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Abstract

Quantum logic inspired embedding (aka Quantum Embedding (QE)) of a
Knowledge-Base (KB) was proposed recently by Garg et al. [1]. It is claimed that
the QE preserves the logical structure of the input KB given in the form of unary
and binary predicates hierarchy. Such structure preservation allows one to perform
Boolean logic style deductive reasoning directly over these embedding vectors.
The original QE idea, however, is limited to the transductive (not inductive) setting.
Moreover, the original QE scheme runs quite slow on real applications involving
millions of entities. This paper alleviates both of these key limitations. We start by
reformulating the original QE problem to allow for the induction. On the way, we
also underscore some interesting analytic and geometric properties of the solution
and leverage them to design a faster training scheme. As an application, we show
that one can achieve state-of-the-art performance on the well-known NLP task of
fine-grained entity type classification by using the inductive QE approach. Our
training runs 9-times faster than the original QE scheme on this task.

1 Introduction

Knowledge Representation (KR) is a field of Al aiming at representing the worldly information inside
a computer so as to solve complex tasks in an automated manner. Automated Reasoning is another
important field of Al and goes hand in hand with KR because one of the main purposes of explicitly
representing knowledge is to be able to reason about that knowledge, make inferences, assert new
knowledge, etc. Virtually all knowledge representation techniques have an automated reasoning
engine as part of the overall system, for example, automated question answering, document search,
automated dialogue systems, etc.

Predominantly, there are two approaches to KR - (i) Discrete symbolic representation, (ii) Continuous
vector representation [2]]. In symbolic representation, knowledge facts are represented by symbols,
and some form of logical reasoning (for example, first-order logic) is used to infer new facts and
make deductions. Symbolic reasoning is exact but slow, brittle, and noise-sensitive. Popular examples
of symbolic form of knowledge representation include semantic nets, frames, and ontologies [3l].

Vector form representation is a complementary approach to the symbolic form representation. Vector
form representation stems from the field of Statistical Relational Learning 4 5], where knowledge is
embedded into a vector space using a distributional representation capturing (dis)similarities among
entities and predicates. Vector representations are fast, noise-robust, but approximate. Despite being
fast, most of the vector representation techniques do not offer any explicit means of preserving the
input KB’s logical structure inside the vector space. Thus, the logical reasoning tasks typically expe-
rience a lower accuracy when working with vector representation than the symbolic representation
of the knowledge. Making these observations, Dominic [6, [7] suggested using Quantum Logic [8]
style framework for word meaning disambiguation problem in keyword-based search engines. This
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Figure 1: Ilustration of quantum embedding of unary predicate hierarchy. Image inspiration from [2]

idea was further baked by Garg et al. [1]], and an approach called Quantum Embedding (QF) was
proposed, which is claimed to preserve the logical structure of the given KB. In what follows, we
recapitulate the idea behind QE followed by research gaps and our contributions.

A Recapitulation of Quantum Embedding: To recap the original idea of QE proposed in [1]], we
have drawn Figure[I] The left side in Figure [I]depicts a typical unary predicate hierarchy, where
red oval nodes denote unary predicates (aka concepts), and blue circular nodes denote entities. The
right side depicts a cartoon illustration of the QE of the KB given on the left side. The key aspects
of QE follow from this illustrative diagram. 1) QE maps an entity i to a vector x;, and a unary (or
binary) concept predicate C; to a linear subspace S;, respectively, inside a given d-dimensional
vector space R? (complex space C? in the more general case of the binary predicate). 2) The above
mapping is designed so that for each entity and predicate, its logical relationship with other entities
and predicates remains intact in the embedding space R?. Specifically, QE satisfies the following
design desiderata. First, each entity vector x; lies within the subspace S; C R? corresponding to the
concept C; to which entity ¢ belongs (as per left side KB). Second, for any pair of concepts (C;, Cy)
in the left side KB, if C}, is a parent of C}, the corresponding subspaces S;, S, satisfy containment
relationship S; C Sy. Third, the subspace corresponding to (C; AND C,) and (C; OR CY) are given
by S; NSy and S; + Sy, respectively, where + means vector sum and not set-theoretic union. Fourth,
the logical NOT of concept C) is given by S;’s orthogonal complement, and denoted by .S ]L Now,
for any given pair (z;, C}), the probability that entity ¢ belongs to the concept C; is proportional
to the squared length of the orthogonal projection of vector x; onto the subspace corresponding to
(), and this comes from the principle of measurement in Quantum Mechanics [8]]. Finally, it is
important to recall that unlike Boolean logic, distributive law does not hold in the quantum logic.
That means, although we have C; AND (C; OR CY) being equal to (C; AND C}) OR (C; ANDC},), the
corresponding subspaces need not have S; + (S; U S) being equal to (S; + .S;) U (S; U Sg). As
suggested in [[1]], this problem can be alleviated by restricting to axis-parallel subspaces; we also
leverage this fact in our formulation. For binary predicates, the QE [1] idea works almost the same
except that one needs to operate in complex space C? and with pairs of entities, where an entity pair
(4,7) is represented via (z; + 1z ;) € CY.

