
Coded Sequential Matrix Multiplication For
Straggler Mitigation

M. Nikhil Krishnan
University of Toronto

nikhilkrishnan.m@gmail.com

Erfan Hosseini
University of Toronto

ehosseini2108@gmail.com

Ashish Khisti
University of Toronto

akhisti@ece.utoronto.ca

Abstract

In this work, we consider a sequence of J matrix multiplication jobs which needs
to be distributed by a master across multiple worker nodes. For i ∈ {1, 2, . . . , J},
job-i begins in round-i and has to be completed by round-(i+ T). Previous works
consider only the special case of T = 0 and focus on coding across workers. We
propose here two schemes with T > 0, which feature coding across workers as
well as the dimension of time. Our first scheme is a modification of the polynomial
coding scheme introduced by Yu et al. and places no assumptions on the straggler
model. Exploitation of the temporal dimension helps the scheme handle a larger set
of straggler patterns than the polynomial coding scheme, for a given computational
load per worker per round. The second scheme assumes a particular straggler
model to further improve performance (in terms of encoding/decoding complexity).
We develop theoretical results establishing (i) optimality of our proposed schemes
for a certain class of straggler patterns and (ii) improved performance for the case of
i.i.d. stragglers. These are further validated by experiments, where we implement
our schemes to train neural networks.

1 Introduction
The sheer scale of data in present day applications necessitates distributing the computation across
multiple nodes (will also be referred to as workers). One of the key issues faced in distributing the
computation across multiple workers is that slow workers (will be referred to as stragglers) act as
bottlenecks. A naive approach for straggler mitigation is to replicate computation across multiple
workers. Clearly, this is wasteful of resources and calls for the need of a systematic approach to
introduce redundancy in computational systems. It is in this context that coded computation has been
developed, with the goal of introducing redundancy in computation in a resource-efficient manner.

In this paper, we focus on coded computation for distributing matrix multiplication, which is a key
building block for linear regression, principal component analysis, training of deep neural networks
etc. The idea of introducing redundancy in matrix operations appears in an early paper by Huang and
Abraham [1]. The paper [1] considers a multi-processor system and proposes a product-code-based
coding scheme to detect and correct errors caused within a single processor. In the distributed matrix
multiplication setting, the use of coded computation to provide resiliency against stragglers, has been
explored initially in [2]. Coded computation for distributed matrix multiplication (or simply, coded
matrix multiplication) has since been actively pursued in the literature. For instance, see [3–15] and
references therein. In [16], the authors provide a survey on coded matrix multiplication.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

We consider a new setting where a stream of matrix multiplication jobs, indexed by i ∈ {1, 2, . . . , J},
must be finished in a sequential manner. The processing of job-i is initiated in round-i, and must
be completed by round-(i+ T), where T ≥ 0 will be referred to as the delay parameter. Previous
works have exclusively focused on the case, T = 0, which is essentially a one-shot setting, where
coding can only be done across workers. In contrast, our model enables us to perform coding across
both workers and time. We propose two new coded matrix multiplication schemes that exploit these
dimensions, illustrate significant gains over previously proposed schemes via theoretical analysis,
and present improvements in a practical application of training deep neural networks.

2 System model and summary of results
In this section, we present our system model and discuss how our approach differs from existing
coded matrix multiplication techniques. For integers a, b, let [a : b] , {i | a ≤ i ≤ b}.
2.1 System model

We consider a distributed system consisting of a master and P workers. Master has to distribute
multiplication of a sequence of J pairs of matrices (X(1), Y (1)), (X(2), Y (2)), . . . , (X(J), Y (J)).
For i ∈ [1 : J], we have X(i) ∈ Rm×n and Y (i) ∈ Rn×p. The process of multiplication of matrices
X(i) and Y (i) will be referred to as job-i. The tuple (X(i), Y (i)) will be termed as the input
matrix-pair for job-i. The matrices X(i) and Y (i) will be referred to as input matrices for job-i. The
matrix product X(i) ∗ Y (i) will be referred to as the result of job-i. The master operates based on a
certain concept of rounds and it takes J + T rounds to complete processing the sequence of J jobs.
Here, T is a system parameter, which takes non-negative integer values as discussed below. The time
taken to complete each round will depend on the processing speed of the workers. The goal of the
master is to finish processing all the J jobs as quickly as possible (in terms of time in seconds).

For t ∈ [1 : J + T] and j ∈ [1 : P], in the beginning of round-t, master will generate 2`t matrices
{X̃j(t; l)}`tl=1, {Ỹj(t; l)}`tl=1 and communicate them to each worker-j. These matrices X̃j(t; l) ∈
Rm

x ×
n
z , Ỹj(t; l) ∈ R

n
z×

p
y are arbitrary functions of {X(i′)}ti′=1 and {Y (i′)}ti′=1, respectively. The

generation step of these matrices is referred to as encoding.

