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Model comparison across randomly selected layers

Here, we wanted to examine if the learned attention model would lead to performance improvements
in neural response prediction across other deep layers as well. We trained all 8 models using stimuli
representations Frep from 2 randomly selected layers in the res5 block of the pre-trained ResNet-50
architecture, namely ‘add_14’ and ‘res5c_branch2b’1, henceforth denoted as ‘Random ResNet-50
layer 1’ and ‘Random ResNet-50 layer 2’ respectively. Figure 1 shows the prediction accuracy across
the synchronous cortex on the held-out movie for all models. We again observe that the learned
attention model performs favorably against models with no attention, no pooling or center-weighted
attention. Further, the gaze-weighted attention method outperforms all other methods employing the
same response model (linear or convolutional), consistent with our previous findings.

Representational similarity analysis

Representational similarity analysis (RSA) is a popular framework to compare representations of
a computational model against cortical representations [1, 2]. It can be used to directly measure a
computational model’s ability to explain the representational geometry in neuronal responses. Here,
we wanted to assess the impact of attention modulation on a computational model’s alignment to
brain responses for a wider range of model layers and architectures. Given stimuli from the held-out
movie (699 frames) and the corresponding response (after hemodynamic lag), we implemented the
following procedure for time-continuous RSA: (i) We computed Pearson’s correlation distance (1-R)
between the response vectors for every pair of test frames to obtain the representational dissimilarity
matrix (RDM) of neural responses. The dissimilarity matrices are averaged across subjects to yield a
population-averaged ‘neural’ RDM. The region of interest (ROI) mask for extracting response vectors
to estimate neural RDMs was derived from all voxels in intermediate (V4), ventral visual stream and
lateral occipital ROIs. Responses of all voxels were normalized using z-scores before computing the
dissimilarity matrix. (ii) We extracted model representations from intermediate layers of 3 pre-trained
(ImageNet) architectures, namely ResNet-50 (res2, res3, res4, res5), VGG-16 (maxpool1, maxpool2,
maxpool3, maxpool4, maxpool5) and AlexNet (conv1, conv2, conv3, conv4, conv5). For each of
these representations, we further computed attention modulated representations using attention maps
computed with each saliency prediction method as described above. For the Itti-Koch model, we used
normalized saliency as the attention map. For all remaining saliency models, we used probabilistic
density predictions as attention maps. All attention maps were resized to the spatial dimensions of
the respective layer for this computation. Representational vectors were compared pair-wise in terms

1Notation from pre-trained ResNet-50 model: https://keras.io/api/applications/resnet/
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Figure 1: Quantitative evaluation. Mean correlation values across the synchronous, (i.e., stimulus-
driven) cortex defined at a range of synchrony thresholds ([0.15,0.75]). Each point thus reflects
the mean prediction accuracy for a model across all voxels within synchronous cortex defined by a
threshold value (x-axis).

Figure 2: Representational similarity analysis(RSA). y-axis measures the agreement between
‘model’ RDMs and ‘neural’ RDMs based on their rank correlation measure. x-axis is use to index
the layer (index 1 refers to the earliest layer of the architecture) and the saliency method used for
attention masking of the features before pooling.

of their Pearson correlation distance (1-R) to obtain the ‘model’ RDM. (iii) Finally, we compared the
compatibility of the neural and model RDMs by using a rank correlation measure (Kendall’s τA).

As shown in Figure 2, prioritized selection of stimulus features based on saliency significantly
improves the correlation of model RDMs with neural RDMs. This trend holds for most models and
layers, suggesting that the benefits of attentional masking are not restricted to forward encoding
models alone, but may be more universal. Further, we find that models that better explain stimulus-
dependent human fixation patterns (such as Deepgaze-II or the learned attention model) are able
to better account for the representational geometry of neural responses across higher visual object
processing areas.

Regions of interest (ROI)

We employed the HCP MMP parcellation for all ROI-level analysis. Dorsal and ventral visual stream
ROIs as well as MT+ ROIs in Figure 3 (main text) were derived from the explicit stream segregation
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Figure 3: A. Center-weighted saliency map and B. Eye tracking statistics

and categorization described in the HCP MMP parcellation [3] and are defined here in Table 1 for
quick reference.

Table 1: ROI categorization

Group ROIs

Dorsal V3A, V3B, V6, V6A, V7, IPS1
Ventral V8, VVC, PIT, FFC, VMV1-3
MT+ MT, MST, V4t, FST
Lateral occipital LO1, LO2, LO3

Center-weighted attention

Figure 3 depicts the center-weighted saliency map used in all center-weighted attention models.
We also report per-movie eye tracking statistics therein from all frames used for training or testing
the models. We note that not all subjects had eye tracking measurements for every frame in the
movies. Figure 3B shows the number of subjects for which eyetracking data was available per movie
(distribution across frames). This suggests that despite the missing data, most frames among all
training and testing movies (MOVIE 4) had recorded gaze coordinate measurements from ∼110-130
subjects.

Voxel-wise prediction accuracy (R) of linear models

Figure 4 depicts the prediction accuracy across the cortical surface for all methods employing linear
response models that were considered in this study. As can be seen clearly, just as in methods with
CNN response models, gaze-weighted attention significantly improves prediction accuracy across
most higher order visual areas over models with no attention or center-weighted attention.

Estimating hemodynamic (BOLD) response delay

fMRI BOLD response delay was estimated using the baseline ‘No attention (Linear)’ encoding
model due to its computational efficiency in comparison to encoding models employing convolutional
response models. The input to these models was the 2048 dimensional (average pooled) representation
of the stimuli, and the output was the evoked fMRI response across the synchronous cortex (i.e.,
voxels with synchrony>0.15) at different lags (1-7 seconds) from the stimulus. Thus, the output
is a 160900-D vector corresponding to the fMRI response. All models were trained with 5-fold
cross-validation using the stimulus-response pairs from the training dataset only.

Based on Figure 5, we estimated a response delay of 4 seconds, as this lag consistently yielded the
maximum prediction accuracy across 5-fold cross validation. Thus, all encoding models described in
the main text were trained to predict fMRI response after 4 seconds of stimulus presentation.
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Figure 4: Prediction accuracy across the cortical surface for all methods using linear response
models. Statistical significance of individual voxel predictions is computed as the p-value of the
obtained sample correlation coefficient for the null hypothesis of uncorrelatedness (i.e., true correla-
tion coefficient is zero) under the assumptions of a bivariate normal distribution. Only significantly
predicted voxels (p<0.05, FDR corrected) for each method are colored on the surface.

Figure 5: Hemodynamic response delay. 5-fold cross-validated prediction accuracy (R) of the
simple (‘No attention’) model on the training dataset. Error margins are computed from the standard
deviation of prediction accuracy across the 5 folds.
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Predicted saliency maps for the entire held-out movie

The following figures show the fixation maps and corresponding saliency maps predicted by the
attention network of the proposed neural encoding model for frames sampled every 4 seconds from
the held-out movie.
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