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Abstract

Ensemble is a general way of improving the accuracy and stability of learning
models, especially for the generalization ability on small datasets. Compared with
tree-based methods, relatively less works have been devoted to an in-depth study
on effective ensemble design for neural networks. In this paper, we propose a
principled ensemble technique by constructing the so-called diversified ensemble
layer to combine multiple networks as individual modules. Through comprehensive
theoretical analysis, we show that each individual model in our ensemble layer
corresponds to weights in the ensemble layer optimized in different directions.
Meanwhile, the devised ensemble layer can be readily integrated into popular
neural architectures, including CNNs, RNNs, and GCNs. Extensive experiments
are conducted on public tabular datasets, images, and texts. By adopting weight
sharing approach, the results show our method can notably improve the accuracy
and stability of the original neural networks with ignorable extra time and space
overhead.

1 Introduction

Deep neural networks (DNNs) have shown expressive representation power based on the cascading
structure. However, their high model capacity also leads to the overfitting issue and making DNNs a
less popular choice on small datasets, especially compared with decision tree-based methods.

In particular, ensemble has been a de facto engineering protocol for more stable prediction, by
combining the outputs of multiple modules. In ensemble learning, it is desirable that the modules can
be complementary to each other, and module diversity has been a direct pursuit for this purpose. In
tree-based methods such as LightGBM [1] and XGBoost [2], diversity can be effectively achieved by
different sampling and boosting techniques. However, such strategies are not so popular for neural
networks, and the reasons may include: i) neural networks (and their ensemble) are less efficient; ii)
the down-sampling strategy may not work well on neural networks as each of them can be more prone
to overfitting (e.g., by using only part of the training dataset), which affects the overall performance.
In contrast, decision tree models are known more robust to overfitting, and also more efficient.

We are aimed to devise a neural network based ensemble model to be computationally efficient and
stable. In particular, the individual models is trained for maximizing their diversity such that the
ensemble can be less prone to overfitting. To this end, we propose the so-called diversified ensemble
layer, which can be used as a plug in with different popular network architectures, including CNNs [3],
RNNs [4], and GCNs [5]. Meanwhile, due to its partial weight sharing strategy, it incurs relatively
small extra time overhead in both training and inference. The main contributions are as follows:

1) Instead of adopting existing popular down-sampling and feature selection strategies, we propose
another principled technique, whereby each individual model can use full features and samples for
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Figure 1: The ensemble network with the proposed diversified ensemble layer (in red). The outputs
of the front-end network, as can be embodied by architectures like CNN, RNN, GCN is fed into the
FC layer to extract features. Until this step, all the weights are shared across different modules in the
ensemble layer. The modules are trained together with the other parts of the whole network.

end-to-end learning. Thus, the individual models can be optimized in different directions for diversity,
to enhance the generalization ability. We further provide theoretical analysis to show its effectiveness.

2) We propose a novel and adaptive learning procedure, which balances model diversity and training
accuracy, so as to improve its generalization ability on testing data. Its efficiency is fulfilled by partial
weight sharing across individual modules, which also plays a role in extracting common features for
further extraction by the individual modules.

3) Extensive experimental results show that our ensemble layer can significantly improve the accuracy
by taking relatively low extra time and space, as shown in our extensive experimental results. Our
ensemble layer can also be easily applied to CNNs, RNNs, GCNs, etc.

2 Related Works

We discuss two areas closely related to our works: weight sharing in neural networks and diversity
learning. Readers are referred to [6, 7] for a comprehensive review on ensemble learning.

Weight sharing. The work ENAS [8] presents a NAS training scheme with weight sharing (WS),
which measures the performance of architecture with the weights inherited from the trained supernet.
Since then, weight sharing has been widely adopted to exploit NAS in various applications, such as
network compression [9], objection detection [10, 11]. Besides, the work [12] adopts weight sharing
strategy for unsupervised neural machine translation. It shares the weights of the last few layers
of two encoders and the first few layers of two decoders, and adversarial technique is employed to
strengthen the shared potential space. WSMS-Net [13] proposes a new WS strategy, which shares
parameters in the front-back direction of images in addition to the ordinary CNNs. Unlike existing
WS tactics, in this paper, we employ a full-weight sharing approach. As shown in Fig. 1, for each
individual model, all the weights are the same except for the last few layers.