The method proposed in [T] takes the left side structure of Figure[T]as the input and outputs a structure
of the right side. However, when we receives a new entity (that is, a new blue node) belonging to
some existing concept class at a later point in time, the original method [1]] can not compute its
embedding in an incremental manner. Instead, the original method needs to be rerun from the scratch
by including this new entity.

Research Gaps, Motivation, and Contributions: We observed the following gaps in the original
QE proposal [1]]. 1) QE is transductive and not inductive. Given an unseen test entity, there is no
prescribed way to compute its QE incrementally. 2) QE expresses each of its design desiderata using
an appropriate loss function and then combines all these losses into a non-convex objective function
whose solution gives the QE. The original paper suggests using stochastic gradient descent (SGD)
scheme [9] to find QE. However, it is extremely slow on practical problems that typically involve mil-
lions of entities in a hundred-dimensional space, resulting in more than a hundred million variables. 3)
The original paper hardly sheds any light on the resulting embedding’s analytic/geometric properties.



However, we observed that many such useful properties could be derived - both theoretically and
empirically. These insights indeed guided our way towards developing a faster scheme to solve the
original problem. Motivated by these gaps and observations, in this paper,

[Sections 2] We propose a reformulation of the original model [1]] that allows the ingestion of
entities’ initial feature vectors and thereby, opening a way for the inductive extension. We call this
optimization problem as an Inductive Quantum Embedding (IQE) problem. Our reformulation is a
non-convex, integer-valued, and constrained optimization problem.

[Sections 3] We propose a custom-designed alternating optimization scheme for solving the IQE
problem. This scheme is 9-times faster on a certain application as compared to SGD. In both Sections
2 and 3, we also discuss the analytic/geometric properties of an optimal solution of the IQE problem.

[Sections 4-5] Lastly, we consider an important Natural Language Processing (NLP) task, namely
Fine-grained Entity Type Classification (FgETC). We show that IQE formulation can be made
inductive, and one can infer the QE of unknown test entities for this task. We also show that one can
achieve state-of-the-art performance on this task by using our inductive QE approach. Moreover, IQE
trains 9-times faster than the original QE approach for this task.

2 Quantum Embedding for Inductive Setting

In this section, we develop a reformulation of the QE problem [1]] for unary predicates. Extension to
binary predicate is possible (discussed later). We use algebraic properties of the orthogonal projection
matrices to build such a reformulation (this section) and its solution (next section). For proofs, please
refer to Section 1 of the supplementary material.

Let the given KB contain n entities (blue nodes in Figure[I)) and m leaf-level concepts Correspondlng
to each leaf concept C}, let S; be the subspace in the embedding space Re Let F = {Py,...P,,}
be a set of orthogonal prOJectlon matrices onto the subspaces 51, . .., Sy, respectively. Let z; be a
vector representation of the entity ¢ and 1(¢) be an indicator function expressing whether an entity ¢
belongs to concept C; or not. Typically, an entity vector x; associated with concept C'; would not
be lying perfectly in the subspace S;. As suggested in [1l], the amount of such imperfection can
be measured by the squared Euclidean distance between the point x; and its orthogonal projection
onto the subspace S;. That is, >3;" ) D7 [la; — P;z,]|” 1,(i), where the sum is taken over all
subspaces and entities. Note, all P;s being equal to the identity matrix would trivially minimize
this loss function. To avoid this, we include an additional negative sampling loss term that tries to
decrease the projection length of an entity z; onto all the concept spaces except the ones to which
it belongs. That is, if it is not mentioned explicitly in the input KB that z; belongs to the concept
C;, we force it to be closer to the orthogonal complement subspace .S ]L The loss function, therefore,

becomes:
2;1 Z:; s =P | *1;(3)+ A sz‘—ijUinﬂj(i), (1)

where (2,P) = (z1,...,2,,P1,...,Pp), 1;(i) = (1 — 1;()), and Q; = (I — P;) is an orthogonal
projection matrix for the orthogonal complement subspace SjL. Here, A is the tuning parameter of
the negative sampling: A = O subscribes to the Open World Assumption (OWA), and as )\ increases,
the formulation moves closer to the Closed World Assumption (CWA) [3]].

