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1 Algebra of Subspace

A theorem involving a subspace can be interpreted as theorem about orthogonal projection matrix
in the sense that subspace may be expressed as a linear transformation on Rd [1]. Therefore we
formulate the IQE problem in term of orthogonal projection matrices. To formulate the IQE problem
as a non-convex optimization problem, we need some facts about orthogonal projection matrices. In
this section, we review some important concepts and key results about orthogonal projection matrices.
We have sketched out the proofs for some of the theorems, while the proof for other theorems can be
found in [2], [3], [4].
Theorem 1. Intersection of subspaces [4]: Let P1 and P2 be the orthogonal projectors onto the
subspaces S1 and S2 respectively. In general, the subspaces S1 and S2 are not necessary disjoint.
The necessary and sufficient condition for the matrix P1P2 to be an orthogonal projector onto the
subspace S1 ∩ S2 is

P1P2 = P2P1. (1)

Proof: We are giving the proof here for the sake of self sufficiency.

Assume P1P2 = P2P1. We show that P1P2 is an orthogonal projector onto the subspace S1 ∩ S2.

(P1P2)
2

= P1 (P2P1) P2 = P1 (P1P2) P2

= P2
1P2

2 = P1P2

this establishes that P1P2 is a projection matrix. To show it is orthogonal projection, consider
(P1P2)

T , which simplifies to

(P1P2)
T

= PT2 PT1 = P2P1 = P1P2,

therefore P1P2 is an orthogonal projection matrix. To show that it is indeed an orthogonal projection
matrix onto the subspace S1 ∩ S2, let x ∈ S1 ∩ S2. Then, P1 (P2x) = P1x = x. Furthermore, let
x ∈ (S1 ∩ S2)

⊥
= S⊥1 + S⊥2 and x = x1 + x2, where x1 ∈ S⊥1 and x2 ∈ S⊥2 . Then,

P1P2x = P1P2x1 + P1P2x2
(a)
= P2P1x1 + 0
= 0

where, we used the assumption P1P2 = P2P1 to derive the first term in (a), while the second term
is zero because x2 ∈ S⊥2 and hence it must be that P2x2 = 0. This proves the fact that P1P2 is an
orthogonal projection matrix onto the subspace S1∩S2. To prove the converse, assume that P1P2 is an
orthogonal projection onto the subspace S1∩S2. It is easy to see P1P2 = (P1P2)

T
= PT2 PT1 = P2P1.
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Corollary 2. Let P1 and P2 be the orthogonal projectors onto the subspaces S1 and S2 respectively.
The necessary and sufficient condition that S1 and S2 are orthogonal subspaces if and only if

P1P2 = P2P1 = O, (2)

where O is a zero matrix.
Theorem 3. Inclusion of subspace: Let P1 and P2 be the orthogonal projectors onto the subspaces
S1 and S2 respectively. The following statements are equivalent:

1. S1 ⊂ S2.

2. P2P1 = P1.

3. P1P2 = P1.

Proof:
[1 =⇒ 2]: Assume S1 ⊂ S2. For every x ∈ Rd, P1x ∈ S1 ⊂ S2. Therefore P2(P1x) = P1x,
which implies P2P1 = P1.

[1 =⇒ 3]: Since S1 ⊂ S2, this implies orthogonal complement subspaces S⊥1 and S⊥2 satisfies
S⊥2 ⊂ S⊥1 . Apply the above proof to the orthogonal complement projectors Q1,Q2 gives

Q1Q2 = Q2

(I− P1) (I− P2) = I− P2

P1P2 = P1.

[2 =⇒ 1]: Assume P2P1 = P1. For every x ∈ Rd, P1x ∈ S1, which implies P1x = P2P1x ∈ S2,
which implies S1 ⊂ S2.

[3 =⇒ 1]: Assume P1P2 = P1, this implies Q1Q2 = Q2, which in turn implies S⊥2 ⊂ S⊥1 , which
implies S1 ⊂ S2.
Theorem 4. Union of subspaces [2]: Let P1 and P2 be the orthogonal projectors onto the subspaces
S1 and S2 respectively, and let P1+2 denote the orthogonal projector onto the subspace S1+2 =
S1 + S2. Then the following statements are equivalent:

1. P1P2 = P2P1.

2. P1+2 = P1 + P2 − P1P2.
Corollary 5. Let P denote the orthogonal projection onto the subspace S = S1 + S2, and let P1, P2

be the orthogonal projectors onto the subspaces S1 and S2 respectively. If S1 and S2 are orthogonal,
then

P = P1 + P2.