Diversity learning. In general, the diversity of individual modules can improve ensemble’s general-
ization ability and stability. Random Forest [14] adopts the down-sampling strategy, which utilizes
bootstrapping to select samples and features for training to increase the diversity of different decision
trees. The work [15] proves encouraging high diversity among individual classifiers will reduce the
hypothesis space complexity of voting, and thus better generalization performance can be expected.
A number of diversity metrics are devised in [16], providing a framework to select individual models.
More recently, it is proposed to increase structural diversity of decision tree [17], to enhance the
performance on small tabular datasets. GASEN is devised in [18], which proposes a new model
selective strategy with far smaller size but stronger generalization ability than bagging and blending
all individual models. Compared with GASEN, the proposed ensemble layer in this paper focuses on
how to construct high diversity individual models, while GASEN focuses on how to select models to
aggregate. XGBoost [2] and LightGBM [1] are developed based on gradient boosting decision tree
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(GBDT) [7], whereby XGBoost utilizes the the second-order Taylor series and regularization term
for a better generalization. While LightGBM adopts exclusive feature bundling and gradient-based
one-side sampling to speed up. GrowNet [19] is proposed, which adopts a gradient boosting method
to neural networks. DBD-CENet [20] also adopts boosting strategy to neural networks, besides, they
combines the idea of knowledge distillation (teacher-student network) and co-training. In detail,
DBD-CENet uses one network to estimate the residual of the other network iteratively. Finally,
they fine-tune the two branches of DBD-CENet in an iterative way with every epoch. ADPNet [21]
brings diversity to adversarial defense. Ensemble enhanced by diversity can greatly improve the
robustness of models. ADPNet’s diversity is fulfilled by dot product in embedding layer, which limits
its applicability to tabular data and regression task. In these ensemble methods, individual models
are trained independently, and the diversity is often fulfilled by feature and sample down-sampling,
rather than in a joint learning fashion. There are very few methods for end-to-end ensemble learning
whereby the diversity of each module is jointly modeled. This paper aims to fill this gap.

3 The Proposed Diversified Ensemble Neural Network

3.1 Architecture and Objective Design

Without loss of generality, consider the network for binary classification. Given a set of data {X,Y},
where Y is the label in {−1,+1}. The objective Lt can be generalized as a composite function:

Lt = H(q(WH · a(WH−1 · · · a(W1 · T (X)))),Y) (1)

where q(·) is a normalized function,H is the cross-entropy loss, WH denotes the parameter matrix
connecting layer H − 1 and layer H , a is activation and T (·) is the feature extractor e.g. CNN, GCN.

Specifically, our proposed ensemble network is designated as shown in Fig. 1, which consists of
(from left to right): i) the application dependent part in the form of either CNN, GCN or RNN; ii)
the shared fully connected layers; iii) the proposed diversified ensemble layer that is comprised of
multiple modules; iv) the final scoring layer (e.g. classification, regression etc). Overall, the devised
loss contains three parts (see Fig. 1):

1) cross-entropy between Y and individual modules, as written by:

Ls = H(q(W(i)
H−1 · · ·σ(W1 · T (X))),Y) (2)

where W
(i)
H−1 denotes the parameter connecting layer H − 2 and the i-th neuron in layer H − 1.