Next, to inculcate inductive behavior in our formulation, we assume some prior information is
available for each training/test entity in the form of a feature vector f; € RP. f; could be a word
embedding, for example. We now bias an entity’s QE vector z; to correlates with its feature vector
fi- We leverage such a correlation to infer the QE of an unseen test entity from its feature vector.
We appeal to a simple linear model for inducing such a bias and minimize the following regression
loss >0 [Jwi — W HQ, where W € R?*P becomes model parameters. Adding this to , the loss
function becomes

g(z,W,P) < ZZ 1Zm 1Qj:||* () + A |[Pya|* T +0<Z i — WEi|? @)

where « is the hyperparameter. Note that, z; = 0 could trivially drive the first two terms of (Z)) to
zero. To avoid such a trivial solution, we add a constraint, ||z;||> = 1. Before we move, we would
like to mention that although we use a linear model W to induce bias, we don’t use the same model



at the inference time because we found its capacity to be quite low in our experiments. Therefore,
we train a separate deep-net based higher-capacity model ®(-) that maps feature vector f; into the
biased QE z; (obtained through the above formulation). We refrain from using ®(-) instead of W in
the above formulation because of two reasons. 1) Mathematical analysis and closed-form solution
become intractable, 2) ®(-) tends to dominate other QE loss terms and overfits x;’s onto f;’s

Distributive law is one of the important properties of classical logic. Garg et al. [1]] showed that
a sufficient condition for the distributive law to hold is that the projection matrices satisfy the
commutative property. For the same reason, we also include the constraint that the projection matrices
P; € F must satisfy the following commutative property: P,P; = P,P; forall P;,P; € F.
We also include a regularization term to avoid degenerate solution where all P;s are the same.
For this, we force each leaf subspace S; to be as orthogonal to the other leaf subspace Sj, as
possible. In other words, P; is orthogonal to P;,,...P,, for j = 1,...,m. Given that we are
forcing commutative property between projection matrices, using the Corollary 2 of Section 1 of the
supplementary material, orthogonality of P; to P, ...P,, can be modeled by regularization term,
namely Z;’g ; (P;P;:) for each P;. The overall loss function, therefore, now becomes

F (. W,P) Y gz, W, P) +Z;n12j>'ytrPP) 3)

The -y is a control coefficient that measures the degree of orthogonality between a pair of subspaces.
These orthogonality terms try to drive the solution towards low-rank projections (P; = 0 in the
worst case). To avoid such a degenerate solution, we put the constraint saying the rank of the
orthogonal projection matrices P; in the optimal solution must be greater than equal to . We found
experimentally that we obtain a better solution with this extension. The overall optimization problem
then becomes as follows

Minimize  f (z, W,P)

subjectto |jz;]|> =1, i=1,...,n, 4)

Pin = PJPZ for all Pi,Pj e F 5)

tr(P;) >, wherer > 1, P; € F, (6)

where, the objective is given by (E]) and variables are z1, s, ...,T,, W,and P, P5,... P,,. The

problem data are indicator functions ]1 j(7) and feature vectors fi in . The hyper- parameters
are \, a, v, and r defined in (I), (), (3), and (6), respectively. The above optimization problem
is non-convex. We call this problem as Inductrve Quantum Embedding (IQE) problem. In what
follows, we state three key properties of the IQE problem. 1) Rotational invariance, 2) Probabilistic
interpretation of entities’ memberships, and 3) NP-Hardness.

Theorem 1. Rotational Invariance of IQE: The IQFE problem is invariant to rotational transforma-
tion. That is, if {x1,...,2n, W,P1,... Py} is a solution of the IQE problem, and V is any d X d
orthonormal matrix then {Vx1,...,Vx,, VW, VP, vl...vp,, VT} is also a solution.

Proof: The proof is given in the Section 2 of the supplementary material.

