
We propose a decentralized Bayesian learning algorithm when the data set X is held disjointly over n agents, i.e.,1

X =
⋃n
i=1 Xi with Xi

⋂
Xj = ∅ for j 6= i. Thus the posterior satisfies p(w|X) =

∏n
i=1 p(w|Xi). Similar2

formulations can be seen in almost all embarrassingly parallel MCMC algorithms (see [35,37,38] in main paper). We3

will add further discussions/references on various parallel MCMC schemes [1–4] in a Related Work section. However,4

they do not apply to the decentralized setting since they require a central node to combine the samples from individual5

Markov chains. In comparison, our formulation does not require a central node: each computing node i reconstructs6

an approximate posterior from Xi and prior information (the 3rd term on the r.h.s of (8)) while interacting with their7

neighbors as dictated by the undirected communication graph G(V, E) (the 2nd term on the r.h.s of (8), where ai,j = 18

if the i-th node can receive wj from j-th node and zero otherwise). We will clarify this point and mention similar9

techniques in consensus-optimization (e.g., decentralized SGD [6–9]). Though our proposed algorithm is built on ULA,10

analysis of even the centralized ULA (C-ULA) for non-log-concave target distributions requires restricting assumptions11

(see lines 51-60 & discussion on [13-20]). We will add discussions on variance reduced SGLD and second-order12

(underdamped) Langevin algorithms (e.g., [10–13]). Here we relax aforementioned assumptions and our Assumption 3 is13

weaker than the uniform bound on gradient disagreement [7] and the bounded gradient assumption [6;9].14

To the best of our knowledge, we propose the first-ever decentralized ULA (D-ULA) for general non-log-concave target15

distributions with time-varying step-sizes. The 3 main advantages of the proposed D-ULA include: 1) it enables the16

individual computing nodes to approximate the posterior with an accuracy comparable to that of the C-ULA. 2) by17

using decaying step-sizes, we are able to remove the constant bias term present in the KL-divergence and show18

that the rate of convergence is O
(
(n1/3(k + 1)δ2−2δ1)−1

)
(see (27)). In the final version we will discus how the19

convergence rate and the constants CFi depends polynomially in problem dimension dw. 3) similar to D-SGD [6–9],20

D-ULA experiences speedup with the number of agents as shown by the n1/3 in the denominator of (27). These21

advantages will be highlighted in the final version. Our analysis of D-ULA is novel/non-trivial compared to the22

existing non-convex consensus-optimization and non-log-concave ULA literature because: (i) Consensus analysis23

and results in Theorem 1 are novel since we use time-varying step-sizes αk and βk and provide an explicit consensus24

rate in term of step-size decay rates (see (25)) (not just bounded consensus as in [7;8]). (ii) Compared to existing25

C-ULA analysis for non-log-concave target distributions, the continuous-time approximation to the D-ULA contains an26

additional consensus error term ζ(·) (see (21)) that complicates the analysis. Requirements on the time-varying step27

sizes are also not straightforward to obtain as the existing literature is focused on fixed step-sizes. We will emphasize28

the novelty of our analysis in the final version. D-ULA requires the same number of communication rounds as the29

computation iterations to achieve a prescribed level of accuracy (Corollary 1). We hope this paper provides foundations30

to many open research problems, such as relaxing the synchronous, periodic communication requirement of D-ULA31

through local computation, compression, quantization, event-triggered and asynchronous communication as done in the32

D-SGD [6;9], and extensions of the proposed algorithm to SGLD and noisy, time-varying communication channel.33

The goal of Bayesian learning is to estimate the epistemic uncertainty for assessing confidence in the model, which is34

not possible with MAP or ML point estimates as illustrated using the OOD detection example (Section 5.3). Though35

the histogram of probability of predicted labels across all MNIST test samples using SGD shows similar trend to that36

of Bayesian estimates (Fig. S3, Table 2), MAP cannot quantify the uncertainty associated with the predictions. To37

further illustrate this point, we will include the mean and standard deviation of prediction scores for individual test38

samples from both (in-distribution) MNIST and (OOD) SVHN datasets using Bayesian estimates in the final version.39

Though D-ULA replicates the true posterior with similar fidelity as C-ULA, our analysis proves the faster convergence40

of D-ULA as shown in Fig 2. For the GMM experiment, algorithm parameters were selected so as to have same41

step-sizes for both the distributed and centralized approach. However additional experiments have shown that C-ULA42

can distinguish both modes with further tuning of hyper-parameters. Step-sizes for each algorithm are obtained using43

grid search through feasible hyperparameter space, which is derived from theoretical results (Section 4). In response44

to reviewers’ comments, we will include the following results in the final version 1) Results of all the experiments45

with more number of agents 2) Plots of empirical training loss and accuracy (for classification example) versus epochs46

for D-ULA with varying number of agents 3) An approximate discrepancy measure based on Wasserstein distance47

using estimated modes of the posterior distribution for GMM [5]. However, for complicated and intractable posteriors in48

regression and classification applications, we rely on the metrics based on test accuracy and OOD detection.49
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