Theorem 6. De Morgan’s law of subspaces: Let P1 and P2 be the orthogonal projectors onto the
subspaces S1 and S2, respectively. If P1 commutates with P2, then

(S1 ∩ S2)
⊥

= S⊥1 + S⊥2 .

Proof: Assume (S1 ∩ S2)
⊥. According to the theorem 1, this implies

I− P1P2 = I− (I−Q1) (I−Q2)

= I− (I−Q1 −Q2 + Q1Q2)

= Q1 + Q2 −Q1Q2,

which is equivalent to S⊥1 + S⊥2 .
Theorem 7. Distributive law of subspaces [4]: Let Pi,Pj ,Pk denote the orthogonal projector onto
the subspace Si, Sj , Sk respectively. If PiPj = PjPi, PjPk = PkPj , and PiPk = PkPi, then the
following relations of distributive law of subspaces hold:

Si + (Sj ∩ Sk) = (Si + Sj) ∩ (Si + Sk) ,

Sj + (Si ∩ Sk) = (Si + Sj) ∩ (Sj + Sk) ,

Sk + (Si ∩ Sj) = (Si + Sk) ∩ (Sj + Sk) . (3)
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Commutativity of the orthogonal projection matrices is an important condition for the distributive
law of subspaces to hold. One way to satisfy this condition is to consider the following theorem.

Theorem 8. Simultaneous Diagonalization [3]: Let F be a set of orthogonal projection matrices.
Projection matrices satisfy a pairwise commutative property PiPj = PjPi for all Pi,Pj ∈ F if and
only if there exist a common orthogonal matrix V such that

Pj = VDjVT for all Pj ∈ F , (4)

where Dj is a d× d diagonal matrix with 0 and 1 on the diagonal.

The purpose of the theorem 8 is threefold. First, it enables distributive property of subspaces to hold
true through (4). Second, it implies set F is finite. Under the condition of the theorem 8, V is fixed
for each Pj ∈ F , (4) implies that Pj is isomorphic to the diagonal matrix Dj . Since the diagonal of
the diagonal matrix Dj is a d-component binary vector, there are 2d orthogonal projection matrices
possible in a d dimensional Euclidean space Rd. Third, when V equals to identity matrix, Pj equals
to Dj which is an axis-parallel subspace.

Axis-Parallel Subspace: Axis-parallel subspace is a subspace whose boundaries are either parallel or
perpendicular to the standard basis. In a d dimensional Euclidean space Rd, axis-parallel subspace is
spanned by the subset of the standard basis vectors {e1, e2, . . . , ed}. Given a d dimensional Euclidean
space Rd, there are 2d distinct axis-parallel subspaces possible. The following theorem captures the
essence that projection matrices onto the axis-parallel subspace are diagonal matrices.

Theorem 9. [4]: Let A = [ei1 | ei2 | . . . |eim ], where ei1 , ei2 , . . . , eim is subset of a standard basis
vectors of Rd. Then the orthonormal projector P onto the subspace S = range(A) spanned by the
basis vectors ei1 , ei2 , . . . , eim is given by

P = AAT =

m∑
j=1

eije
T
ij , (5)

which is a d× d diagonal matrix with 0 and 1 along the diagonal.

2 Rotational Invariance of IQE

We show that the (IQE) problem, defined in the Section 2 of the main paper, is invariant to rotational
transformation.

Proof for Theorem 1 of the Main Paper
In the objective (3) of the main paper, if we replace each xi, W, and Pj by Vxi, VW, and VPjVT
respectively, where V is a d-by-d orthonormal matrix, then it becomes

n∑
i=1

m∑
j=1

(∥∥∥VQj

(
VTV

)
xi

∥∥∥2 1j(i) + λ
∥∥∥VPj

(
VTV

)
xi

∥∥∥2 1̄j(i))+

+ γ

m∑
j=1

∑
j′>j

tr
(

VPj
(

VTV
)

Pj′VT
)

+ α

n∑
i=1

‖Vxi − VWfi‖2

=

n∑
i=1

m∑
j=1

(∥∥VQjxi
∥∥2 1j(i)+λ ‖VPjxi‖2 1̄j(i)

)
+ γ

m∑
j=1

∑
j′>j

tr
(

VPjPj′VT
)

+

+ α

n∑
i=1

‖V (xi −Wfi)‖2 (6)

=

n∑
i=1

m∑
j=1

(∥∥Qjxi
∥∥2 1j(i)+λ ‖Pjxi‖2 1̄j(i)

)
+ γ

m∑
j=1

∑
j′>j

tr (PjPj′)+α

n∑
i=1

‖xi −Wfi‖2.(7)

In (6) we used VTV = I, since V is an orthonormal matrix. In (7) we used the facts that the
2-norm of the vector and trace of the matrix are both invariant to orthogonal transformation [5].
Therefore, the objective function is invariant to rotational transformation. Similarly, it could be
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shown that the constraints (4)-(6) of the IQE problem, described in the main paper, are also
rotational invariant. Therefore if {x1, . . . , xn,W,P1, . . .Pm} is the solution of the IQE, then
{Vx1, . . . ,Vxn,VW,VP1VT , . . .VPmVT } will also be the solution. Thus, IQE is rotational invari-
ant.