In round-t, each worker-j attempts to compute the matrix products X̃j(t; 1) ∗ Ỹj(t; 1), X̃j(t; 2) ∗
Ỹj(t; 2),. . . ,X̃j(t; `t) ∗ Ỹj(t; `t), one after another, in that order. For l ∈ [1 : `t], the process
of multiplication of X̃j(t; l) and Ỹj(t; l) will be referred to as the l-th mini-task of worker-j in
round-t. The matrices X̃j(t; l), Ỹj(t; l) will be referred to as input matrices for the mini-task. Also,
(X̃j(t; l), Ỹj(t; l)) will be referred to as the input matrix-pair for this mini-task. The matrix product
X̃j(t; l) ∗ Ỹj(t; l) will be termed the result of the mini-task. The result of each mini-task will be
communicated to the master as soon as it is ready. When master advances to round-(t+ 1), if there
are pending mini-tasks in a worker-j, it will get canceled. We refer to these canceled mini-tasks as
failed mini-tasks. The `t mini-tasks assigned by the master to worker-j in round-t will be collectively
referred to as a task.

Note that by definition, the input matrix-pair (X̃j(t; l), Ỹj(t; l)) for any mini-task assigned to a
worker-j in round-t, is a function of input matrices for jobs in the range [1 : t]. Hence, the workers
potentially ‘work on’ job-t only from round-t onwards. The master has to compute X(t) ∗ Y (t) by
the end of round-(t+ T), or sooner, using results of non-canceled mini-tasks from all the workers
since round-t. This step will be referred to as decoding (of job-t). The parameter T will be naturally
referred to as delay.

We do not assume that all the input matrix-pairs for the stream of J jobs are available at once to the
master. For instance, if these J jobs are to be performed as a part of an iterative algorithm, the input
matrices for some job-i might depend on the result of some job-i′, i′ < i. The delay parameter T
plays an important role in streamlining processing of jobs under such situations. For instance, a delay
of T ≤ i− i′ − 1 immediately helps us manage the dependency between result of job-i′ and input
matrices for job-i. As we will see later in Section 5, such jobs naturally arise during the training of
deep neural networks.

Identification of stragglers: Stragglers in each round are identified with the help of a tolerance
parameter µ ≥ 0. Let τ(t) be the time (in seconds) taken by the fastest worker in round-t to finish
all the `t mini-tasks assigned to it and return the results to master. The master waits for µτ(t) more

2

seconds after it receives the mini-task results from the fastest worker. Any worker who has not
finished its `t mini-tasks within this time will be deemed a straggler. Each round-t will thus have
a duration of at least (1 + µ)τ(t) seconds. The exact manner in which master decides on when to
advance from round-t to round-(t+ 1) will depend on the coding schemes discussed later.

Normalized load: Multiplication of the two matrices X(t) and Y (t) requires O(mnp) floating point
operations (assuming the naive matrix multiplication algorithm). Motivated by this, we say that job
load is mnp. Similarly, for each task in round-t consisting of `t matrix multiplications, we have a
load of `t mnpxyz . The normalized task load in round-t is the ratio L(t) ,

`t
mnp
xyz

mnp = `t
xyz .

Motivation for coding across time (T > 0): Existing coded matrix multiplication schemes in the
literature implicitly assume T = 0, where job-i has to be finished in round-i itself. As a representative
scenario, consider the application of polynomial code [3] for our setting. In the beginning of round-i
(i ∈ [1 : J]), master generates two matrices {X̃j(i), Ỹj(i)} for each worker-j (j ∈ [1 : P]), where
X̃j(i) ∈ Rm

x ×n, Ỹj(i) ∈ Rn×
p
y are some functions of X(i) and Y (i), respectively. Each worker-j

will attempt to compute the matrix product X̃j(i) ∗ Ỹj(i) and return this result to the master. As soon
as master receives results from some xy < P workers, the master will be able to compute X(i)∗Y (i)

(via a decoding step). The pending computations being performed by the remaining S , (P − xy)
workers will be canceled and master will enter the next round. Clearly, the system is resilient to S
stragglers in each round-i, which points to a persistent straggler pattern across time. When T > 0,
master spreads processing of each job across T + 1 consecutive rounds. Thus, introduction of the
delay parameter T > 0 essentially indicates coding across time, which (as we will see later) makes
the system robust against more variety of straggler patterns. Interested reader is referred to Section
2.1 of the supplementary material for a motivating example.

Comparison with streaming codes: Streaming codes [17] are packet-level forward error correcting
codes which enable reliable, high throughput, low-latency communication. Under the streaming code
setting, each packet sent in time slot t has to be recovered by time t+ T . Thus, with regard to the
presence of a delay parameter T , the framework that we pursue in the paper has some resemblance
to the streaming code setting. However, there are fundamental differences in the two approaches,
because of which, streaming code constructions do not seem to be applicable to our setting. For
instance, consider the streaming code toy example, where packets p1, p2, p1 + p2 are transmitted
in time 1, 2 and 3, respectively (any lost packet can be recovered here with a delay of at most 2).
Extending this to the matrix multiplication setting, suppose a worker computes A1B1, A2B2 and
A1B1 +A2B2 in successive rounds. This scheme is sub-optimal as A1B1 +A2B2 involves 2 matrix
multiplications.