Probabilistic Interpretation of Entities’ Memberships: For any given pair (z;, P;), the probability
that entity ¢ belongs to the concept C} is proportional to the squared length of orthogonal projection
of vector z; onto P;, i.e. [[Pjz;||2. It comes from the principle of measurement in Quantum
Mechanics [8]. Our problem can now be interpreted as maximizing the probability of an entity
belonging to the ground truth concepts and minimizing the probability of entity belonging to the
other concepts.

NP-Hardness: We observed that if we use different -y for each (j, j') pair, the IQE problem becomes
NP-hard. The proof is given in the Section 3 of the supplementary material.

Binary Predicate Extension: The above framework can be extended to a binary predicate setting.
For binary concept predicate C}, we are given entity pairs that are related through predicate C';. For
example, Mary is_mother_of Sam. Like [1], we can denote the binary predicate “is_mother_of” via
a subspace of complex space CH, Mary (Sam) via vectors Tyarry (Zsam) € R?, and the pair (Marry,
Sam) via Tyarry + (Tsam € C¢. Section 4 of the Supplementary Material sheds further light on this
extension.



3 Solution

We solve the IQE problem using alternating minimization. First, we clamp the variables
W.P,, Py, ... P, as well as constraints involving them and solve the resulting IQE problem over

variables x1, o, ..., Z,. In the second step, we clamp x1, zs, ..., 2z, and P1,Ps,...P,, as well as
their constraints (@) - (6) and solve the resulting IQE problem over W. Finally, in the third step, we
clamp 1, s, ..., z, and W as well as their constraints (4)) and solve for P1,Ps, ... P,,. We repeat

these three alternating steps till convergence. The steps are given in Algorithm I]

Algorithm 1: Alternating Minimization Scheme for IQE Problem

Pick appropriate values for the hyperparameters d, A\, o, v, 7,p ;

Given a KB, construct the indicator function 1 (7), feature vectors f;, and initialize 2;; randomly;

while (Solution do not converge) do
Clamp variables (W, P) and solve the problem given by (7)) - (8 [called as Problem 1];
Clamp variables (x, P) and solve the problem over W given by [called as Problem 2];
Clamp variables (z, W) and solve the IQE problem over P;s [called as Problem 3];

Problem 1 (Optimizing over x): Observe, when W, Py, P5,...P,, are clamped to the values
that satisfy constraints (5) and (6)), the objective function (3) is convex quadratic in z;’s. The
resulting problem becomes Quadratically Constrained Quadratic Program (QCQP) and separable in
the variables x1, . .., x,. Therefore, we can solve this QCQP problem by solving a separate problem
(called Problem 1) for each x;. Ignoring the constant term and denoting I; as a d-by-d identity matrix,
the Problem 1 for an z; is

e T T
Minimize x; R;z; — 2z; ¢;, @

subjectto [|z;|* =1, where Ry = aly + > L Q15(0) + AP;T;(i) and ¢; = aW ;. (8)
i

We show in Section 5 of the supplementary material that the optimal solution of is given by
(R; — pIy) x; = ¢;, where Lagrange multiplier o (for equality constraint) can be obtained by solving
the following secular equation [10]: ijl C?j (A\j—w)? =1 and p < Ay, ¢;j is the ' component
of the vector ¢;, and \; < Ao... < )\g are the eigenvalues of R;. The LHS of this secular equation
is a monotonically increasing function of y, taking value in the range of (0, +0c0), as we move p in
the interval (—oo, A\1). Therefore, it must have one unique solution in the interval (—oo, A;). We

obtained y numerically using the bisection method [11]].

Problem 2 (Optimizing over W): We consider the problem of finding an optimal solution W &
R?*P, when (x, P) are clamped to the values that satisfy constraints —@. The objective function
as a function of W, ignoring constant terms, reduces to

F(W) = Z; tr (WTWfZ- T —ow fix?) — (WFFTWT) — o (XFTWT), 9)

where F € RP*™ and X € R%*" are matrices whose columns are f; and z; respectively. In @), we
use the property that the trace is invariant under cyclic permutation and transpose. Computing the
gradient of f(W) with respect to W and setting it to zero, gives

(WF-X)FT = 0 — W =XF"'. (10
where FT € R"*? is the pseudo-inverse of F.