3 NP-Hardness of IQE Problem

Here, we consider an extension of the objective function covered in the main paper, wherein we
allow the coefficient of orthogonality penalty term to take multiple values. This makes the problem
NP-hard as we show below. Formally, we consider the objective function where the coefficient for
orthogonality terms depends on both j and j′. We keep it as γj,j′ . We consider the following problem:

minimize
d∑
k=1

 m∑
j=1

θk + yj,kφj,k +
∑
j 6=j′

γj,j′yj,kyj′,k

 , (8)

such that
d∑
k=1

yj,k ≥ r and yj,k ∈ {0, 1},

where φj,k
def
= λ

∑
i/∈Sj

x2i,k −
∑
i∈Sj

x2i,k. (9)

Independent Sets in Graphs: Let G = (V,E) denote a graph of |V | nodes. An independent set
(aka stable set) S in G is a subset of the vertices of G such that for every two vertices in S, there is
no edge connecting the two. The independent set problem is the problem of finding a independent
set with highest cardinality in a given graph. Finding an independent set of largest size is a classical
NP-hard problem, with many diverse applications [6, 7, 8].
Theorem 10. NP-Hardness: The optimization problem (8) is NP-hard even for the simplest case of
d = 1, no rank constraint (r = 0), and γ taking only 2 possible values depending on j, j′.

Proof: We can prove the above claim by reducing the independent set problem to this problem.

We keep the dimension d = 1 , so there is no summation over k. We set number of subspaces to the
number of vertices |V | in the input problem. We set φj = − δ

2.|V | ∀j for some small δ. We also set

γj,j′ =

{
0 if(j, j′) /∈ S
δ if(j, j′) ∈ S

Now, this problem is equivalent to selecting a maximum subset of vertices such that there no edge
between the selected vertices. The optimal value of this optimization problem is same as the optimal
value of the given instance of stable set problem.

4 Binary Predicate Extension

In the case of binary predicates, we are typically given a set of entities, a set of binary predicates, and
a set of relation triples in the form of (es, r, eo) as training examples, where entities es, eo are known
as subject and object, respectively for the triple and r denotes a relation between them. For example,
Mary is_mother_of Sam. In this example, es = Mary, eo = Sam, r = is_mother_of.

To proceed further, we make following notional convention.
n = Number of unique entities
m = Number of unique binary relations
t = Number of relation triples given in training data
E = Set of entities. This means, |E| = n

R = Set of binary relations. This means, |R| = m

T = Set of training triples. This means, |T | = t

We make a few more conventions as follows.
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1. We denote any triple given in the training set by (ei, rk, ej) where i, j ∈ [n], k ∈ [m], ei, ej ∈ E,
and rk ∈ R.

2. Observe, we must always have T ⊆ (E × R × E). Thus, we can define the training set in an
alternate manner by defining an indicator function 1k(ij) as follows.

1k(ij) =

{
1 if (ei, rk, ej) ∈ T
0 o/w

;∀ei, ej ∈ E, rk ∈ T

where i, j = 1 → n, k = 1 → m. Now, we write the overall IQE formulation for the binary
predicate. We make the following assumptions for this formulation.

1. To simplify the discussion here and remain focused on binary predicates extension, we ignore the
term related to ingestion of initial feature vectors fi, fj for the entities ei, ej ; because it can be
done in a manner similar to what we did for the unary predicate case in the main paper.

2. There may be a hierarchy among binary relations as well. For the modeling sake, we assume that
it is a flat hierarchy, i.e. all the binary relations are connected to root in the relation hierarchy and
each of these binary relations have one or more instances given as training examples. Taking care
of multi-level is quite straightforward by incorporating corresponding loss terms as suggested in
the section on Recapitulation of Quantum Embedding in the main paper.