2.2 Summary of results

• We introduce the problem of coded sequential matrix multiplication, where a stream of
matrix multiplication jobs must be completed in a sequential manner. In contrast to the
one-shot setting studied in the literature, our setting enables us to take advantage of coding
across temporal dimension, as well as across workers.

• In Section 3, we present two new coding schemes. Our first scheme, diagonally interleaved
polynomial (DIP) code is a natural extension of polynomial code [3] to the sequential setting.
Our second scheme, improved diagonally interleaved polynomial (IDIP) code improves
upon DIP coding in terms of encoding and decoding complexity, for a class of straggler
patterns. We present theoretical analysis to illustrate the advantage of our proposed schemes
over baseline schemes.

• We present an application of our framework to training deep neural networks in Section 5.
Our simulations indicate significant gains when the stragglers are sampled from two statisti-
cal models; (i) i.i.d. model and (ii) Fritchman model.

Remark 2.1 We note that regardless of the actual straggler patterns, our schemes are designed such
that job-i will be finished by round-(i+ T). The master node ensures this by waiting for stragglers to
return mini-task results in certain rounds, if needed, before proceeding to the next round.

Remark 2.2 For simplicity in exposition, we set z = 1 throughout the paper. It is to be noted
however that by appropriately modifying the existing coding schemes appearing in works such
as [14, 15], the coding scheme presented in Section 3.1 can be generalized to include z > 1 case.

3

3 Coded sequential matrix multiplication schemes
3.1 Diagonally interleaved polynomial (DIP) coding scheme

In this scheme, in addition to the parameters T, x, y, z = 1, µ introduced in Section 2.1, we have
a hyperparameter λ ∈ [1 : P]. Let rows of each X(i) ∈ Rm×n (similarly, columns of each
Y (i) ∈ Rn×p), i ∈ [−T + 1 : J + T], be divided into x submatrices (similarly, y submatrices) as
follows:

X(i) ,


X(i; 1)
X(i; 2)

...
X(i;x)

 , Y (i) , [Y (i; 1) Y (i; 2) · · · Y (i; y)] ,

where X(i; i′) ∈ Rm
x ×n, Y (i; j′) ∈ Rn×

p
y for i′ ∈ [1 : x], j′ ∈ [1 : y]. The submatri-

ces {X(i; i′)} and {Y (i; j′)} will be referred to as subchunks of X(i) and Y (i), respectively.
We also set X(l′) , 0m×n, Y (l′) , 0n×p, whenever l′ /∈ [1 : J] (jobs 1 to J are non-
trivial, the rest are trivial jobs defined for consistency in notation). We define polynomials
Xi(Θ) ,

∑x
i′=1X(i; i′)Θy(i′−1), Yi(Θ) ,

∑y
j′=1 Y (i; j′)Θj′−1. Note thatXi(Θ)∗Yi(Θ) takes the

form:
∑
i′∈[1:x],j′∈[1:y][X(i; i′)∗Y (i; j′)]Θy(i′−1)+j′−1, which is a polynomial of degree xy−1. The

xy coefficients of this polynomial is precisely given by the set χi , {X(i; i′)∗Y (i; j′)}i′∈[1:x],j′∈[1:y].
The matrix product X(i) ∗ Y (i) can be obtained by simply arranging the xy elements of χi in the
form of an m× p matrix. Since all the coefficients of a degree-(xy − 1) polynomial can be retrieved
from evaluations at xy distinct points in R, master can essentially compute X(i) ∗ Y (i) from xy
evaluations of the polynomial Xi(Θ) ∗ Yi(Θ).

In round-t (t ∈ [1 : J + T]), master assigns `t ∈ [T : T + dxyλ e] mini-tasks to each worker. The
exact value of `t is chosen by the master based on the history of mini-task results it has received
in the previous rounds. For l ∈ [1 : `t], the l-th mini-task assigned to worker-j (j ∈ [1 : P]) in
round-t involves multiplication of two input matrices X̃j(t; l), Ỹj(t; l). For l′ ∈ [1 : T], X̃j(t; l

′) and
Ỹj(t; l

′) are obtained as the evaluations Xt−l′+1(Θ)|Θ=θj,t,l′ and Yt−l′+1(Θ)|Θ=θj,t,l′ , respectively,
at some θj,t,l′ ∈ R. Naturally, we can say that the l′-th mini-task assigned to worker-j in round-t
corresponds to job-(t − l′ + 1). For l′′ ∈ [T + 1 : `t], the l′′-th mini-task assigned to worker-j in
round-t corresponds to job-(t− T).

In Algorithm 1, we formally describe how the master selects each input matrix-pair (X̃j(t; l), Ỹj(t; l))
provided to worker-j in the beginning of round-t, as per the DIP coding scheme. For consistency, we
assume that job-i′ is finished and xy mini-task results corresponding to job-i′ are received by the
master by default, whenever i′ /∈ [1 : J].