Problem 3 (Optimizing over P): Here, we consider optimizing over the subspaces when x4, . .., z,,
and W are clamped to their current estimates. Since all the projection matrices P;’s commute, they
are simultaneously diagonalizable via a common orthogonal matrix (due to Theorem 9 given in
Section 1 of the supplementary material). Furthermore, Projection matrices can be viewed in terms
of diagonal matrices because IQE is rotationally invariant. Taking P; = diag(y; 1, ..., ¥;j,4) Where
each ;. € {0, 1}, the loss function (3)) can be written in the following manner:

d
Zk:l Z;n:l (Ziesj T+ Uik <)\ Zigsj xiy — Zz‘esj a:?k> + Z:Lj ’YZ/j,k%/,k)



where the first term inside the sum is constant and can be dropped. The coefficient of y; 1, is denoted

by
def 2 2
i = A T — T3 - 11
¢]7k Ziisj i,k Ziesj i,k ( )
For the reason discussed later, we refer to ¢; i as potential function. The Problem 3 now becomes,
d

m m m
minimize Zk=1 <Zj=1 YikPik ijl Zj/>j yj’kyj/’k) ’ (12)

subject to y; » € {0,1} and rank constraint ZZ:1 yjk > 7. We solve the problem approxi-
mately via a heuristic. We first minimize (I2) without considering the rank constraint. Subsequently,
we add some of the y; ;s greedily to fulfill the rank constraint and increase the objective value as
minimal as possible. Note, in the absence of rank constraint, the objective function (I2) is separable
in k. Therefore, for each k, minimization over y1 i, Y2k, - - - , Ym, i reduces to

. nNg  ~ n

mind_ C ikt ( 2’“) , (13)
where ny, = [{j : yjr = 1} and ¢1 1 < P21 ... < Gy is the sorting of ¢ ;’s in increasing order.
We made two simplifications to reach objective (I3): 1) If nj, = ¢ is the solution, then y;; = 1
corresponding to the smallest ¢ values of ¢; , and the rest are zeros. 2) Only non zero y; i, Y k
pairs contribute to the sum of the orthogonality terms. The second term in (I3)) is precisely the
number of ways to choose 2 entries of y; ; amongst those taking the value 1. Suppose we have
chosen (¢ — 1) smallest entries of ®;,k» then, an additional contribution of adding the £t smallest

entry to the solution is &g,k + v ((é) - (z;)) = qge,k + (¢ — 1). This increment also increases for

each successive . From these observations, we see that it suffices to sort all the ¢, ;’s in increasing
order and then greedily keep assigning y; . = 1 until the objective function value decreases. Then,
we greedily add some of the y; ;,’s to fulfil the rank constraint and with an increase in the objective
value as minimal as possible. In Section 6 of the supplementary material, we provide a pseudo-code
for the above procedure and an alternative way to solve (12)).

Geometry of Entity Vectors and Concept Subspaces: Recall, IQE problem outputs axis-parallel
subspaces. That is, any concept C; is denoted by an axis parallel subspace S; of the quantum
embedding space. Also, for an entity 4, Pr (z; € C;) o ||P;;||%. Therefore, if C; has an axis ¢ in its
subspace, as square of 0" coordinate of x; increases, Pr (x; € C;) also increases. In lieu of this fact,
our proposed scheme for Problem 3 has an interesting geometric interpretation. Recall, our scheme
(in Problem 3) to find the best set of axes for the subspace P; is based on the idea of reducing the
potential function (TT), which takes the difference of two terms. The first term in ¢; 4, is the sum of
the square of component & across all those entity vectors which do not belong to the subspace S;.
On the other hand, the second term is the sum of the square of component % across all those entity
vectors that belong to the subspace S;. The constant A is a parameter that sets the relative importance
of the two terms. Thus, if the potential function ¢; ;. is least across all the dimensions, the axis £ is a
critical axis in the representation of the subspace S;.

