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Abstract

Deep neural networks are known to be overconfident when applied to out-of-
distribution (OOD) inputs which clearly do not belong to any class. This is a
problem in safety-critical applications since a reliable assessment of the uncertainty
of a classifier is a key property, allowing the system to trigger human intervention
or to transfer into a safe state. In this paper, we aim for certifiable worst case
guarantees for OOD detection by enforcing not only low confidence at the OOD
point but also in an [,-ball around it. For this purpose, we use interval bound
propagation (IBP) to upper bound the maximal confidence in the [..-ball and
minimize this upper bound during training time. We show that non-trivial bounds on
the confidence for OOD data generalizing beyond the OOD dataset seen at training
time are possible. Moreover, in contrast to certified adversarial robustness which
typically comes with significant loss in prediction performance, certified guarantees
for worst case OOD detection are possible without much loss in accuracy.

1 Introduction

Deep neural networks are the state-of-the-art in many application areas. Nevertheless it is still a
major concern to use deep learning in safety-critical systems, e.g. medical diagnosis or self-driving
cars, since it has been shown that deep learning classifiers suffer from a number of unexpected
failure modes, such as low robustness to natural perturbations [[12l [17], overconfident predictions
(31,114, 18l [16] as well as adversarial vulnerabilities [36]. For safety critical applications, empirical
checks are not sufficient in order to trust a deep learning system in a high-stakes decision. Thus
provable guarantees on the behavior of a deep learning system are needed.

One property that one expects from a robust classifier is that it should not make highly confident
predictions on data that is very different from the training data. However, ReLU networks have been
shown to be provably overconfident far away from the training data [[16]. This is a big problem
as (guaranteed) low confidence of a classifier when it operates out of its training domain can be
used to trigger human intervention or to let the system try to achieve a safe state when it “detects”
that it is applied outside of its specification. Several approaches to the out-of-distribution (OOD)
detection task have been studied [[18} 25| 23| 24} [16]. The current state-of-the-art performance of
OOD detection in image classification is achieved by enforcing low confidence on a large training set
of natural images that is considered as out-distribution [[19} 28]].

Deep neural networks are also notoriously susceptible to small adversarial perturbations in the
input [36, 4] which change the decision of a classifier. Research so far has concentrated on adversarial
robustness around the in-distribution. Several empirical defenses have been proposed but many could
be broken again [8| 3| [1]]. Adversarial training and variations [27,42] perform well empirically, but
typically no robustness guarantees can be given. Certified adversarial robustness has been achieved
by explicit computation of robustness certificates [[15} 138 (33} 29, |13] and randomized smoothing [6].

Adversarial changes to generate high confidence predictions on the out-distribution have received
much less attention although it has been shown early on that they can be used to fool a classifier
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Figure 1: Overconfident predictions on out-distribution inputs. Left: On the in-distribution
CIFAR-10 all methods have similar high confidence on the image of a dog. Middle: For the out-
distribution image of a chimpanzee from CIFAR-100 the plain model is overconfident while an
out-distribution aware method like Outlier Exposure (OE) [19] produces low confidence. Right:
When maximizing the confidence inside the /,-ball of radius 0.01 around the chimpanzee image (for
the OE model), OFE as well as CCU become overconfident (right image). ACET and our GOODyg
perform well in having empirical low confidence, but only GOODg( guarantees that the confidence in
the [-ball of radius 0.01 around the chimpanzee image (middle image) is less than 22.7% for any
class (note that 10% corresponds to maximal uncertainty as CIFAR-10 has 10 classes).

[35]]. Thus, even if a classifier consistently manages to identify samples as not belonging to
the in-distribution, it might still assign very high confidence to only marginally perturbed samples
from the out-distribution, see Figure[I} A first empirical defense using a type of adversarial training
for OOD detection has been proposed in [16]]. However, up to our knowledge in the area of certified
out-of-distribution detection the only robustness guarantees for OOD were given in [28]], where a
density estimator for in- and out-distribution is integrated into the predictive uncertainty of the neural
network, which allows them to guarantee that far away from the training data the confidence of the
neural network becomes uniform over the classes. Moreover, they provide guarantees on the maximal
confidence attained on l5-type balls around uniform noise. However, this technique is not able to
provide meaningful guarantees around points which are similar or even close to the in-distribution
data and, as we will show, provide only weak guarantees against /,-adversaries.