Let τ(t) denote the time (in seconds) taken by the fastest worker in round-t to return all its `t =
T + dxy−γtλ e mini-task results to the master. The master waits for µτ(t) more seconds. If xy − γt
mini-task results corresponding to job-(t− T) are received by the master in round-t, within this time,
it advances to round-(t+ 1). If not, as job-(t− T) has to be finished in round-t, the master will wait
until it receives xy − γt mini-task results corresponding to job-(t− T). Note that as master assigns
dxy−γtλ e mini-tasks corresponding to job-(t−T) to each worker, even if P −λ workers do not return
any mini-task results corresponding to job-(t− T), the master can still finish job-(t− T) as soon as
it gets mini-task results corresponding to job-(t− T) from the remaining λ workers.

Remark 3.1 As some of the mini-tasks assigned to workers in round-t can be trivial mini-tasks, the
normalized task load in round-t given by L(t) = `t

xyz is a worst-case estimate.

The decoding step to finish job-i in DIP coding scheme involves determining the degree-(xy − 1)
polynomial Xi(Θ) ∗ Yi(Θ) from xy evaluations. If we impose a straggler model and modify the DIP
coding scheme to have a model-dependent mini-task assignment algorithm, it is possible to improve
the decoding performance. In the following section, we present such a modification.

4

Algorithm 1: Algorithm used by master to assign mini-tasks in the DIP coding scheme
1 for j ∈ [1 : P] do
2 for l ∈ [1 : T] do
3 if job-(t− l + 1) is finished then

// results of xy mini-tasks corresponding to job-(t− l + 1)
already received by master

4 assign a trivial mini-task with input matrix pair (0m
x ×n,0n×

p
y
) as the l-th mini-task

of worker-j in round-t (just as a placeholder, will not require any computation)
5 else
6 generate a random number θ ∈ R
7 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
8 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ as

the l-th mini-task of worker-j in round-t

9 Let γt denote the number of results of mini-tasks corresponding to job-(t− T) received in
previous rounds by master.

10 for l ∈ [T + 1 : T + dxy−γtλ e] do
11 generate a random number θ ∈ R
12 pass the evaluations Xt−T (Θ)|Θ=θ,Yt−T (Θ)|Θ=θ to worker-j
13 assign a new mini-task with the input matrices Xt−T (Θ)|Θ=θ,Yt−T (Θ)|Θ=θ as the l-th

mini-task of worker-j in round-t

3.2 An improved coding scheme for the arbitrary straggler model

3.2.1 (N,W)-arbitrary straggler model

The arbitrary straggler model is an extension of the persistent straggler model explored in the existing
literature (i.e., S stragglers in each round) to include non-persistent straggler patterns as well. The
model is parameterized by W and N ∈ [0 : WP − 1]. For t ∈ [1 : J + T] and j ∈ [1 : P], let Sj(t)
be an indicator function as defined below:

Sj(t) =

{
1, Worker-j is a straggler in round-t,
0, otherwise. (1)

A sliding window of W consecutive rounds is of the form Wi , {i, i + 1, i + 2, . . . , i + W − 1}
(i ∈ [1 : J + T −W + 1]). Let:

Sj(A) , {t′ ∈ A | Sj(t′) = 1},

where A ⊆ [1 : J + T]. i.e., Sj(A) consists of the rounds in A for which worker-j is a straggler.
The straggler pattern seen by the system in rounds [a : b] ⊆ [1 : J + T], where b− a+ 1 ≥ W , is
said to conform to the (N,W)-arbitrary straggler model, if

∑P
j=1 |Sj(Wi)| ≤ N for all Wi ⊆ [a : b].

If b − a + 1 < W , the straggler pattern seen by the system in rounds [a : b] ⊆ [1 : J + T] is said
to conform to the (N,W)-arbitrary straggler model, if

∑P
j=1 |Sj([a : b])| ≤ N . Furthermore, if

worker-j is a straggler in round-t, it will not return results of any of the mini-tasks assigned to it in
round-t.

3.2.2 Improved diagonally interleaved polynomial (IDIP) coding scheme

We consider the (N,W) arbitrary straggler model (i.e., straggler pattern seen by the system in rounds
[1 : J + T] conforms to the (N,W)-arbitrary straggler model) and show how the DIP scheme can be
improved under this model assumption. Our proposed scheme (referred to as IDIP coding scheme)
has two advantages; (i) it introduces a fixed load per worker in each round, while the load in the DIP
scheme can vary per round, (ii) it takes advantage of uncoded mini-tasks to reduce the encoding and
decoding complexity.

Let rows of each X(i) ∈ Rm×n (similarly, columns of each Y (i) ∈ Rn×p), i ∈ [−T + 1 :
J + T], be divided into x subchunks (similarly, y subchunks) as in Section 3.1. Again, we set
X(l′) , 0m×n, Y (l′) , 0n×p, whenever l′ /∈ [1 : J], as only jobs 1 to J are non-trivial. Let

5

kN , PW −N , nN ,W . Recall the definition of polynomials Xi(Θ) ,
∑x
i′=1X(i; i′)Θy(i′−1),

Yi(Θ) ,
∑y
j′=1 Y (i; j′)Θj′−1, whose coefficients are subchunks of X(i) and Y (i), respectively.