3. Unlike our unary predicate model in the main paper and also unlike the assumption made by
[4] for the binary predicate case, we do not adhere to the assumption of axis-parallel concept
spaces and instead admits non axis-parallel concept subspaces. While the axis-parallel concept
spaces assumption buys the distributive law holding true (as shown by [4]), this assumption
severely limits the representation capability of the quantum embedding for binary predicates
case because the cross-correlation terms between subject and object entities gets canceled in the
original formulation. The net result being that the resulting representation admit large number
of invalid triples into a relation subspace. This effect can be seen in the poor performance of the
original quantum embedding [4] on WN18 dataset. Furthermore, for the simple link prediction
kind of tasks (such as the ones required in WB18 and FB15K datasets), the test queries are much
simpler and we don’t require distributive law to hold true in general. We believe this is a significant
departure from the model of [4] and the resulting problem become quite non-trivial. However, it is
a needed change and we have suggested novel and intuitive approximation scheme for solving the
resulting problem.

4. Like in [4], we use the complex space Cd over the field of reals to embed binary predicates. Under
the field of reals, the space Cd become isomorphic to R2d. We denote any binary predicate, say rk
by its orthogonal projection matrix Pk, and any entity pair (ei, ej) by the vector xij = [xi, xj ] ∈
R2d, where xi, xj ∈ Rd are the representation of individual entities ei, ej , respectively.

Like our main paper’s IQE model for the unary predicate, the extension of IQE model for binary
predicate case would result in the following optimization problem.

Minimize
{xi}ni=1,{Pk}mk=1

n∑
i=1

n∑
j=1

m∑
k=1

‖Qkxij‖21k(ij) + λ‖Pkxij‖21k(ij)

=

n∑
i=1

n∑
j=1

x>ijR(ij)xij

subject to xij = [xi, xj ]
>; ∀i, j

‖xi‖2 = 1/2; ∀i
Pk = VkDkV>k ; ∀k
Dk = diag({0, 1}) ∀k
VkV>k = V>k Vk = I ∀k
tr (Dk) ≥ r; ∀k

where Qk = (I− Pk) and the last four constraints together enforce the matrix Pk to be a projection
matrix in R2d space (not necessarily axis-parallel) of rank at least r. The first two constraints ensures
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that xij is a unit length vector in the space R2d. Like unary case, we propose an alternating scheme to
solve the above problem as follows. Note, unlike unary predicate case, we don’t have Problem 2 here
because we have skipped modeling initial feature vectors. Therefore, we only talk about Problem 1
and Problem 3 in this case. Involving Problem 2 is straightforward.

Algorithm 1: Alternating Minimization Scheme for IQE Problem for Binary Predicates
Pick appropriate values for the hyperparameters d, λ, r ;
Given a KB, construct the indicator function 1k(ij) and initialize xi randomly;
while (Solution does not converge) do

Clamp variables {Pk}mk=1 and solve the resulting problem for {xij}ni,j=1. [call Problem 1];
Clamp variables {xij}ni,j=1 and solve the IQE problem over {Pk}mk=1 [call Problem 3];

4.1 Solution for Problem 1 (Binary Predicate Case):

Note, if we clamp {Pk}mk=1 satisfying the last four constraints of the formulation (10) then, the
resulting Problem 1 can be written as follows:

Minimize
{xi}ni=1

f({xi}ni=1) =

n∑
i=1

n∑
j=1

m∑
k=1

(x>ijQkxij)1k(ij) + λ(x>ijPkxij)1k(ij)

=

n∑
i=1

n∑
j=1

x>ijR(ij)xij

subject to xij = [xi, xj ]
>; ∀i, j

‖xi‖2 = 1/2; ∀i

where, we have made use of the fact that Q2
k = Qk and P2

k = Pk because they are projection matrices.
For each (i, j) pair, we define the following matrix.

R(ij) =

m∑
k=1

(
Qk(ij)1k(ij) + λPk(ij)1k(ij)

)
(10)

=

[
Rs(ij) Rc(ij)

Rc(ij)> Ro(ij)

]
(11)

where, due to symmetric PSD nature of projection matrices Pk and Qk, we have following holding
true.

• Eigen decomposition of the matrix Pk is given by VkDkV>k .

• Each of the block matrix is of size d-by-d

• Block matrices Rs(ij), Ro(ij) are symmetric PSD for all i, j.

We have placed superscripts on these block matrices to indicate their position as subject (s), object (o),
and cross-term (c). In light of this definition, we can rewrite the above formulation as follows.