In this work we aim to provide worst-case OOD guarantees not only for noise but also for images
from related but different image classification tasks. For this purpose we use the techniques from
interval bound propagation (IBP) to derive a provable upper bound on the maximal confidence
of the classifier in an [,-ball of radius e around a given point. By minimizing this bound on the
out-distribution using our training scheme GOOD (Guaranteed Out-Of-distribution Detection) we
arrive at the first models which have guaranteed low confidence even on image classification tasks
related to the original one; e.g., we get state-of-the-art results on separating letters from EMNIST
from digits in MNIST even though the digit classifier has never seen any images of letters at training
time. In particular, the guarantees for the training out-distribution generalize to other out-distribution
datasets. In contrast to classifiers which have certified adversarial robustness on the in-distribution,
GOOD has the desirable property to achieve provable guarantees for OOD detection with almost no
loss in accuracy on the in-distribution task even on datasets like CIFAR-10.

2 Out-of-distribution detection: setup and baselines

Let f : R? — RX be a feedforward neural network (DNN) with a last linear layer where d is the
input dimension and K the number of classes. In all experiments below we use the ReLU activation
function. The logits of f(z) for + € R? are transformed via the softmax function into a probability
distribution p(z) over the classes with:

efr(@) for %
r)i=——— fork=1,..., K. 1
pk( ) leil efl(w) ( )
By Conff(z) = maxy—1,.  x pr(z) we define the confidence of the classifier f in the prediction
argmax,_; pr(v) at .



The general goal of OOD detection is to construct a feature that can reliably separate the in-distribution
from all inputs which clearly do not belong to the in-distribution task, especially inputs from regions
which have zero probability under the in-distribution. One typical criterion to measure OOD detection
performance is to use Confy(z) as a feature and compute the AUC of in- versus out-distribution
(how well are confidences of in- and out-distribution separated). We discuss a proper conservative
measurement of the AUC in case of indistinguishable confidence values, e.g. due to numerical
precision, in Appendix [C|

As baselines and motivation for our provable approach we use the OOD detection methods Outlier
Exposure (OE) [19]] and Confidence Enhancing Data Augmentation (CEDA) [16], which use as
objective for training

N M
1 K
)i E Lee(z,y) + i E Lour(z977) (2)
i=1 j=1

where {(zN,yN) |1 <i < N} is the in-distribution training set, {x?UT |1<j < M} the out-
distribution training set, and Lcg the cross-entropy loss. The hyper-parameter x determines the
relative magnitude of the two loss terms and is usually chosen to be one [19} 28| [16]. OE and CEDA
differ in the choice of the loss Loyt for the out-distribution where OE uses the cross-entropy loss

between p(zVT) and the uniform distribution and CEDA uses log Conf;(9UT). Note that both

the CEDA and OE loss attain their global minimum when p(z) is the uniform distribution. Their
difference is typically minor in practice. An important question is the choice of the out-distribution.
For general image classification, it makes sense to use an out-distribution which encompasses basically
any possible image one could ever see at test time and thus the set of all natural images is a good
out-distribution; following [19] we use the 80 Million Tiny Images dataset [37] as a proxy for that.

While OE and CEDA yield state-of-the-art OOD detection performance for image classification tasks
when used together with the 80M Tiny Images dataset as out-distribution, they are, similarly to normal
classifiers, vulnerable to adversarial manipulation of the out-distribution images where the attack is
trying to maximize the confidence in this scenario [28]]. Thus [[16] proposed Adversarial Confidence
Enhanced Training (ACET) which replaces the CEDA loss with max||j7$?m” <. log Conf(2)

and can be seen as adversarial training on the out-distribution for an [, -threat model. However,
as for to adversarial training on the in-distribution [27] this does not yield any guarantees for out-
distribution detection. In the next section we discuss how to use interval-bound-propagation (IBP) to
get guaranteed OOD detection performance in an [ ,,-neighborhood of every out-distribution input.