Here x, y are chosen so that xy = kN . The scheme operates with a delay T = nN − 1.

For each i ∈ [−T + 1 : J + T], the master keeps an ordered list Ui of the form:
Ui , {(X(i; 1), Y (i; 1)), (X(i; 1), Y (i; 2)), . . . , (X(i;x), Y (i; y − 1)), (X(i;x), Y (i; y))},

which consists of xy entries. Each entry in the ordered list Ui is a 2-tuple composed of two matrices;
a subchunk of X(i) and Y (i) each. The ordering of these entries within Ui is in such a way that
multiplication of the two subchunks in the n′-th entry, for 1 ≤ n′ ≤ xy, gives the coefficient
corresponding to Θn′−1 of the polynomial Xi(Θ) ∗ Yi(Θ).

In each round-t (t ∈ [1 : J + T]), the master assigns ` = nN = T + 1 mini-tasks to each worker
(some of these mini-tasks can be trivial mini-tasks). For l ∈ [1 : `], the l-th mini-task assigned to
worker-j (j ∈ [1 : P]) in round-t corresponds to job-(t− l + 1) in the following sense. The input
matrix-pair (X̃j(t; l), Ỹj(t; l)) for this mini-task will be either (i) uncoded: one of the entries of
Ut−l+1 or else (ii) coded: evaluation of (Xt−l+1(Θ),Yt−l+1(Θ)) at some θj,t,l ∈ R. Each worker-j
processes the ` mini-tasks one after another and communicates each result to the master.

In Algorithm 2, we describe how master selects the input matrix-pair (X̃j(t; l), Ỹj(t; l)) for the l-th
mini-task to be assigned to each worker-j in round-t. We assume that job-i′ is finished, whenever
i′ /∈ [1 : J]. Furthermore, when l = 1 in the outermost loop of Algorithm 2, J in line-5 becomes the
empty set, as mini-tasks are indexed in the range [1 : `].

Improved encoding and decoding performance: Algorithm 2 is designed such that all uncoded mini-
tasks assigned by master will succeed in the (N,W) straggler model. Let ui indicate the number
of uncoded mini-tasks corresponding to job-i. In the end of round-(i+ T), master is guaranteed to
have access to results of; (i) ui uncoded mini-tasks corresponding to job-i (these ui mini-tasks have
the first ui entries of Ui as their input matrices) and (ii) at least (kN − ui) coded mini-tasks (these
are evaluations of the degree kN − 1 polynomial Xi(Θ) ∗ Yi(Θ) at distinct non-zero points). Note
that the results of the ui uncoded mini-tasks, X(i; 1) ∗Y (i; 1), X(i; 1) ∗Y (i; 2), . . . are precisely the
coefficients of Θ0,Θ, . . . ,Θui−1 inXi(Θ)∗Yi(Θ). Owing to the knowledge of these coefficients, any
given evaluation of Xi(Θ) ∗ Yi(Θ) at some θ 6= 0, can be simplified to evaluation of a polynomial of
degree (kN −ui−1) (whose coefficient of Θl is precisely the coefficient of Θl+ui in Xi(Θ)∗Yi(Θ))
at θ 6= 0. In order to finish job-i, master determines coefficients of this polynomial via a decoding
step which effectively corresponds to inverting a (kN − ui)× (kN − ui) Vandermonde matrix. In
comparison, in the DIP scheme with parameters x, y such that xy = kN , there are no uncoded
mini-tasks and hence, the master deals with a larger, kN × kN Vandermonde matrix. As condition
number of an n× n Vandermonde matrix is known to increase exponentially in n [18] (which makes
it increasingly susceptible to numerical errors), it is better to have lower values for n. Owing to the
presence of uncoded mini-tasks, the encoding complexity of IDIP will also be clearly smaller.

How to handle a straggler pattern not conforming to the straggler model?: If the master is in round-t,
it has the history of stragglers in rounds [1 : t− 1]. After (1 + µ)τ(t) seconds into round-t, master
gets the straggler pattern in round-t. If the straggler pattern in rounds [1 : t] conform to the model
assumption, the master advances to round-(t+1). Otherwise, master will wait for a few more workers
to complete their mini-tasks, mark them as non-stragglers and reassess the straggler pattern. Round-t
will finish when a straggler pattern conforming to the model assumption is generated.

3.3 Optimality of DIP, IDIP coding schemes under arbitrary straggler model

In the theorem below, we provide a lower bound for worst-case task load of any z = 1 scheme under
the system model discussed in Section 2.1, with respect to the arbitrary straggler model.

Theorem 3.1 (Worst-case load for arbitrary straggler model) Let J → ∞ and T < ∞. The
worst-case normalized task load L under the (N,W)-arbitrary straggler model is lower bounded as:

L ≥ L∗ =
1

P − N
W

. (2)

Under the (N,W)-arbitrary straggler model, both DIP (for the choice of parameters xy = PW −
N,λ = P, T = W − 1) and IDIP coding schemes can be shown to provide an optimal worst-case
normalized task load which matches (2).