Minimize
{xi}ni=1

n∑
i=1

n∑
j=1

x>i Rs(ij)xi + x>j Ro(ij)xj + x>i
(
Rc(ij) + Rc(ij)>

)
xj

subject to ‖xi‖2 = 1/2; ∀i

(12)

Note, matrices Rs(ij),Ro(ij),Rc(ij) are data matrices for the Problem 1 and hence they are constant.
In order to solve above problem, we define following quantities

ϕ(xi) =
∑
j=1

x>i (Rs(ij) + Ro(ij))xi + 2

n∑
j=1

x>i

(
Rc(ij) + Rc(ij)>

)
xj (13)
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In light of this definition, we can express the objective function f({xi}ni=1) as follows.

f({xi}ni=1) =

n∑
i=1

ϕ(xi)−
n∑
i=1

n∑
j=1

x>i
(
Rc(ij) + Rc(ij)>

)
xj (14)

Further, we observe that

∂ϕ(xi)

∂xi
= 2

n∑
j=1

(Rs(ij) + Ro(ij))xi + 2

n∑
j=1

(
Rc(ij) + Rc(ij)>

)
xj (15)

=⇒ ϕ(xi) =
1

2

(
x>i

∂ϕ(xi)

∂xi

)
+

n∑
j=1

x>i

(
Rc(ij) + Rc(ij)>

)
xj (16)

Now, we write the Lagrangian of the Problem (12) as follows, where µi ∈ R are the dual variables.

L ({xi}ni=1, {µi}ni=1) =

n∑
i=1

ϕ(xi)−
n∑
i=1

n∑
j=1

x>i
(
Rc(ij) + Rc(ij)>

)
xj +

n∑
i=1

µi

(
x>i xi −

1

2

)
(17)

Observe, for each i, we must have

µi ≥ −λi (18)

where λi is the smallest eigenvalue of the matrix
∑n
j=1(Rs(ij) + Ro(ij)). This is because, otherwise

the Lagrange function would become unbounded from below and the value of Lagrange could be
pushed to −∞. Keeping this constraint on dual variables in mind, we now take the partial derivative
of the Lagrange function with respect to primal variables and set them to zero. This yields the
following:

∂L({xi}ni=1)

∂xi
=

∂ϕ(xi)

∂xi
− 2

n∑
j=1

(
Rc(ij) + Rc(ij)>

)
xj + 2µixi = 0 (19)

=⇒ ∂ϕ(xi)

∂xi

∣∣∣∣
xi=x∗i

= 2

n∑
j=1

(
Rc(ij) + Rc(ij)>

)
xj − 2µix

∗
i . (20)

Substituting the value of (20) into (16), we get the following value for function ϕ(xi) at the point
that minimizes Lagrangian:

ϕ(x∗i ) = 2

n∑
j=1

x∗i
>
(

Rc(ij) + Rc(ij)>
)
x∗j − µix∗i>x∗i . (21)

Substituting the value of ϕ(x∗i ) from Equation (13) into the above equation gives us the following
relation:

x∗i
>

 n∑
j=1

Rs(ij) + Ro(ij) + (µiI)

x∗i = 0. (22)

From the above characteristic equation about the primal optimal solution, and the facts that
Rs(ij),Ro(ij) are PSD matrices, we must have µi = −λi, where λi is the smallest eigenvalue
of the matrix

∑n
j=1(Rs(ij) + Ro(ij)). Also, we can choose x∗i to be the smallest eigenvector of the

matrix
(∑n

j=1 Rs(ij) + Ro(ij)
)

with length scaling of 1/
√

2. Note, the primal optimal objective
function value, therefore, would become as follows:

f({x∗i }ni=1) =

n∑
i=1

 n∑
j=1

x∗i
>
(

Rc(ij) + Rc(ij)>
)
x∗j − µix∗i>x∗i

 . (23)

Although, the dual variables’ values gets determined by looking at the above equation itself, let’s
write dual problem for the sake of completeness. Substituting the value of ϕ(x∗i ) from Equation
(21), for all i, into the Lagrangian function (17), we get the minimum value of the Lagrangian and
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that would result in the following Lagrangian dual problem having the Lagrangian dual function
g({µi}ni=1).

maximize
{µi}ni=1

g({µi}ni=1) =

n∑
i=1

 n∑
j=1

x∗i
> (Rc(ij) + Rc(ij)>

)
x∗j −

µi
2


subject to µi ≥ −λi;∀i ∈ [n].

(24)

We can see that by setting the dual variable value as µ∗i = −λi, the dual objective function value
matches with the optimal primal objective function value (x∗i

>xi = 1/2). Therefore, we can conclude
from this route also that the optimal value of the dual variable µ∗i must be equal to −λi.

4.2 Solution for Problem 3 (Binary Predicate Case):

Note, if we clamp {xij}ni,j=1 satisfying the first two constraints of the IQE formulation, the resulting
problem can be written as follows.