2) diversity of individual modules, which is a common metric in the work [15], can be expressed as:

Ld = 1− 1

N

∑
1≤i6=j≤N

q(W
(i)
H−1XH−1)q(W

(j)
H−1XH−1) (3)

where XH−1 is the input of layer H − 1. For regression, the loss can be quantified as:

Ld =
1

N

∑
1≤i6=j≤N

(
W

(i)
H−1XH−1 −W

(j)
H−1XH−1

)2
. (4)

3) aggregated loss as written as follows, given Y(i) = q(W
(i)
H−1XH−1) as the individual output:

La = H

(
N∑
i

γi ·Y(i),Y

)
(5)

where γi represents the aggregate weight of the last layer, which is bounded by
∑N
i γi = 1. Note

that while updating γi, other layers’ parameters will be frozen. Thus, the total loss is given by:

L(i) = Ls + La − α(i) · Ld (6)

where L(i) is the total loss in the i-th iteration, and α(i) is a shrink parameter which can be adaptively
updated by sigmoid function α(i) = σ(EW(|∇WL(i−1)

s |)). The reason for this design is that in
training, the gradient of Ls will continue to decrease, while Ld will grow with the increase of the
variance of neuron’s output in the ensemble layer. So the mean of the gradient of Ls can be used to
balance Ls and Ld. The algorithm for regression is given in Alg. 1 (similar for classification).
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Algorithm 1 Diversified Ensemble Layer for Regression Network Training and Prediction
1: Input: number individual model N , data set {X,Y}, max_iter
2: Initialization: shared fully-connected weights W, feature extractor T , individual weights γ,
epoch = 0, i = 0

3: Output: parameters and prediction of ensemble model
4: while epoch < maxiter do
5: while i < N do
6: Forward propagation of part I in Eq. 1: Y(i) ←W

(i)
H−1 · · ·σ(W1 · T (X));

7: Update Ls ← (Y(i) −Y)2 by Eq. 2;
8: Update Ld ←

∑
i

∑
j(Y

(i) −Y(j))2 by Eq. 3;
9: Update T ← ∇T Ls(Y(i),Y)− α · ∇T Ld(Y(i),Y((j)) by Eq. 2 and Eq. 3;

10: Update W← ∇WLs(Y(i),Y)− α · ∇WLd(Y(i),Y((j)) by Eq. 2 and Eq. 3;
11: Update α← σ(E(|∇WLs(Y(i),Y)|));
12: end while
13: Update Yp ←

∑
i γi ·Y(i), Lt ← (Y −Yp)

2 in Eq. 5;
14: Update γi ← γi −∇γiLt(Yp,Y) by Eq. 5 followed by normalization γi ← eγi∑

eγj
;

15: end while
16: return parameters (T ,W, γ), prediction

∑
i γi ·Y(i);

3.2 Theoretical Analysis

Theorem 1 The loss Ls and Ld can be simultaneously optimized. Given a set of linear mapping
functions H = {fi}Ni=1 and a set of linearly distributed samples X,Y in regression setting. Let
Li = H(fi(X, θi),Y) and div(i, j) = H(fi(X, θi), fj(X, θj)), where i 6= j and H indicates the
mean square loss. Then there always exists an optimal direction, which makes fi(X, θi) decrease Li
while div(i, j) increase.

Proof Suppose there is a perfect mapping function fr, which can make fr(X; θr) = Y. Then the
gradient of Li can be written as:

∂Li
∂θi

=
[fi(X)− fr(X)]>[fi(X)− fr(X)]

∂fi(X; θi)

where θi is the parameter in fi. The gradient of individual diversity loss div(i, j) can be written as
∂{div(i, j)}/∂θi = [fi(X)− fr(X)]>[fi(X)− fr(X)]/∂θi.

To prove the direction of gradient, it’s a common approach to measure the loss angle between two
gradient in [22]. Since we want to maximize the individual diversity, the loss angle can be written as:

−∂div(i, j)
∂θi

· ∂Ls
∂θi

= 4 · (X>Xθi −X>Xθr)
>(X>Xθj −X>Xθi),

which can obtain the maximum when θi = (θj + θr)/2. And the maximum value is (X>X(θj −
θr))

>(X>X(θj − θr)) ≥ 0. Since angles between two gradients can be less than 90 degrees,
fi(X, θi) can search the direction, which minimizes Li and meanwhile maximizes div(i, j). �

The above proof is based on the assumption that samples are in linear distribution, while the real data
can be non-linear. Fortunately, compared with linear regression and Logistic regression, the advantage
of neural networks is that the feature extractor e.g., CNNs, GCNs and activation function of neural
networks can enforce non-linear transformation. Given a non-linear distribution of data (X,Y), it
can be spread forward simply according to Eq. 2. Finally, we can utilize the final representation as a
linearly distributed data, which is able to be separated by a linear model.
Theorem 2 Generalization improvement enhanced by diversity. Given a set of binary classification
data setD = {X,Y}mi=1 sampled in the distribution U and classifierH = {fi(x)}Ni=1 to map feature
space X to label space Y = {−1,+1} and the diversity function is given by:

div(H) = 1− 1

N

∑
1≤i 6=j≤N

1

m

m∑
k=1

fi(xk)fj(xk).
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With the probability at least 1− δ, for any θ > 0, the generalization error can be bounded by:

errU (f) ≤ errD(f) +
C√
m

√
lnN ln(m

√
1/N + (1− 1/N)(1− div(H)))

θ2
+ ln

1

δ
(7)

where C is a constant.
Proof The average of classifiers is given by f(x;H) = 1

N

∑N
i=1 fi(x). Then ‖f(x;H)‖22 becomes:

‖f‖22 =

m∑
i=1

 1

N
+

1

N2

∑
1≤i 6=j≤N

fj(xi)fk(xi)

 = m

(
1

N
+ (1− div(H))(1− 1

N
)

)
≥ 0

While ‖f‖22 is always non-negative. Then ‖f‖1 can be obtained by:

‖f‖1 =
√
m‖f‖2 = m

√
1/N + (1− 1/N)(1− div(H))

Then, we adopt the proof strategy in the work [22]. Firstly, divide the interval [−1− ε/2, 1 + ε/2]
to [4/ε+ 2] sub-intervals and each of the sub-interval’s size is no larger than ε/2. Let −1− ε/2 =
θ0 < θ1 < · · · < θm = 1 + ε/2 be the boundaries of the intervals.

Then, we use jl(i) to represent the maximum index of θi such that fi(x)− jl(i) ≥ ε/2 and use jr(i)
represent the minimum index of θi such that fi(x)− jr(i) ≤ −ε/2. Then, we let f (1)i = [fi − jl(i)]
and f (2)i = [−fi + jr(i)]. Similar to [22], which constructs the relation between above indexes, here
we construct a pair of (f (1)i , f

(2)
i ). Let fp(x) = p · sign(x)|x|p−1. We can define:

G = (f
(1)
i , f

(2)
i ) = fp

(
m∑
i=1

αif
(1)
i +

m∑
i=1

βif
(2)
i

)
s.t.

m∑
i=1

(αi + βi) ≤ 36(1 + lnN)/ε2.

where αi and βi are both non-negative. It can be easily seen that the covering number
N∞(H, ε,m) is no more than the number of possible G constructed above. Take ‖f‖1 =

m
√
1/N + (1− 1/N)(1− div(H)) to the above equation, we can get that the number of pos-

sible valus of f (1)i is no more than md4
√

1/N + (1− 1/N)(1− div(H)/ε+2e. The possible value
of G is upper-bounded by:

N∞(H, ε,D) =
(
2md4

√
1/N + (1− 1/N)(1− div(H)/ε+ 2e+ 1

)36(1+lnN)/ε2

.

From the Lemma 4 in the work [23], we can get:

errU (f) ≤ errD(f) +
√

2

m
ln(N∞(H, ε/2, 2m) + 2)/δ.

Finally, take the N∞(H, ε,D) to the above equation, we can complete the proof. �

Theorem 3 Error reduction by aggregated based ensemble. Given a set of data samples D =
{X,Y}mi=1 and a set of predictorH = {fi}Ni=1, ensemble can reduce the errD of the predictor.
Proof We discuss the cases for regression and classification, respectively.