6

Algorithm 2: Algorithm used by master to assign mini-tasks in the IDIP coding scheme
1 for l ∈ [1 : `] do
2 if job-(t− l + 1) is finished then
3 assign a trivial mini-task as the l-th mini-task of every worker in round-t
4 else
5 Let J = {j ∈ [1 : P] | (l − 1)-th mini-task assigned to worker-j in round-(t− 1) has

failed}
6 for j ∈ J do
7 reassign the failed (l − 1)-th mini-task of worker-j as the l-th mini-task of worker-j

in round-t
8 for j ∈ [1 : P] \ J do
9 if number of remaining unassigned entries of Ut−l+1 < (P − |J |) then

10 generate a random number θ ∈ R \ {0}
11 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
12 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ

as the l-th mini-task of worker-j in round-t
13 else if worker-j cannot be a straggler during at least one of the rounds in

[t : t+ nN − l], due to the straggler model then
14 pass the two subchunks in the first previously unassigned entry of Ut−l+1 to

worker-j
15 assign the l-th mini-task of worker-j in round-t, with this entry as the input

matrix-pair
16 else
17 generate a random number θ ∈ R \ {0}
18 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
19 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ

as the l-th mini-task of worker-j in round-t

4 Numerical results
In this section, we analytically compare the performance of our two schemes with the polynomial
coding scheme. Proofs are provided in Section 4 of the supplementary material. We consider in this
section, a probabilistic, i.i.d. straggler model, i.e., any worker in any given round will be a straggler
with probability δ. We make the simplifying assumption that for a normalized task load L(t) in
round-t, a non-straggler takes τL(t) seconds to finish the task. Conversely, a straggler takes ατL(t)
seconds to finish the task (α > 1). As randomness in this system is occurring only due to the straggler
model, we set µ = 0 (the parameter used by master to detect stragglers in each round). Let RJ denote
the time required to complete J jobs. We have R̂ , limJ→∞

E[RJ]
Jτ .

Polynomial coding scheme Let the code be resilient against S < P stragglers. We have

R̂poly
α,S,P,δ =

αppoly
S,P,δ+(1−ppoly

S,P,δ)

P−S , where ppoly
S,P,δ ,

∑P
i=S+1

(
P
i

)
δi(1 − δ)P−i. Note that R̂poly

α,S,P,δ

essentially is the product of normalized task load 1
P−S and expected scaling in round duration

due to stragglers. When S = 0, the scheme becomes equivalent to the uncoded scheme, i.e.,
R̂uncoded
α,P,δ = R̂poly

α,0,P,δ = α(1−(1−δ)P)+(1−δ)P
P .

IDIP coding scheme Here, we study the performance of the IDIP coding scheme designed for the
(N,W)-arbitrary straggler model, although the stragglers are sampled from an i.i.d. model. We have

R̂IDIP
α,N,W,P,δ ≤

αpIDIP
N,W,P,δ+(1−pIDIP

N,W,P,δ)

P− N
W

, where pIDIP
N,W,P,δ ,

∑PW
i=N+1

(
PW
i

)
δi(1 − δ)PW−i. Similar

to the earlier schemes, here, 1
P− N

W

is the normalized task load and αpIDIP
N,W,P,δ + (1− pIDIP

N,W,P,δ) is

an upper bound on the expected scaling in round duration. In order to compare R̂IDIP
α,N,W,P,δ with

R̂poly
α,S,P,δ , set N = SW . It can be shown that R̂IDIP

α,N,W,P,δ ≤ R̂
poly
α,S,P,δ .

7

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R

uncoded
poly
DIP (T=3)
DIP (T=)
IDIP (T=3)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R

uncoded
poly
DIP (T=4)
DIP (T=)
IDIP (T=4)

(b)

Figure 1: A plot of δ vs. R̂. In Fig. (a) and Fig. (b), we consider {α = 5, P = 4, T = W − 1 = 3}
and {α = 10, P = 6, T = W − 1 = 4}, respectively. For given {α, P, δ}, we minimize each of
R̂poly
α,S,P,δ , R̂DIP

α,β,∞,∞,P,δ , R̂DIP
α,β,T,λ,P,δ , R̂IDIP

α,N,W,P,δ (upper bound) with respect to {S ≥ 1}, {β ≥ P},
{β ≥ P, λ} and {N ≥ 1}, respectively.