Minimize
{Pk}mk=1

n∑
i=1

n∑
j=1

m∑
k=1

‖Qkxij‖21k(ij) + λ‖Pkxij‖21k(ij)

subject to Pk = VkDkV>k ; ∀k
Dk = diag({0, 1}) ∀k
VkV>k = V>k Vk = I ∀k
tr (Dk) ≥ r; ∀k

(25)

Recall that Qk = I− Pk and the constraints basically force the matrix Pk to be a valid orthogonal
projection matrix. In light of this, we can rewrite the objective function of (25) as follows.

f({Pk}mk=1) =

n∑
i=1

n∑
j=1

m∑
k=1

(x>ij(I− Pk)xij)1k(ij) + λ(x>ijPkxij)1k(ij) (26)

By ignoring the constant term, the function can be written as follows.

f({Pk}mk=1) =

n∑
i=1

n∑
j=1

m∑
k=1

−(x>ijPkxij)1k(ij) + λ(x>ijPkxij)1k(ij)

=

n∑
i=1

n∑
j=1

m∑
k=1

−tr(x>ijPkxij)1k(ij) + λ tr(x>ijPkxij)1k(ij) (27)

=

n∑
i=1

n∑
j=1

m∑
k=1

−tr(Pkxijx>ij)1k(ij) + λ tr(Pkxijx>ij)1k(ij) (28)

=

n∑
i=1

n∑
j=1

m∑
k=1

tr
[
Pk
(
−xijx>ij1k(ij) + λ xijx

>
ij1k(ij)

)]
(29)

It is clear from above function that we can separate the objective function into k and Problem 3 can
be solved independently for each k. For a fixed k, the above objective function becomes

f(Pk) =

n∑
i=1

n∑
j=1

tr
[
Pk
(
−xijx>ij1k(ij) + λ xijx

>
ij1k(ij)

)]
(30)

= tr

Pk
n∑
i=1

n∑
j=1

(
−xijx>ij1k(ij) + λ xijx

>
ij1k(ij)

) (31)

= tr [PkXk] (32)

where, Xk =
∑n
i=1

∑n
j=1

(
−xijx>ij1k(ij) + λ xijx

>
ij1k(ij)

)
and is a constant. In light of the above

reformulation of the objective function, the solution of problem 3 would be as follows.
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1. If we don’t have rank constraints the above expression is minimized when Pk is chosen to
be the projector onto the negative eigenspace of the matrix Xk.

2. With rank constraint, we will need to take projection onto the smallest s eigenvectors
of the matrix Xk, where s = max{r, d−} where r is the minimum rank and d− is the
dimensionality of negative eigenspace of matrix Xk.

5 Solution for Problem 1 (Unary Predicate Case): Optimizing over xi

Observe, when W, P1,P2, . . .Pm are clamped to the values that satisfy constraints (5) and (6) of
the main paper, the objective function (3) given in the main paper becomes convex quadratic in
xi’s. Furthermore, equality constraints are also quadratic in xi’s. The resulting problem is known as
Quadratically Constrained Quadratic Program (QCQP). Observe, such a QCQP problem is separable
in the variables x1, . . . , xn. Therefore, we can solve this QCQP problem by solving a separate
problem for each xi. Ignoring the constant term, the Problem 1 for an xi is given as follows.

Minimize xTi Rixi − 2xTi ci, (33)

subject to ‖xi‖2 = 1, (34)

where Ri = αId +

m∑
j=1

Qj1j + λPj 1̄j and ci = Wfi, (35)

where Id is a d-by-d identity matrix. Let L be a Lagrangian function with the Lagrange multiplier µ
corresponding to the equality constraint,

L(x, µ) = xTi (Ri − µI)xi − 2xTi ci + µ.

In order to minimize the Lagrangian with respect to xi, it should be bounded from below. The above
quadratic function is bounded below if and only if the Hessian (Ri − µI) is positive definite. The
stationary values of the Lagrangian function gives,

(Ri − µI)xi = ci. (36)

Using stationary condition, the Lagrangian dual function is

g(µ) = inf
xi

(
xTi (Ri − µI)xi − 2xTi ci

)
+ µ = −cTi (Ri − µI)−1 ci + µ. (37)

Therefore, the Lagrangian dual problem is

Maximize g(µ)

such that (Ri − µI) > 0. (38)

Note that the dual constraint is satisfied if and only if µ is less than the smallest eigenvalues (say
λ1) of Ri i.e. µ < λmin(Ri). Noting that the Ri in our case is a diagonal matrix as the projection
matrices Pj ,Qj’s are diagonal. The stationary value of the Lagrangian dual function gives rise to the
following secular equation [9]

d∑
j=1

c2ij
(λj − µ)2

= 1 and µ < λ1, (39)

where, cij is the jth component of the vector ci. The LHS of the secular equation (39) is a mono-
tonically increasing function of µ taking value in the range of (0,+∞) as we move µ in the interval
(−∞, λ1). Therefore, it must have one unique solution in the interval (−∞, λ1). We obtained µ by
solving (39) using bisection method [10].