3 Provable guarantees for out-of-distribution detection

Our goal is to minimize the confidence of the classifier not only on the out-distribution images
themselves but in a whole neighborhood around them. For this purpose, we first derive bounds on
the maximal confidence on some [..-ball around a given point. In certified adversarial robustness,
IBP [13] currently leads to the best guarantees for deterministic classifiers under the [, -threat model.
While other methods for deriving guarantees yield tighter bounds 38, [29], they are not easily scalable
and, when optimized, the bounds given by IBP have been shown to be very tight [[13]].

IBP. Interval bound propagation [13] provides entrywise lower and upper bounds z, _resp. z;* for
the output z;, of the k-th layer of a neural network given that the input z is varied in the [.-ball of
radius €. Let o : R — R be a monotonically increasing activation function e.g. we use the ReLU
function o(x) = max{0,z} in the paper. Weset 2o = zand 2o, = v —e-land % =z +e-1(1
is the vector of all ones). If the k-th layer is linear (fully connected, convolutional, residual etc.) with
weight matrix Wy, one gets upper and lower bounds of the next layer via forward propagation:

7€ = o (max(Wy,0) - 51 + min(Wj, 0) - Zho1 + br)
2k, = U(min(Wk,O) - Zp—1° + max(Wy,0) - Zh—1, + bk) , 3)

where the min/max expressions are taken componentwise and the activation function o is applied
componentwise as well. Note that the derivation in [[13] is slightly different, but the bounds are the
same. The forward propagation of the bounds is of similar nature as a standard forward pass and
back-propagation w.r.t. the weights is relatively straightforward.



Upper bound on the confidence in terms of the logits. The log confidence of the model at x can
be written as
log Conf 1 efk(l) 1 EK:foU 4
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We assume that the last layer is affine: f(x) = W, - zp_1(x) + b, where L is the number of layers
of the network. We calculate the upper bounds of all K2 logit differences as:

fk( )— fi(z) = max WLk 2-1(&) +brkx — Wiy - 2-1(&) — br
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=: fr(x) — fi(z)
where W7, ;. denotes the k-th row of W, and by, 1, is the k-th component of b,. Note that this upper
bound of the logit difference can be negative and is zero for [ = k. Using this upper bound on the
logit difference in Equation (), we obtain an upper bound on the log confidence:

K
max logConf(Z) < max —lo e~ (Fr@)=fi(@)) 6

lolal e <e 08 () < max g; (6)
We use the bound in (6) to evaluate the guarantees on the confidences for given out-distribution
datasets. However, minimizing it directly during training leads to numerical problems, especially at

the beginning of training, when the upper bounds fi(z) — f; (x)6 are very large for [ # k , which
makes training numerically infeasible. Instead, we rather upper bound the log confidence again by
bounding the sum inside the negative log from below with K times its lowest term:

K
_ (@)= fi(®)) < — . i = (Fr(@)=fi(@)")
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While this bound can considerably differ from the potentially tighter bound of Equation (6)), it is often

quite close as one term in the sum dominates the others. Moreover, both bounds have the same global

minimum when all logits are equal over the [,-ball. We omit the constant log K in the following as

it does not matter for training.

The direct minimization of the upper bound in (7) is still difficult, in particular for more challenging

in-distribution datasets like SVHN and CIFAR-10, as the bound maxy, j=1,. .. x fr(x) — fl(a:)6 can
be several orders of magnitude larger than the in-distribution loss. Therefore, we use the logarithm of
this quantity. However, we also want to have a more fine-grained optimization when the upper bound
becomes small in the later stage of the training. Thus we define the Confidence Upper Bound loss
Lcyp for an OOD input as
N2
(k715§X o Te(@) = filz) )

Lcus(z;€) :=log 5 +11. (8)

Note that 1og( +1) = “2 for small ¢ and thus we achieve the more fine-grained optimization with
an [o-type of loss in the later stages of training which tries to get all upper bounds small. The overall
objective of fully applied Guaranteed OOD Detection training (GOOD;¢g) is the minimization
of
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where { (2N, y!N) | 1 <4 < N} is the in-distribution training set and { a:?UT |1<j < M} the out-
distribution. The hyper-parameter « determines the relative magnitude of the two loss terms. During
training we slowly increase this value and € in order to further stabilize the training with GOOD.