4 Fine-Grained Entity Type Classification

Named Entity Recognition (NER) is a basic NLP task. It comprises two subtasks - (i) detecting
mentions of named entities in the input text, (ii) classifying the identified mentions into a predefined
set of type classes (aka schema). The classical NER literature [12} [13 [14}[15] focuses on coarse-
grained entity type classification comprising only a few types in the schema, for example, person,
location, organization, etc. The recent literature |16} [17, [18] (19} 20} 21} 22]] has shifted the focus
towards fine-grained entity type classification (FgETC), where schema contains more than 100 type
classes arranged in a hierarchy. The FgETC task critically depends on the context. For example,
consider two sentences - (i) Obama was born in Honolulu, Hawaii., (ii) Obama taught constitutional
law at the University of Chicago Law School for twelve years. One can infer person as the only
type of Obama from the first sentence, whereas it can be refined to the lawyer in the second one. In
FgETC, entities mentions are already given, and the task is to classifying these mentions into a given
fine-grained type hierarchy. A state-of-the-art technique for FgETC [23]] uses an attention-based
neural network to capture an entity’s context and uses the same to classify.
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This section aims to demonstrate that QE learned by our proposed IQE method are quite effective in
training a task-agnostic map Zesr = P(fies), Which maps the set of context tokens’ feature vectors
fiest of an unseen entity to its QE vector x. The inferred quantum embedding can then be used as
a high-quality feature vector in downstream tasks. We use FgETC as an example of a downstream
task and show that the class labels inferred from ® (£ ) achieve state-of-the-art performance. For
comparison sake, we also train the map ®(-) using the QE learned from the original scheme of Garg
et al. [T]], which does not make use of initial feature vectors f;. The map ®(-) offers the following
advantages: 1) By definition, a QE vector comprises an intuitive geometric interpretation regarding
classes in the hierarchy to which it belongs. Hence, no separate classifier needs to be trained. 2) It
alleviates the transductive limitation of QE and makes it inductive. 3) The classification accuracy is
on par with the state-of-the-art. The details of the fitting map ®(-) are given next.

For each training entity ¢, we take its left (right) context (including the entity ¢) and tokenize the
same. Each token is replaced with its 300 dimensional Glove vector [24]. The set of these Glove
vectors is denoted by f;. Adding the left (right) context vectors from this set f; gives us the left (right)
context vector for the entity ¢ and we denote this by f;;( f;-). Appending (or adding) left and right
context vectors f;; and f;. gives us the overall context vector f; for the entity ¢ having size 600
(or 300). Using f; and the given type classes, we generate quantum embedding x; for each entity
7 in the training set (via Algorithm . Next, we learn the feature map ®(-) between the set f; of
left-right context token vectors and the quantum embedding x; of an entity i. We model this ®(-) via
a Bi-LSTM network followed by a feed-forward neural network G(-, w), where w is its parameters
(see Figure . G (-, w) consists of fully connected layers with a tanh activation function. The output
dimension for each of these layers is d, output of the last layer is normalized to the unit norm, and the
loss is Euclidean distance. The strategy to predict test labels is as follows. We trace the type hierarchy
in a top-down manner. We pick type j as the entity’s class if we have already picked its parent type,
say j’, as its class, and we have ((|| Py @ (fiest) |2 — || P @ (Fiest) [|*) /|| Py @ (Feest) [|?) < 7/0, where 7,6
are hyper-parameters and 6 = 1 if j/ has less than 10 children, otherwise it is tuned. At root, we pick
the type j that has the highest || Pjs®(fies)||? score. Here, fiey is the set of left-right context vectors.

5 Experiments

Dataset: For FgETC task, the relevant datasets include FIGER [16,[19], TypeNet [21], Ontonote [13|
25]]. We experiment with the FIGER dataset. This dataset consists of 127 different entity types
arranged in two levels of the hierarchy (106 leaf and 21 internal nodes). The detailed hierarchy is
shown in the supplementary material (Section 7). Key statistics about this dataset is given in Table ]

Quantum Embedding Step: As discussed earlier, we first generate the quantum embedding for each
training entity using Algorithm [T} We run this algorithm until convergence, which was less than 10
iterations (see Figure[6]for the convergence trend). Various hyper-parameter values pertaining to this
step are summarized in Table[2] The last column captures the values tried during parameter selection.
The second last column gives the final chosen value. The choice was made through training accuracy.

To test the quality of generated quantum embeddings, we randomly sampled 20 entities from
a randomly chosen 10 classes and plotted their quantum embeddings z; via a 2-dimensional
t-SNE plot [26]. We repeated the same process but replacing x; with context feature vector
fi- These plots are shown in Figures [3] and {4 respectively. It is clear from these plots that
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Figure 3: t-SNE plot for QE obtained via IQE  Figure 4: t-SNE plot for Glove embeddings

quantum embeddings are much better clustered in terms of class labels. We further did one
more analysis. For every pair (i,j) of these randomly selected entities, we computed pair-

wise distance between them in the following manner: dy,. = |lx; — xsz; diy = | fi — fj||2§
diree = Path length in the hierarchy tree between class labels of entities © and j. We plotted a lin-
ear regression plot between dy,. and dg. (as well as d,,), as shown in Figure@ It is clear from this
figure that quantum embeddings denote better separation behavior about class labels.