6 Solution for Problem 3 (Unary Predicate Case): Optimizing over Pj

Here, we consider the problem of optimizing over the subspaces when x1, . . . , xn and W are clamped
to their current estimates. Since all the projection matrices Pj’s commute, they are simultaneously
diagonalizable via a common orthogonal matrix (due to Theorem 8 given in Section 1 of the
supplementary material). Furthermore, because IQE is rotationally invariant, we can assume, without
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loss of generality, the projection matrices to be diagonal. We, therefore, take each projection matrix
Pj to be of the form diag(yj,1, ..., yj,d) where each yj,k ∈ {0, 1}.
In what follows, we start analyzing the simpler version of Problem 3 for unary predicates, where we
ignore the pairwise orthogonality term (i.e., last term) in the objective function (3), given in the main
paper, as well as the rank constraint (6) of the main paper. Later, we will show how to incorporate
rank constraint in Section 6.1 and to incorporate orthogonality term in Section 6.2. We will also
discuss some heuristics to incorporate both of them together in Section 6.3.

The loss function without orthogonality term is given by the first term of the Equation (12) of the
main paper. Note, this loss function is separable in j, and hence we can separately minimize the
following problem for each j.

Minimize
d∑
k=1

yj,kφj,k (40)

where, φj,k
def
= λ

∑
i/∈Sj

x2i,k −
∑
i∈Sj

x2i,k (41)

refers as the potential function. The objective function (40) is also separable in k, therefore it boils
down to minimizing yj,kφj,k for each j and k. Therefore, depending upon the value of the potential
function φj,k the following values of yj,k minimizes the term yj,kφj,k

yj,k =

1 if φj,k < 0 (i.e.,
∑
i∈Sj

x2i,k > λ
∑
i/∈Sj

x2i,k)

0 otherwise.
(42)

6.1 Adding Rank constraint

We now consider optimizing (40) under the constraints (6) of the main paper that the dimension of
each subspace must be at least r. This is equivalent to constraining each Pj to have a rank at least
r. Given the diagonal form of Pjs, and dropping the constant term from the Problem 3 in the main
paper, the problem now reduces to minimizing the objective (40)

subject to
∑d

k
yj,k ≥ r ∀j (43)

yj,k ∈ {0, 1}.

In order to minimize this problem under the rank constraint (43), we consider two separate cases:

Case I: When at least r of the φj,k’s are ≤ 0 or equivalently |{k : φj,k ≤ 0}| ≥ r, the
solution (42) to the previous problem also satisfies the new constraints since at least r of the yj,k’s
are 1.

Case II: This is the case when we have |{k : φj,k ≤ 0}| < r. In this case, we consider a
permutation of the indices from 1 to d as k1, ..., kd such that φj,k1 ≤ φj,k2 , ... ≤ φj,kd . The
minimum value of the objective (40) can be achieved while maintaining the constraint that sum of
yj,k is at least r by choosing the first r yj,kl ’s to be 1 and remaining to be 0.

6.2 Adding Orthogonality Term

We now solve Problem 3 of the main paper without rank constraint but requiring that the projection
subspaces are roughly orthogonal to each other. That is, by including the second term of Equation
(12) in the main paper but ignoring the rank constraint (43). We avoid imposing orthogonality as hard
constraints since some of the concepts can have an overlapping set of entities. Due to the diagonal
form of Pj’s, and dropping constant term from Problem 3, the problem reduces to

minimize
d∑
k=1

 m∑
j=1

yj,kφj,k + γ
∑
j′>j

yj,kyj′,k

 , (44)

subject to yj,k ∈ {0, 1}.
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Here, we observe that although the objective function is not separable in j but is separable in k. Each
constraint is also separable in k. For each k, we need to minimize

m∑
j=1

yj,kφj,k + γ

(
nk
2

)
, (45)

where nk = |{j : yj,k = 1}|. With the above formulation of the objective, we can draw 2
observations:

1. If we were upfront told that the value of nk in the optimal solution is, say t. Then, we
can infer that only those yj,k’s would be having values as one which corresponds to the smallest t
values of φj,k. It is because for any solution having nk = t, we can always create a solution of the
same or a lower objective value by setting t of those yj,k’s as one which has lowest t values of φj,k’s.