For regression task, take (x, y) as the input of a regressor, then the expectation of overall regression
squared error can be written by:

errD = ED

(
Y − 1

N

N∑
i=1

fi(X)

)2

=
1

N

N∑
i=1

(Y − fi(X))
2−

N∑
i=1

(
1

N2

N∑
i=1

fi(X)− 1

N
fi(X)

)2

(8)
where the second term R.H.S. implies the diversity of individual predictor, which is always non-
negative. Thus, the bagging predictor can improve the accuracy on D in regression task.

For classification task, according to Chapter 4.2 in the work [6], we can derive:

fi(X) =
∑
j

Q(j|x)P (j|x)

F(X) =

∫
x∈D

max
j
P (j|x)PXdx+

∫
x∈D

∑
j

I (H(x) = j)P (j|x)

PX(dx).

(9)
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where PX(x) denotes the distribution of X, Q(j|x) represents the relative frequency of class label
j predicted by f(x) with input x, and P (j|x) denotes the conditional probability of sample x. The
highest accuracy of F(X) is s =

∫
maxj P (j|x)PX(dx). The sum

∑
j Q(j|x)P (j|x) is far less

than P (j|x). Thus, the individual classifier can be far from optimal, while the aggregated predictor
F is nearly optimal.

Based on the above derivation and analysis, we have proven that on both regression (in Eq. 8) and
classification (in Eq. 9) tasks, ensemble can reduce errD. �

From the above proof, we can conclude that since our ensemble layer can reduce errD while increases
the diversity of individual models, then the ensemble model has a smaller generalization error errU .

Efficiency analysis. Assume a neural network (NN) in study has #hidden ×#node parameters
in total, Ens-NN (random NN aggregate) will optimize #hidden×#node×#model +#model
parameters, where #hidden is the number of hidden layers, #node is the number of neurons in a
hidden layer, and #model is the amount of individual model. While in the ensemble layer, only
about #node×#model+#model more parameters needs to be optimized, where 1 << #hidden.
Then we significantly reduce the training space consumption with greatly improving the accuracy.

Back-propagation is time-consuming. Suppose #model represents the total number of individual
models, while the time required for forward computing loss La is denoted by #single, and the
time required for a back-propagation is #bp. In an iteration, the time required for a individual
network is #bp +#single. It takes about #bp +#model ×#single after adding the ensemble
layer. While traditional ensemble method needs to train #model models, whose time consumption is
#model(#bp+#single). The time consumption of #single is far less than that of #bp, especially
in very deep neural networks. Thus, our proposed ensemble layer can greatly improve the accuracy
with ignorable extra time and space consumption.

3.3 Remarks

Note that though the neural network involves a non-convex function, the last layer is often set a
linear regression or linear classification, which is convex. Unfortunately, we cannot only consider the
parameters in the last linear layer. Because the output of the previous layers changes with the gradient.
Even if the input is fixed, and the input of the last layer is a matrix of shape nP . If the matrix (X>X)
is invertible, then the optimal parameter W = (X>X)−1X>Y can be obtained directly by the least
square method. If (X>X) is not reversible, the optimal value of W = (X>X+ λI)−1X>Y can
be obtained by ridge regression. However, the time complexity of solving the inverse matrix is
O(nP 2) ≈ O(n3). When the amount of data is huge, it will be difficult to obtain. Therefore, a more
extensive approach is often to use the gradient descent method to optimize the solution gradually.

Most existing ensemble methods [24, 25, 26] follow a two-stage process: i) building individual mod-
ules; ii) aggregation of outputs of modules. The individual modules are mostly trained independently
without interaction. In contrast, we aim to jointly train the predictors by maximizing their diversity
Ld in Eq. 3 and minimizing their own prediction loss Ls in Eq. 2. Besides, weight sharing is adopted
in fully-connected layers, which reduces the time and space complexity.