0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

2500

3000

Ti
m

e

uncoded
poly
DIP
IDIP

(a) i.i.d. straggler model

0 500 1000 1500 2000 2500 3000
Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Test Loss Model 0
uncoded
poly
DIP
IDIP

(b) i.i.d. straggler model

0 25 50 75 100 125 150 175 200
Iteration

0

10

20

30

40

Lo
ad

 (1
08)

uncoded
poly
DIP
IDIP

(c) i.i.d. straggler model

0 2000 4000 6000 8000 10000
Round

0

1000

2000

3000

4000

5000

6000

Ti
m

e

uncoded
poly
DIP
IDIP

(d) Fritchman model

0 1000 2000 3000 4000 5000 6000
Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Test Loss Model 0
uncoded
poly
DIP
IDIP

(e) Fritchman model

0 25 50 75 100 125 150 175 200
Iteration

0

20

40

60

80
Lo

ad
 (1

08)
uncoded
poly
DIP
IDIP

(f) Fritchman model

Figure 2: Experimental results for training neural networks. Fig. (a) & (d): round vs. cumulative
processing time; Fig. (b) & (e): time vs. test loss for NN model-1; Fig. (c) & (f): round (first 200) vs.
task load. The task loads vary across rounds for all schemes, as job loads are not the same across
rounds. In particular, the load-variation can be seen to be amplified for the DIP scheme (due to its
inherent variable load nature) in Fig. (f).

DIP coding scheme In our discussion here, we focus on the limiting case when T → ∞, where
the analysis simplifies to some extent. Note that even in this case, the expected number of rounds
required to finish processing a job (denoted by fβ,P,δ) is a finite quantity. Here β = xy, is the total
number of mini-tasks needed for completing each job. The actual expression for fβ,P,δ is derived
in the supplementary material. The parameter λ is inactive when T =∞ (we simply set λ ,∞ to
emphasize that it is inactive). It can be shown that: R̂DIP

α,β,T=∞,λ=∞,P,δ =
fβ,P,δ
β (αpall

δ,P +(1−pall
δ,P)),

where pall
δ,P , δP is the probability that all workers in a round are stragglers. Through numerical

evaluation in Fig. 1, it can be observed that DIP scheme outperforms polynomial and IDIP schemes.

5 Experimental results
In this section, we evaluate the performance of proposed schemes by training 5 neural network (NN)
models concurrently (with learning rates {0.1, 0.15, 0.2, 0.25, 0.3}). Algorithms are implemented
using mpi4py [19] and NumPy on a local university testbed. We use four virtual machines with 8GB
of RAM and 4 vCPUs as workers and one more machine with 16GB of RAM and 8 vCPUs as the
master. The master distributes jobs, keeps track of stragglers, and decodes the job results. During

8

the wait-time to obtain results from workers in each round, master performs decoding of results
from previous rounds and any necessary encoding for the next round. Master performs encoding and
decoding at the same time on multiple vCPUs. Our experiments show that average encoding/decoding
times are smaller than average processing times (denoted by R , RJ

J). Consequently, the effect
encoding/decoding times have in our experiments is not significant.

Each NN model is fully connected with two hidden layers of size 3000 followed by a ReLU activation.
Training is performed for 250 iterations over MNIST dataset with a batch size of 1024 using SGD.
We break down each iteration of training into 8 sequential matrix-matrix multiplication jobs (job
loads vary across these 8 jobs); 3 and 5 jobs respectively for forward and backward passes. The jobs
belonging to the 5 NN models are interleaved so that job-i belongs to model ((i − 1) mod 5) + 1.
Hence, input matrices for job-i is dependent on the result of job-(i − 5). It takes T + 1 rounds
(worst-case) to deliver mini-task results corresponding to each job and then, one additional round for
decoding. Thus, T is set to 3. For the 5 NN models, we have in total J = 250 ∗ 5 ∗ 8 = 10000 jobs.

We run the experiments based on the i.i.d. straggler model, as well as the Fritchman model, which
models presence of stragglers in bursts. In order to simulate stragglers, we make the to-be-stragglers
perform their tasks α = 5 times. We select best-performing code parameters for each straggler
model using a simplified first order simulation. For the i.i.d. model, we set the straggler probability
δ = 0.3. The code parameters used are (i) polynomial: {S = 2, x = 2, y = 1} (ii) DIP: {x =
2, y = 3, T = 3, λ = 1, µ = 0.25} (iii) IDIP: {x = 2, y = 3, T = 3, N = 10, µ = 0.25}.
For the Fritchman model (details of the model and parameters can be found in Section 5 of the
supplementary material), code parameters used are (i) polynomial: {S = 2, x = 2, y = 1} (ii) DIP:
{x = 2, y = 2, T = 3, λ = 2, µ = 0.25} (iii) IDIP: {x = 2, y = 6, T = 3, N = 4, µ = 0.25} (IDIP
scheme here is a variant tailored for bursty stragglers, discussed in Section 3.2.3 of the supplementary
material). A performance summary is provided in Table 1. Fig. 2 clearly depicts the improvement
newly proposed schemes provide over the polynomial coding scheme. DIP, IDIP schemes register
reductions of 36% (32%) and 24% (41%), respectively, in the average processing time (R) over
polynomial codes, for i.i.d. (Fritchman) straggler model. Note that experimental results are in
agreement with the numerical results, which assume the i.i.d. straggler model and predict superior
performance of DIP scheme over both IDIP and polynomial schemes. For the Fritchman model, IDIP
emerges to be the best-performing scheme.

Table 1: Performance summary for two straggler models, in terms of encoding/decoding times and R.