2. Suppose we have chosen (` − 1) smallest entries and we denote the `th smallest entry
by φj`,k. Then, additional contribution of adding the `th smallest entry to the solution is
φj`,k + γ(

(
`
2

)
−
(
`−1
2

)
) which is also equal to φjt,k + γ(` − 1). This increment also increases for

each successive `. Thus, once it becomes positive it remains so from then on.

From the above two observations, we see that it suffices to sort all the φj,k’s in increasing order and
then greedily keep assigning yj,k = 1 until the objective function value continues to decrease. The
steps are given in Algorithm 2.

Algorithm 2: Solution of Problem 3 for fixed k when Ignoring Rank Constraints
Initialize yj,k = 0 ∀j;
Sort indices j in the increasing order of φj,k and call them as j1, . . . , jm;
for `← 1 to m do

if φj`,k + γ(`− 1) ≤ 0 then
yj`,k = 1;

else
Break;

end
end

6.3 Joint Optimization with Orthogonality Term + Rank Constraint

In this case, we minimize (44) subject to rank and binary constraints
d∑
k=1

yj,k ≥ r and yj,k ∈ {0, 1}.

It is difficult to solve Problem 3 efficiently when both orthogonality terms and rank constraints are
considered together. This is because the objective (44) is separable in k, but the rank constraint is not
separable in k. For this, we will instead apply some heuristics to solve it approximately. We first solve
Problem 3 with rank constraint alone, as discussed in Section 6.1. Subsequently, we greedily drop
some of the yj,k’s, which help decrease the overall objective function, including the orthogonality
term. This, however, must be done without compromising on the rank constraint. The heuristic is
given as Algorithm 3.

6.4 An Alternate Heuristic

An alternative heuristic to solve Problem 3 with joint constraints of orthogonality and rank could be as
follows. We first optimize with the orthogonality term but without the rank constraint. Subsequently,
we greedily add some of the y′j,ks so as to be able to fulfill the rank constraint. The pseudo-code is
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Algorithm 3: A Heuristics to Solve Problem 3 for Unary Predicate
Solve Problem 3 without orthogonality term as described in Section 6.1.;
V = {(j, k) : yj,k = 1,

∑d
k′=1 yj,k′ > r, and (φj,k + γ(nk − 1)) > 0} ;

while V 6= ∅ do
(j∗, k∗)← argmax(j,k)∈V [φj,k + γ(nk − 1)];
yj∗,k∗ ← 0;
nk∗− = 1;
V = {(j, k) : yj,k = 1,

∑d
k′=1 yj,k′ > r, and (φj,k + γ(nk − 1)) > 0};

end

given in Algorithm 4.

Algorithm 4: An Alternate Heuristics to Solve Problem 3 for Unary Predicate
Solve the Problem 2 without rank constraint.;
V = {(j, k) : yj,k = 0 and

∑d
k′=1 yj,k′ < r}

while V 6= ∅ do
(j∗, k∗)← argmin(j,k)∈V [φj,k + γnk]
yj∗,k∗ ← 1
nk∗+ = 1
V = {(j, k) : yj,k = 0 and

∑d
k′=1 yj,k′ < r}

end

At each iteration we choose the solution with minimum cost amongst those produced by Algorithms
3 and 4.

7 Experiment

7.1 Hierarchy of FIGER dataset

The Figure 1 depicts the fine-grained entity type hierarchy present in the FIGER dataset. Here, each
cell corresponds to one parent node and all its children node. The label of the parent node is always
denoted in red bold colored text whereas the labels of its children nodes are denoted in black colored
text. The second last cell corresponds to the leaf nodes which are directly connected to the root of the
type hierarchy. The last cell just depicts that all the internal nodes are indeed children of the root
node, justifying two levels of the hierarchy.

This hierarchy consists of 127 different entity types arranged in two level of the hierarchy. The leaf
nodes in this hierarchy are 106 and the non-leaf nodes are 21. From the original hierarchy given in the
FIGER dataset [11], we have made a few minor modifications for the sake of maintaining consistency.

• Replaced computer with computer_science
• Replaced religion/religion with religion
• Replaced government/government with government/administration

12



art
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sports_facility
theater
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stock_exchange
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airplane
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car
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engine_device
Instrument
mobile_phone
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visual_art
color

<root node>
astral_body
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biology
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broadcast_network
broadcast_program
chemistry
disease
food
game
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government_agency
language
law
living_thing
military
music
news_agency
newspaper
park
play
religion
software
time
title
train
transit
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education
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geography
government
internet
livingthing
location
medicine
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organization
people
person
product
rail
transportation
visual_art

Figure 1: Fine-grained Entity Type Hierarchy in FIGER dataset.
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