4 Experiments

Experiments are performed on tabular datasets with NN, images with CNN, and texts with RNN and
GCN. For tabular datasets, we mainly use Higgs-Boson, KDD10, and Credit and compare it with
some boosting models. For image datasets, we run experiments on CIFAR-10 and CIFAR-100 and
compare it with vanilla CNN. For texts, we mostly test text classification, and the ensemble layer is
added after GRU and LSTM. For the hyper-parameter initialization, γi are initialized to 1/N and the
hyper-parameter α are initialized to 1.And the training procedure of the Ensemble layer consists of
two training stages. Firstly, we optimize W by each single loss Ls in Eq. 2 and Ld in Eq. 3. Then, we
fix W and optimize by Lt by Eq. 5. The number of individual models is set N = 4 universally. All
the experiments are implemented using PyTorch on a single NVIDIA 1080Ti GPU.
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Table 1: Description of the datasets used in the experiments.

dataset #data #feature Description Task Metric
Higgs Boson 10M 28 Dense Classification AUC

KDD10 19M 29M Sparse Binary classification AUC
Credit 7M 107 Dense & Sparse Regression MAE

CIFAR-10/100 60k 32*32 Image Classification Accuracy
dataset #Train #Test #Words #Classes Ave. Length
20NG 11,314 7,532 42K 20 221

R8 5,485 2,189 7K 8 65
R52 6,532 2,568 9K 52 70

Ohsumed 3,357 4,043 14K 23 135
MR 7,108 3,554 18K 2 20
SST 8,544 3,311 18K 5 18

4.1 Dataset and Implementation Details

Datasets. The first dataset is the Higgs boson [27] dataset from high energy physics. To compare
XGBoost and LightGBM, we randomly select 10M instances as training set and use the rest as testing
set. The second dataset is KDD10 [28], which contains many sparse features. As the neural networks
usually perform well on the sparse feature, we can directly use these features. The third dataset Credit
[29]. It contains both Dense and Sparse features. Due to the Dense feature has discrete (jobs et al.)
and continuous features (age etc.), we transform discrete features to one-hot encoding.

The image datasets are CIFAR-10 and CIFAR-100, whose images are both of 32×32. Before training,
we resize them into 256×256. Then we use the pre-trained VGGs or ResNets model as CNN part.
CNNs can be used as a feature extractor to do non-linear transformation. Notably, the feature
extracting and ensemble layer training is in one step.

For text datasets, The 20NG [30] contains 18,846 documents totally categorized into 20 newsgroup
documents. Ohsumed corpus [31] contains 7,400 documents, which is divided into 23 categories.
R52 and R8 [32] are two subsets of the Reuters 21578 dataset. R8 has eight categories and is split
to 5,485 training and 2,189 test documents. R52 has 52 categories and is split to 6,532 training and
2,568 test documents. MR [33] corpus has 5,331 positive and 5,331 negative reviews. SST [34]
contains five categories, which mainly classify the sentiment of movie reviews. Table 1 in shows the
profile of used datasets.

Baselines. To our knowledge, there are only a few ensemble works about neural networks or neural
layers. To prove our ensemble layer has high accuracy on regression and classification tasks, we
compared our model with the state-of-the-art in these domains. For the tabular datasets, it is well
known that boosting tree models such as LightGBM and XGBoost has higher accuracy. We mainly
compared accuracy with them. For the image datasets, most works are related to CNNs. We mostly
compare the ensemble layer with vanilla CNNs on accuracy, time spending, and space spending. For
the text datasets, we mainly do ablation experiments and adopt TF-IDF + LR as baselines. For RNN
models, we adopt RNNs’ output as embedded features. For instance, N = 4 means taking the last
four hidden outputs as the input of the ensemble layer. For GCN and Text-GCN, we use two graph
convolutional layers as feature extractors. The ensemble layer is added after the graph layers.

4.2 Experimental Results

Results on tabular datasets. Part I of Table 2 shows AUC and MAE on tabular and image datasets.
Our ensemble model outperforms on the KDD10 and Credit dataset. However, it performs slightly
worse than LightGBM on the Higgs Boson dataset. We conjecture this is because the Higgs Boson
dataset is dense, which is more friendly to the branching operation used in boosting tree models.
While on sparse datasets, neural network can perform slightly better.

