Batched Coarse Ranking in Multi-Armed Bandits
Appendix

A Probability Tools

Lemma 8 (Chernoff-Hoeffding Inequality). Let X1,...,X, € [0,d] be independent random vari-
ables and X = Y X;. Then
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Pr[X > E[X] +t] <exp (—@> and Pr[X < E[X]—1t] <exp (—@> :

Moreover, if X1,...,Xpn €[0,1] and pr, < E[X] < g, then we also have for every § € [0, 1],
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PriX >1+)un) <exp|-— 3 and Pr(X <(1-0)ur] <exp|-— 5 )

B Missing Proofs

B.1 Proof for Proposition 1

Letay,...,a, be asequence of numbers such that a; > a2 > ... > a,, > 0. The first inequality
follows from the simple observation that
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The second inequality is due to the fact that

<1 - max{i - ai}> <log(2n) - mz[u}({i “a;}.
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B.2 Proof for Claim 3

By Chernoff-Hoeffding inequality (Lemma 8) and a union bound we have
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< 2n-R-exp (_256 /R . R-H<m>(1)> )

where the last inequality follows from Proposition 1.

B.3 Proof of Theorem 5

We first define the following event which we will condition on in the rest of the proof.

gé{Vr:QL...,WeIW 0 — o,

Claim 9. Pr[G] > 1 —.
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Proof of Claim 9. By Chernoff-Hoeffding inequality and a union bound we have

Pr[G] < [ 6" — g, E_T}
0 o< Sy :
r=0i€l,
o0 62
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<Yy exp( :7)
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- — n(r + 1 12 —
Od
Let p : [n] — I be the bijection such that 6,1y > 6,2) > ... > 0,,), and for convenience
Op0) = 400, Op(nt1) = —oo. Let {Cf,...,C;} be the correct k-clustering of I. We prove

the correctness of the algorithm by induction on the round index 7 using the following induction
hypothesis:

LVjie{l... .kh|CinL|=m{? —m{

2. ¥je{l,....k},C\" ccx

3. {iel | A™N(I) > e,y N1y =0.

It is easy to see that all items hold trivially for » = 0. Assuming that they hold for r, we will show
that they also hold for r + 1.

Let p. : {1,...,n,} — I, be the bijection such that 6, (1) > 0, (2) > ... > 0, (,,), and for
convenience ¢, gy = +00, 8, (n, +1) = —00. The first and second items of the induction hypothesis
imply the following:

vj € [k], HPT(mg.r)) > bp(m;) and epr<m;[)1+1) < Op(m;_141) - (11)

We have the following relationship between the empirical order statistics with the real order statistics.

Claim 10. . .
viend, 6,0 — ZT < 4" i < Op i) + Zr' (12)

Proof of Claim 10. Conditioned on event G we have that for any ¢ € [n,] and j < 4,
€r
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which means that there are at least i arms with estimated means more than ¢, (;; — 5. Consequently
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€r
o) = 0oy = Z Opr) — (13)

we have 0, ;) — 5§ < 6’((, ()" The other half of (12) can be proved symmetrically. a

We now show that each i € C;TH) \C ;T) belongs to C*, which implies the first two items in the
induction hypothesis.

For each i € C;TH) \ C;T), we have

4(r) 4(r) < p(r)
QUT (mﬁr_)l) — €p Z 91' Z QUT (m;r)'f‘l)

Combining (14), (12), and event G we have

+er. (14)

) j(r)  Cr H(r) 3¢y Er
0i 2 6; 4 = Har(mg.r)—‘rl) + 4 = Hpr(m(”ﬂ) + 2’ (15)
and
e pm g _ 3 _&
0; <0; + 1 < 9ar(m§?]) 1 < QOT (m;@]> 5 (16)

13



j—1

‘ e e L. .
By (15) and (16), we have 6; € {Hpr (m§.*)+1) + 3 ,9pr (m(*) ) 3 } , which implies

0, € |0 2\ 0 - . 17
o) o i) )
Combing (17) and (11) we have 6; [HP(mj), Qp(mj,l-s-l)] , which means that i € C7. We thus have
C (r+1) \C(T) C C7, which, combined with induction hypothesis C;T) C Cy, gives C;TH) c oy
We next handle the third item in the induction hypothesis.