Quantile-GOOD: trade-off between clean and guaranteed AUC. Training models by minimiz-
ing (O) means that the classifier gets severely punished if any training OOD input receives a high
confidence upper bound. If OOD inputs exist to which the classifier already assigns high confidence
without even considering the worst case, e.g. as these inputs share features with the in-distribution, it
makes little sense to enforce low confidence guarantees. Later in the experiments we show that for
difficult tasks like CIFAR-10 this can happen. In such cases the normal AUC for OOD detection gets
worse as the high loss of the out-distribution part effectively leads to low confidence on a significant
part of the in-distribution which is clearly undesirable.

Hence, for OOD inputs = which are not clearly distinguishable from the in-distribution, it is preferable
to just have the “normal” loss Lcyg (z9VT; 0) without considering the worst case. We realize this by
enforcing the loss with the guaranteec{ upper bounds on the confidence just on some quantile of the
easier OOD inputs, namely the ones with the lowest guaranteed out-distribution loss Lcug (z;€). We
first order the OOD training set by the potential loss Lcyg(«; €) of each sample in ascending order T,
that is Leup (#27) < Leup(207) < ... < Leup(2QUF). We then apply the loss Leug (25 €) to the
lower quantile g of the points (the ones with the smallest loss Lcyg(z; €)) and take Lcyg(x; 0) for
the remaining samples, which means no worst-case guarantees on the confidence are enforced:

N lg-M] M

1 K K
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During training we do this ordering on the part of each batch consisting of out-distribution images.
On CIFAR-10, where the out-distribution dataset 80M Tiny Images is closer to the in-distribution,
the quantile GOOD-loss allows us to choose the trade-off between clean and guaranteed AUC for
OOD detection, similar to the trade-off between clean and robust accuracy in adversarial robustness.

4 Experiments

We provide experimental results for image recognition tasks with MNIST [22], SVHN [30] and
CIFAR-10 [21] as in-distribution datasets. We first discuss the training details, hyperparameters and
evaluation before we present the results of GOOD and competing methods. Code is available under
https://gitlab.com/Bitterwolf/GOOD.

4.1 Model architectures, training procedure and evaluation

Model architectures and data augmentation. For all experiments, we use deep convolutional
neural networks consisting of convolutional, affine and ReLU layers. For MNIST, we use the large
architecture from [[13]], and for SVHN and CIFAR-10 a similar but deeper and wider model. The
layer structure is laid out in Table[2]in the appendix. Data augmentation is applied to both in- and
out-distribution images during training. For MNIST we use random crops to size 28 x 28 with
padding 4 and for SVHN and CIFAR-10 random crops with padding 4 as well as the quite aggressive
augmentation AutoAugment [9]]. Additionally, we apply random horizontal flips for CIFAR-10.

GOOD training procedure. As it is the case with IBP training [13]] for certified adversarial robust-
ness, we have observed that the inclusion of IBP bounds can make the training unstable or cause it
to fail completely. This can happen for our GOOD training despite the logarithmic damping in the
Lcug loss in (). Thus, in order to further stabilize the training similar to [13]], we use linear ramp
up schedules for € and «, which are detailed in Appendix [D} As radii for the /-perturbation model
on the out-distribution we use € = 0.3 for MNIST, ¢ = 0.03 for SVHN and ¢ = 0.01 for CIFAR-10
(note that 0.01 > % ~ 0.0078). The chosen ¢ = 0.01 for CIFAR-10 is so small that the changes
are hardly visible (see Figure[I). As parameter « for the trade-off between cross-entropy loss and the
GOOD regularizer in (9) and (I0), we set £ = 0.3 for MNIST and x = 1 for SVHN and CIFAR-10.