Results on image datasets. Part II of Table 2 shows top-1 and top-5 accuracy score on CIFAR
datasets. Both VGG-16 and VGG-19 models performed much better after adding our ensemble layer
(Note VGG-19 has three more convolutional layers than VGG-16). Although random ensemble can
improve accuracy slightly, it will spend much more time on training and ensemble, especially in such
deep networks.
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Table 2: Evaluation on tabular and images datasets. NN: individual network, R-Forest: random forest,
Ens-NN: random neural network ensemble, DEns-NN: NN+Ensemble layer. Best result in bold.

Part I (tabular data) R-Forest LGBM XGBoost NN Ens-NN DEns-NN
Higgs Boson (accuracy) 82.26% 83.10% 83.04% 82.83% 82.89% 83.08%

KDD10 (accuracy) 76.88% 78.74% 77.96% 77.14% 77.23% 79.19%
Credit (MAE) 16.6413 14.5520 14.6702 14.9901 14.9864 14.1028

Part II (image data) VGG16 Ens-VGG16 DEns-VGG16 VGG19 Ens-VGG19 DEns-VGG19
CIFAR-10 (Top-1 acc.) 93.56% 93.98% 94.89% 93.71% 93.80% 94.91%

CIFAR-100 (Top-1 acc.) 70.48% 71.02% 73.31% 73.12% 73.81% 74.94%
CIFAR-100 (Top-5 acc.) 92.16% 92.23% 93.51% 92.31% 92.37% 93.66%

Part III (image data) Res101 Ens-Res101 DEns-Res101 Res152 Ens-Res152 DEns-Res152
CIFAR-10 (training time) 12m 45m 15m 19m 1h 13m 24m

CIFAR-100 (training time) 27m 1h 40m 31m 43m 2h 21m 49m
CIFAR-10 (model size) 43.3M 136.1M 44.7M 60.7M 231.8M 62.3M

Table 3: Sentiment classification accuracy (%) on six text datasets.

Method 20NG R8 R52 Ohsumed MR SST
TF-IDF + LR 83.19 93.74 86.95 54.66 74.59 41.59

TF-IDF + SVM 82.27 94.03 87.83 53.17 75.58 42.57
CNN-rand 76.93 94.02 85.37 43.87 74.98 45.29

DEns-CNN-rand 78.63 95.01 86.43 44.12 75.53 46.39
CNN-non-static 82.15 95.71 87.59 58.44 77.75 49.32

DEns-CNN-non-static 83.37 96.84 87.73 60.70 78.52 50.33
GRU 73.62 91.44 84.58 49.92 76.39 47.03

DEns-GRU 75.70 92.01 85.56 50.38 77.03 49.45
LSTM 65.71 93.68 85.54 41.13 75.06 48.85

DEns-LSTM 69.57 95.36 87.07 47.93 77.40 49.53
BiLSTM 73.18 96.31 90.54 49.27 77.68 49.72

DEns-BiLSTM 77.30 97.09 92.15 51.29 79.34 51.19
Graph-CNN 81.58 96.67 92.54 62.19 76.94 50.86

DEns-Graph-CNN 82.29 97.14 93.34 62.97 79.19 52.28
Text-GCN 85.93 97.01 93.67 67.94 77.14 50.03

DEns-Text-GCN 87.06 97.73 94.29 68.21 78.37 51.37

Table 4: Accuracy and MAE comparison with different number of used modules i.e. N .

Datasets N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
Higgs Boson 82.83% 82.95% 82.97% 83.08% 83.01% 82.99%

KDD10 77.14% 78.51% 78.87% 79.19% 79.02% 78.76%
CIFAR-10 (Top-1) 93.56% 94.01% 94.32% 94.89% 94.81% 94.66%

CIFAR-100 (Top-1) 70.48 % 72.26 % 72.91% 73.31% 72.98% 72.67%
Credit (MAE) 14.9901 14.6741 14.3318 14.1103 14.1028 14.2881

Part III of Table 2 shows the time and space comparison on the CIFAR-10 and CIFAR-100 datasets.
Compared with the traditional aggregating method, the additional parameters require to estimate are
reduced from #hidden×#node×#model+#model to #node×#model+#model. It can be
seen that the additional time spent on ResNet-152 is more than on ResNet-101. The reason is that the
extra time required for each back-propagation of the ensemble layer in the deeper network is more.
At the same time, due to the reason of weight sharing, the extra space required by the model is also
greatly reduced. Only one more linear layer of space is needed to complete the efficient ensemble.