For any arm ¢ € C%, if i € I, and A§m> (I) > 4e, then we have

. G €
- O
T 4
m 67« . . »
> A (I) + Oy 11) — + (sincei € C})
an €
(m) Cr
> Ai (I) + epr(m;vr)-&-l) — 1
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Symmetrically,
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(r+1)

Hence, the i-th arm should be added to the set C in the 7-th iteration and will not occur in 1,4 ;.

Now we are ready to prove the correctness of Algorithm 2 and analyze the number of pulls and
rounds. By the definition of ¢, and the third item of the induction hypothesis we have that I, = ) for

all
r> 1o = [log <4/ min {A§m> (1)}” .

Therefore the round complexity of the algorithm is bounded by ry. By the second item of the
induction hypothesis we have that after r( rounds the algorithm returns the correct k-clustering.

Let 7(i) £ min{r | ¢ < A§m> /4}. By the third item of the induction hypothesis we know
that the i-th arm does not occur in any set I, for any r > r(¢), which indicates that the number
of pulls of the i-th arm is bounded by 7;.(;. From the definitions of (i) and ¢, it is clear that

erpy € [AI™(1)/8, A (I)/4], which gives

L2
Ty < 512 log (1671(S TO) .
(A<m> (I))

i

Consequently, the total number of pulls is bounded by

Y T, =0 (H<m> (I) log (% log H (™) (1))) .

iel
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B.4 Proofs of Theorem 6 and Theorem 7

We start by introducing the collaborative learning model [37, 29] and establishing its connection
with the batched model. In the collaborative learning model, we have K agents who want to solve a
MAB problem together. The learning process is partitioned into rounds. In each round, each of the
K agents pulls a (multi)set of arms sequentially. The agents communicate (only) at the end of each
round. At the end of the final round (before any communication), all agents should agree on the same
output. We assume that for each agent, each pull takes unit time. In this model, we want to minimize
the number of rounds R and the total running time 7" = Zil t,., where t,. is the maximum number
of pulls made among agents in the r-th round.

The non-adaptive algorithms for the collaborative learning model is a restricted class of algorithms
for which at the beginning of each round, each agent needs to determine the number and the set of
arms that it will pull in this round.

It is not hard to see that any algorithm in the batched model can be transformed into a non-adaptive
algorithm in the collaborative learning model in the following manner: we can evenly distribute the
T, arm pulls in the r-th round in the batched model to the K agents in the collaborative learning
model. The running time of the r-th round in the collaborative learning model is bounded by
[T./K| < T,/K + 1. We have the following observation. We say an algorithm is §-error if it
succeeds with probability at least 1 — 6.

Observation 11. Any §-error algorithm for coarse ranking in the batched model that uses T' pulls
and R rounds can be transformed to a d-error non-adaptive algorithm for coarse ranking in the
collaborative learning model that uses at most R + 1 rounds and % + R time.

Proof of Theorem 6. In [37] the following theorem is shown for the best arm identification problem
in MAB in the fixed budget case. Recall that best arm identification is a special case of coarse ranking
in which we set m = (0,1, n).

(m)
Theorem 12 ([37]). For any o € [1,n°2], letting m = (0,1,n) and T = cr - %ﬂ for
a sufficiently small universal constant cp, any non-adaptive 0.01-error algorithm for the coarse
ranking problem with input parameter (I, m,T) in the collaborative learning model with K agents

logn
needs at least € (m) rounds.

Theorem 6 is a direct consequence of Theorem 12 and Observation 11.

Proof of Theorem 7. In [37] the following theorem is shown for best arm identification in MAB in
the fixed confidence case.

Theorem 13 ([37]). Let m = (0,1,n) and Apim = I_Ili}l A§m>. Any non-adaptive algo-
1€

rithm that solves the coarse ranking problem with input parameter (I, m,0.01) using at most

H (o) (I) logo(l) n arm pulls in the collaborative learning model with K agents needs at least

Q ( log(l/Amin) ) rgunds.

loglog(1/Amin)+loglogn

Theorem 7 is a direct consequence of Theorem 13 and Observation 11.
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