In order to explore the potential trade-off between the separation of in- and out-distribution for
clean and perturbed out-distribution inputs (clean AUCs vs guaranteed AUCs - see below), we train
GOOD models for different quantiles ¢ € [0, 1] in which we denote as GOODg, in the following.
Here, (Q = 100q is the percentage of out-distribution training samples for which we minimize the
guaranteed upper bounds on the confidence of the neural network in the /,-ball of radius € around
the out-distribution point during training. Note that GOOD ¢ corresponds to (9) where we minimize
the guaranteed upper bound on the worst-case confidence for all out-distribution samples, whereas


https://gitlab.com/Bitterwolf/GOOD

GOODy can be seen as a variant of OE or CEDA. A training batch consists of 128 in- and 128
out-distribution samples. Examples of OOD training batches with the employed augmentation and
their quantile splits for a GOODgy model are shown in Table [3]in the appendix.

For the training out-distribution, we use 80 Million Tiny Images (§0M) [37]], which is a large collection
of natural images associated to nouns in wordnet [11]. All methods get the same out-distribution for
training and we are neither training nor adapting hyperparameters for each OOD dataset separately
as in some previous work. Since CIFAR-10 and CIFAR-100 are subsets of 80M, we follow [[19]]
and filter them out. As can be seen in the example batches in Table[3] even this reduced dataset still
contains images from CIFAR-10 classes, which explains why our quantile-based loss is essential for
good performance on CIFAR-10. We take a subset of 50 million images as OOD training set. Since
the size of the training set of the in-distribution datasets (MNIST: 60,000; SVHN: 73,257; CIFAR-10:
50000) is small compared to 50 million, typically an OOD image appears only once during training.

Evaluation. For each method, we compute the test accuracy on the in-distribution task, and for
various out-distribution datasets (not seen during training) we report the area under the receiver
operating characteristic curve (AUC) as a measure for the separation of in- from out-distribution
samples based on the predicted confidences on the test sets. As OOD evaluation sets we use
FashionMNIST [39], the Letters of EMNIST [3]], grayscale CIFAR-10, and Uniform Noise for
MNIST, and CIFAR-100 [21], CIFAR-10/SVHN, LSUN Classroom [40], and Uniform Noise for
SVHN/CIFAR-10. Further evaluation on other OOD datasets can be found in Appendix [H]

We are particularly interested in the worst case OOD detection performance of all methods under the
lso-perturbation model for the out-distribution. For this purpose, we compute the adversarial AUC
(AAUC) and the guaranteed AUC (GAUC). These AUCs are based on the maximal confidence in
the [.-ball of radius e around each out-distribution image. For the adversarial AUC, we compute
a lower bound on the maximal confidence in the [,-ball by using Auto-PGD [{§] for maximizing
the confidence of the classifier inside the intersection of the /.- ball and the image domain [0, 1]<.
Auto-PGD uses an automatic stepsize selection scheme and has been shown to outperform PGD. We
use an adaptation to our setting (described in detail in Appendix [A) with 500 steps and 5 restarts on
1000 points from each test set. Gradient masking poses a significant challenge, so we also perform
a transfer attack on all models and on MNIST, we even use an additional attack (see Appendix [A).
We report the per-sample worst-case across attacks. Note that attacking these models on different
out-distributions poses somewhat different challenges than classical adversarial attacks. Around
the in-distribution models with good prediction performance are unlikely to be completely flat (and
thus have zero gradient) in the whole region defined by an /. -threat model. On the out-distribution,
however, it is quite possible that all neurons in some layer return negative pre-activations which
causes all gradients to be zero. Therefore the choice of initialization together with several restarts
matters a lot as otherwise non-robust OOD detection models can easily appear to be robust. Moreover,
the transfer attacks were necessary for some methods as otherwise the true robustness would have
been significantly overestimated. Indeed even though we invested quite some effort into adaptive
attacks which are specific for our robust OOD detection scenario, it might still be that the AAUC of
some methods is overestimated. This again shows how important it is to get provable guarantees.