(a) i.i.d. model

Scheme Enc. time Dec. time R

Uncoded 0 0 0.3
Poly 0.076 0.077 0.152
DIP 0.091 0.082 0.096
IDIP 0.052 0.078 0.115

(b) Fritchman model

Scheme Enc. time Dec. time R

Uncoded 0 0 0.574
Poly 0.045 0.187 0.482
DIP 0.065 0.206 0.327
IDIP 0.024 0.193 0.281

Remark 5.1 (Applicability of the scheme in general) Even though we discuss the specific appli-
cation of training multiple NN simultaneously, our framework suits well in any situation where the
master is interested in finishing quickly a collection of multiple independent sequences of matrix
multiplications (dependencies are permitted within a sequence). For instance, solving multiple
systems of linear equations through an iterative algorithm such as the Jacobi method.

Broader Impact
The new coding schemes that we propose here aim to reduce the cumulative processing time of a
sequence of matrix multiplication jobs. This could result in energy savings. Hence, our work has the
potential to contribute towards energy initiatives.

References
[1] K. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Operations,” IEEE

Trans. Computers, vol. 33, no. 6, pp. 518–528, 1984.

9

[2] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchandran, “Speeding Up
Distributed Machine Learning Using Codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–
1529, 2018.

[3] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “Polynomial Codes: an Optimal Design for High-
Dimensional Coded Matrix Multiplication,” in Proc. Annual Conference on Neural Information
Processing Systems, pp. 4403–4413, 2017.

[4] S. Wang, J. Liu, and N. B. Shroff, “Coded Sparse Matrix Multiplication,” in Proc. International
Conference on Machine Learning, ICML, vol. 80, pp. 5139–5147, PMLR, 2018.

[5] M. Fahim and V. R. Cadambe, “Numerically Stable Polynomially Coded Computing,” in Proc.
IEEE International Symposium on Information Theory, ISIT, pp. 3017–3021, IEEE, 2019.

[6] P. Soto, J. Li, and X. Fan, “Dual Entangled Polynomial Code: Three-Dimensional Coding for
Distributed Matrix Multiplication,” in Proc. International Conference on Machine Learning,
ICML, vol. 97, pp. 5937–5945, PMLR, 2019.

[7] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally Decodable Matrices for Distributed
Matrix-Vector Multiplication,” in Proc. IEEE International Symposium on Information Theory,
ISIT, pp. 1777–1781, IEEE, 2019.

[8] A. B. Das and A. Ramamoorthy, “Distributed Matrix-Vector Multiplication: A Convolutional
Coding Approach,” in Proc. IEEE International Symposium on Information Theory, ISIT,
pp. 3022–3026, IEEE, 2019.

[9] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random Khatri-Rao-Product
Codes for NumericallyStable Distributed Matrix Multiplication,” in Proc. Allerton Conf. on
Comm., Contr., and Comp., pp. 253–259, 2019.

[10] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and Efficient Distributed Matrix-vector Multipli-
cation Using Rateless Fountain Codes,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, pp. 8192–8196, IEEE, 2019.

[11] S. Kiani, N. S. Ferdinand, and S. C. Draper, “Hierarchical coded matrix multiplication,” in Proc.
Canadian Workshop on Information Theory, CWIT, pp. 1–6, IEEE, 2019.

[12] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded Computation Over
Heterogeneous Clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[13] C. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely Coded Computing,” in Proc. IEEE
International Symposium on Information Theory, ISIT, pp. 2798–2802, IEEE, 2019.

[14] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. R. Cadambe, and P. Grover, “On the Optimal
Recovery Threshold of Coded Matrix Multiplication,” IEEE Trans. Inf. Theory, vol. 66, no. 1,
pp. 278–301, 2020.

[15] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler Mitigation in Distributed Matrix
Multiplication: Fundamental Limits and Optimal Coding,” IEEE Trans. Inf. Theory, vol. 66,
no. 3, pp. 1920–1933, 2020.

[16] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation
via coding theory,” CoRR, vol. abs/2002.03515, 2020.

[17] E. Martinian and C. W. Sundberg, “Burst erasure correction codes with low decoding delay,”
IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2494–2502, 2004.

[18] V. Y. Pan, “How Bad Are Vandermonde Matrices?,” SIAM J. Matrix Anal. Appl., vol. 37, no. 2,
pp. 676–694, 2016.

[19] L. Dalcín, R. Paz, and M. A. Storti, “MPI for Python,” J. Parallel Distributed Comput., vol. 65,
no. 9, pp. 1108–1115, 2005.

10

	Introduction
	System model and summary of results
	System model
	Summary of results

	Coded sequential matrix multiplication schemes
	Diagonally interleaved polynomial (DIP) coding scheme
	An improved coding scheme for the arbitrary straggler model
	(N,W)-arbitrary straggler model
	Improved diagonally interleaved polynomial (IDIP) coding scheme

	Optimality of DIP, IDIP coding schemes under arbitrary straggler model

	Numerical results
	Experimental results