Results on text datasets. Table 3 shows the accuracy score on text datasets. In CNN-rand model, all
the word vectors are initialized randomly before training, while CNN-non-static adopts pre-trained
word2vec to embed words, which are fixed in the training process. Table 2 and Table 3 indicate with
our ensemble layers, RNNs, CNNs, and GCNs mostly outperform.

4.3 Further Study

We perform additional ablation study to our method as follows.
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Figure 2: Accuracy (%) by different N : (difference of lowest and mean, mean, difference of highest
and mean in 10 trials). For CIFAR-10 (left), we adopt VGGs as backbones. While on the right plot,
A and B in KDD dataset (right) mean two different fully connected networks.

Table 5: Accuracy (%) on E-Text-GCN with different values of α including the computed ones by
our Sigmod function. Note for α = 0, it indicates the diversity loss is removed.

dataset α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1 σ(EW(|∇WL(i−1)
s |))

20NG 86.01 86.53 86.71 86.69 85.51 85.02 87.06
R8 97.07 97.41 97.39 97.34 96.37 95.39 97.73

R52 93.82 94.07 94.13 94.11 93.91 92.79 94.29
Ohsumed 68.06 68.09 68.23 68.14 67.79 67.01 68.21

MR 77.31 77.68 77.91 78.03 77.28 70.75 78.37
SST 50.19 50.73 51.04 50.91 50.33 49.38 51.37

i) To find the best N -value, we conduct additional experiments on the tabular dataset and image
dataset. Specifically, we change the number of tiers in the ensemble layer with the same network
structure. Part V in Table 4 shows the result. On CIFAR-10 and CIFAR-100, we adopt VGG-16 as
the CNN structure. When N = 1, it causes Ld = 0, which is the vanilla CNN. When N = 4, the
average accuracy on five datasets is the best. And with the increase of N , the extra time for training
is gradually increasing. When N >> #hidden, the time complexity of traditional aggregation and
ensemble layer are both O(N).

ii) In the ensemble layer, α is employed to balance the attenuation factor between two Ls and Ld.
When α = 0, the diversity between the individual models is unstable, which can be greatly influenced
by weight initiation; when α is too large, the individual models can not reach the optimum. Since in
the training process, the diversity loss Ld between the models will gradually increase, while the loss
Ls will decrease progressively. Therefore, when α is a non-zero constant, the individual model will
be unstable. We compare the accuracy of different α and the experimental results are given in Table 5.
We can observe that our adaptive setting technique for α outperforms those with a fixed one notably.

Ensemble variance. Ensemble is a general way to reduce the variance and improve generalization.
To verify this, we conduct extensive experiments on tabular dataset and image dataset. Fig. 2 shows
accuracy variation by increasing N . When N gets larger, the accuracy fluctuation becomes smaller.

5 Conclusion

In this paper, we propose the so-called ensemble layer as a building block for combining multiple
deep neural networks, such that the training error Ls is minimized while the individual diversity Ld
can be maximized. Moreover, we theoretically prove the generalization and accuracy improvement
by our ensemble technique. Extensive experimental results show that our ensemble layer greatly
improves the accuracy on training and test datasets with negligible extra time and space cost. The
proposed ensemble layer can also be portable to popular networks such as GCNs, RNNs, and CNNs.
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Broader Impact

Ensemble is a general technology to improve the performance of machine learning models. This
paper makes contributions to ensemble technology, which may ultimately improve the performance
of AI systems. The potential risk is the possible formation of super AI out of the control of human
beings. Also, individual privacy may be put at risk due to the strengthened AI capability.
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