Finally, we also made the clock-time comparison of our alternating scheme with the original SGD
based scheme [1]] on the FIGER dataset. This comparison is shown in Table E In this table, 74,
and i, denote per iteration time and number of iterations, respectively, taken during any QE
method training. The quantities t,,,, and %, denote average time per epoch and number of epochs,
respectively, for training the feature map ®(-). The average time ¢, is approximately the same for
both the methods. There are now two speedup factors - one without including 7;,,, and other with
including T,,,. Note, the neural network ®(-) comes after QE in our pipeline (as shown in Figure [2)),
and it learns the mapping from the input sentence feature vector to the QE, irrespective of which
method was used to generate the QE (our method or the original method [[1]). Therefore, a more
meaningful comparison would be to compare our method with the original method [[1] only in terms
of the time taken to generate QE (i.e. Ty.). As per this comparison, our method is 9.08 times faster
than the original method [[L].

Method lge ige | Thge = tge X ige ton | fnn | Tan = tan X inn | Tge + Thn
Ours 510.6 6 3063.6 | ~ 1275 6 7650 10713.6
(L] 27.8 | 1000 27800.0 | ~ 1275 6 7650 35450.0
Speedup 9.07 3.31

Table 1: Time comparison of our method with original method of [1]]. All times are in seconds.
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Figure 5: Correlation between entities distances Figure 6: Convergence behavior of Algorithm

Learning to Transform Context Vectors into Quantum Embedding Vectors: In this step, we
learn the map ®(-) between left-right context vectors of a training entity and its quantum embedding



(achieved in the previous step). Various hyper-parameters used in this step are given in Table[3] We
implemented the IQE model using PyTorc

Parameter Symbol Value Tuning-Range Parameter Symbol Value Tuning-Range
QE dimension d 300 [100,300]  Glove vectors dim 300 [300]
fi dimension p 300 [300, 600] Learning rate n  0.0001 [0.0001-0.01]
Reg. parameter A 10[1,2,5, 10, 100] Threshold Parameter 7 0.15 [0.1-0.95]
Reg. parameter « 0.001  [0.0001-0.1]  Threshold Parameter ¢ 5 [1-15]
Reg. parameter -~y 1 [0.001-1] # Bi-LSTM layers 1 [1,2]
Minimum Rank 7 5 [1,2,5]  #Layersin G(,-) 3 [1-4]

Table 2: Hyperparameters for learning QE Table 3: Hyperparameters for learning ®(-)

Results: In Table[5] we have summarized the performance of our quantum embedding based scheme
for the FgETC task on the test set of the FIGER dataset. We have used the performance metrics that
are standard in this literature [16]]. We observe that we are able to beat most of the baselines on this
task and obtain state-of-the-art results. With regard to the strongest baseline of [23]], we are up by
4-points on Accuracy but down by 2.5-points on F'1. At this moment, we would like to highlight that
our inductive model for QE is trained in a task agnostic manner. The trained model for inductive
quantum embedding can be used for any downstream task, for example, the FgGETC task in this case.
We also evaluated the performance (row 1 in Table[5) if we train ®(-) using the original QE.

Split #Sentences #Entities #Tokens Method Accuracy Macro F1 Micro F}
Train 1505765 2690286 1342679  QE (Garg et al.[1])) 0.383 0.420 0.347
Test 434 564 713602 FIGER (Liang et al. [16]) 0.471 0.617 0.597
Table 4 Summary of FIGER AFET (Renetal. [19)) 0533  0.693  0.664
dataset. We used 10% of the Test Attentive® (Shimaoka et al. [23]) 0.589 0.779 0.749
set as development set to tune pa- 1QE (Ours) 0631 0764 0724
rameters 7, §, and rest 90% for the Table 5: Performance on test set. T They used 95% — 5%
final evaluation. split of the Train set for training and development.

Insights: i) QE obtained through IQE formulation is an improved representation over the Glove
context vector (as evident from Figures[3] 4} and[5). ii) One can extend the QE framework for the
inductive setting in a task agnostic manner. Also, the induction quality is far superior when QE is
learned through IQE formulation than the original formulation [1] (as evident from Table E]) iii) Our
proposed solution for the IQE problem converges 9.08-times faster than the original scheme of [1]].

