration 10 Iteration 40 Training Curve

Figure 1: Training comparison between NC-QR-DQN and QR-DQN with N = 100 and 200 on
Breakout at different training stages

Figure 2: Boxplot of the probabilities that QRDQN or NC-QRDQN chooses the same action with the
optimal policy for 4000 randomly selected states within each of four different training period
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4 Raw Score table across all Atari games

GAMES RANDOM HUMAN DQN PRIOR. DUEL. QR-DQN NC-QR-DQN
Alien 227.8 7,127.7 1,620.0 3,941.0 4,871 10,277.4
Amidar 5.8 1,719.5 978.0 2,296.8 1,641 2,031.5
Assault 222.4 742.0 4,280.4 11,477.0 22,012 21,766.5
Asterix 210.0 8,503.3 4,359.0 375,080.0 261,025 148,681.1
Asteroids 719.1 47,388.7 1,364.5 1,192.7 4,226 2,824.8
Atlantis 12,850.0 29,028.1 279,987.0 395,762.0 971,850 1,015,973.1
BankHeist 14.2 753.1 455.0 1,503.1 1,249 1,357.5
BattleZone 2,360.0 37,187.5 29,900.0 35,520.0 39,268 55,675.6
BeamRider 363.9 16,926.5 8,627.5 30,276.5 34,821 22,619.4
Berzerk 123.7 2,630.4 585.6 3,409.0 3,117 170,386
Bowling 23.1 160.7 50.4 46.7 77.2 95.9
Boxing 0.1 12.1 88.0 98.9 99.9 99.9
Breakout 1.7 30.5 385.5 366.0 742 749
Centipede 2,090.9 12,017.0 4,657.7 7,687.5 12,447 10,206.9
ChopperCommand 811.0 7,387.8 6,126.0 13,185.0 14,667 10,458.3
CrazyClimber 10,780.5 35,829.4 110,763.0 162,224.0 161,196 178,325.0
DemonAttack 152.1 1,971.0 12,149.4 72,878.6 121,551 122,737.0
DoubleDunk -18.6 -16.4 -6.6 -12.5 21.9 22
Enduro 0.0 860.5 729.0 2,306.4 2,355 2,342.6
FishingDerby -91.7 -38.7 -4.9 41.3 39.0 37.4
Freeway 0.0 29.6 30.8 33.0 34.0 34.0
Frostbite 65.2 4,334.7 797.4 7,413.0 4,384 6,463.5
Gopher 257.6 2,412.5 8,777.4 104,368.2 113,585 82,954.2
Gravitar 173.0 3,351.4 473.0 238.0 995 1,007.5
Hero 1,027.0 30,826.4 20,437.8 21,036.5 21,395 29,397
IceHockey -11.2 0.9 -1.9 -0.4 -1.7 -0.8
Jamesbond 29.0 302.8 768.5 812.0 4,703 8,552
Kangaroo 52.0 3,035.0 7,259.0 1,792.0 15,356 16,987.5
Krull 1,598.0 2,665.5 8,422.3 10,374.4 11,447 9,493.8
KungFuMaster 258.5 22,736.3 26,059.0 48,375.0 76,642 53,644
MontezumaRevenge 0.0 4,753.3 0.0 0.0 0.0 330.8
MsPacman 307.3 6,951.6 3,085.6 3,327.3 5,821 6,149
NameThisGame 2,292.3 8,049.0 8,207.8 15,572.5 21,890 18,657.1
Phoenix 761.4 7,242.6 8,485.2 70,324.3 16,585 32,797
Pitfall -229.4 6,463.7 -286.1 0.0 0.0 0.0
Pong -20.7 14.6 19.5 20.9 21.0 21.0
PrivateEye 24.9 69,571.3 146.7 206.0 350 200
Qbert 163.9 13,455.0 13,117.3 18,760.3 572,510 25,317.9
RiverRaid 1,338.5 17,118.0 7,377.6 20,607.6 17,571 19,545.4
RoadRunner 11.5 7,845.0 39,544.0 62,151.0 64,262 69,738
Robotank 2.2 11.9 63.9 27.5 59.4 71.6
Seaquest 68.4 42,054.7 5,860.6 931.6 8,268 62,300
Skiing -17,098.1 -4,336.9 -13,062.3 -19,949.9 -9,324 -9,034.1
Solaris 1,236.3 12,326.7 3,482.8 133.4 6,740 2,140
SpaceInvaders 148.0 1,668.7 1,692.3 15,311.5 20,972 12,166.3
StarGunner 664.0 10,250.0 54,282.0 125,117.0 77,495 146,337.5
Tennis -23.8 -8.3 12.2 0.0 23.6 23.8
TimePilot 3,568.0 5,229.2 4,870.0 7,553.0 10,345 8,145.6
Tutankham 11.4 167.6 68.1 245.9 297 358
UpNDown 533.4 11,693.2 9,989.9 33,879.1 71,260 34,886.1
Venture 0.0 1,187.5 163.0 48.0 43.9 1,481
VideoPinball 16,256.9 17,667.9 196,760.4 479,197.0 705,662 561,229.6
WizardOfWor 563.5 4,756.5 2,704.0 12,352.0 25,061 26,359.2
YarsRevenge 3,092.9 54,576.9 18,098.9 69,618.1 26,447 31,260.1
Zaxxon 32.5 9,173.3 5,363.0 13,886.0 13,112 11,954.3
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