6 Conclusions and Future Directions

This paper offers two critical improvements to the recent idea of QE [1]] - from transductive to the
inductive setting, and a faster scheme to compute QE. Both the improvements were demonstrated
through a well-known NLP task of FgETC. Our proposed IQE approach achieves state-of-the-art
performance on this task and runs 9-times faster than the original QE scheme. An important future
direction would be to provide a richer model to ingest initial feature vectors into the IQE model. This
may include pair-wise information, Bayesian prior, attention-based prior, etc.

>The code to train and evaluate our model is available at https://github.com/IBM/e2r/tree/master/neurips2020.



7 Broader Impact

Knowledge Representation (KR) is an important subfield of Artificial Intelligence and plays a crucial
role in designing any complex Al system that aims to mimic human like reasoning. Prominent
examples of such a system include automated question answering, document search, and retrieval,
product recommendation, automated dialogue/conversation, automated navigation, etc. The purpose
of KR is to encode a symbolic Knowledge-Base (KB) within a machine reasoning system. These
KBs could be domain/application-specific, such as medical, fashion, retail, e-commerce, etc; could
be in public domain, or proprietary to an organization/enterprise. The most common examples of
KBs in the public domain include DBPedia [27] and WordNet [28]].

There are two key approaches to KR - (i) Discrete symbolic representation, (ii) Continuous vector
representation [2l]. In symbolic representation, knowledge facts are represented by symbols, and
some form of logical reasoning (for example, first-order logic) is used to infer new facts and make
deductions. Symbolic reasoning is exact but slow, brittle, and noise-sensitive. Vector representation
stems from the field of Statistical Relational Learning [4} 5], where knowledge is embedded into a
vector space using a distributional representation capturing the (dis)similarities among entities and
predicates. Vector representations are fast, noise-robust, but approximate. Despite being fast, most of
the vector representation techniques do not offer explicit means of preserving the logical structure
of the input Knowledge-Base (KB) inside vector space. Making these observations, Dominic [6] [7]
hinted at using Quantum Logic [8]] framework to fix the word meaning disambiguation problem in
keyword-based search engines. This idea was further developed and extended recently by Garg et al.
[L], where they have proposed a new approach for vector representation of symbolic KBs — called as
Quantum Embedding (QFE).

This paper identifies two critical gaps in the QE approach [1]] for KR. The end outcome is a refinement
of the QE idea bridging these gaps. Specifically, we noticed that the original idea of quantum
embedding [1] is transductive (and not inductive) in nature. That is, it can learn to embed a given
symbolic KB; however, for an unseen knowledge element (entity or predicate), it does not prescribe
any recipe to embed the same in an incremental way. The only way seems to restart from scratch and
reproduce the whole embedding by including the new knowledge element. This, in our view, limits
the applicability of the quantum embeddings in practical applications. Further, we also noticed that
the computational scheme suggested in [1]] for generating quantum embedding is quite slow because
it is based on the general-purpose Stochastic Gradient Descent (SGD) algorithm.

To address the above gaps, we first propose a reformulation of the original model [1]] that allows
ingestion of entities’ initial feature vectors and thereby, opening a way for the inductive extension.
We call this optimization problem as Inductive Quantum Embedding (IQE) problem. Next, we
discover some interesting analytic and geometric properties and leverage them to design a faster
training scheme. As an application, we consider the well-known NLP task of fine-grained entity type
classification [16, 117, 18} [19} 20, 21} 22]]. We show that one can use IQE formulation for this task to
infer quantum embeddings of unseen test entities and subsequently use those quantum embedding
(instead of initial feature vectors) to infer the entity’s class label. We show that our proposed IQE
approach achieves a state-of-the-art performance on this task and runs 9-times faster than the original
QE scheme.

Although, a good part of this paper is theoretical in nature, the refinements proposed in this paper can
impact the adoption of QE idea for knowledge representation in broad range of applications including
automated question answering, document search and retrieval, product recommendation, automated
dialogue/conversation systems, etc. These applications are now an integral part of our daily lives.
We witness them in customer support service, e-commerce platforms, online education platforms,
voice-based search, home automation, vehicle navigation, etc. Improving such systems’ performance
offers huge societal benefits such as cost/time savings, removing repetitive tasks, and increasing
autonomy for the elderly/children. However, this also poses societal risks, including adversarial
attacks, hacking into such systems, and biasing them with malicious intents, risk of having different
kinds of biases in training data, etc. We would encourage the research community to study further
the extent to which such representations can be manipulated by an adversary either by biasing the
training data or hacking the system.
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