For the guaranteed AUC, we compute an upper bound on the confidence in the intersection of the /.-
ball with the image domain [0, 1]¢ via IBP using (6) for the full test set. These worst case/guaranteed
confidences for the out-distributions are then used for the AUC computation.

Competitors. We compare a normally trained model (Plain), the state-of-the-art OOD detection
method Outlier Exposure (OE) [19]], CEDA [16]] and Adversarial Confidence Enhanced Training
(ACET) [16], which we adjusted to the given task as described in the appendix. As CEDA performs
very similar to OE, we omit it in the figures for better readability. The e-radii for the [.-balls are the
same for ACET and GOOD. So far the only method which could provide robustness guarantees for
OOD detection is Certified Certain Uncertainty (CCU) with a data-dependent Mahalanobis-type 5
threat model. We use their publicly available code to train a CCU model with our architecture and we
evaluate their guarantees for our [, threat model. In Appendix |B| we provide details and explain
why their guarantees turn out to be vacuous in our setting.

4.2 Results

In Table (1| we present the results on all datasets.



Table 1: Accuracies as well as AUC, adversarial AUC (AAUC) and guaranteed AUC (GAUC)
values for the MNIST, SVHN and CIFAR-10 in-distributions with respect to several unseen out-
distributions. The GAUC of GOOD o, on MNIST/SVHN resp. GOODyg, on CIFAR-10 is better
than the corresponding AAUC of OE and CEDA on almost all OOD datsets (except EMNIST). Thus
GOOQD is provably better than OE and CEDA w.r.t. worst-case OOD detection. GOOD achieves this
without significant loss in accuracy. Especially on SVHN, GOOD has very good accuracy and
almost perfect provably worst-case OOD detection performance.

IN: MNIST e=0.3
METHOD ACC. FASHIONMNIST | EMNIST LETTERS CIFAR-10 UNIFORM NOISE
AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC
PLAIN 99.4| 98.0 34.2 0.0| 88.0 31.4 0.0] 98.8 36.6 0.0] 99.1 36.5 0.0
CEDA 99.4| 99.9 82.1 0.0] 92.6 52.8 0.0/100.0 95.1 0.0{100.0 100.0 0.0
OE 99.4| 99.9 76.8 0.0| 92.7 50.9 0.0{100.0 92.4 0.0{100.0 100.0 0.0
ACET 99.41100.0 98.4 0.0] 959 61.5 0.0/100.0 99.3 0.0{100.0 100.0 0.0
CCU 99.5(100.0 76.6 0.0| 92.9 3.1 0.0/100.0 98.9 0.0{100.0 100.0 0.0
GOODy 99.5| 99.9 82.3 0.0] 92.9 55.0 0.0{100.0 94.7 0.0{100.0 100.0 0.0
GOODyy 99.0] 99.8 88.2 9.7 95.3 54.3 0.0{100.0 97.6 28.3/100.0 100.0 100.0
GOOD4y 99.0| 99.8 88.0 29.1| 95.7 56.6 0.0{100.0 97.7 65.2/100.0 100.0 100.0
GOODgy 99.0| 99.9 88.8 42.0| 96.6 57.9 0.1{100.0 97.9 85.3/100.0 100.0 100.0
GOODgy 99.1| 99.8 90.3 55.5| 97.9 63.1 3.4(100.0 98.4 94.7(100.0 100.0 100.0
GOODgy 98.8| 99.9 914 669| 98.0 59.4 5.1{100.0 99.0 97.8/100.0 100.0 100.0
GOODys 98.8| 99.9 93.1 73.9| 98.7 59.2 5.6/100.0 99.4 98.8/100.0 100.0 100.0
GOODjp0 98.7[100.0 96.5 78.0| 99.0 53.8 3.3(100.0 99.9 99.4/100.0 100.0 100.0

IN: SVHN e =10.03
METHOD ACC. CIFAR-100 CIFAR-10 LSUN CLASSROOM | UNIFORM NOISE
AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC
PLAIN 95.5| 949 11.3 0.0] 95.2 11.1 0.0] 95.7 14.1 0.0 99.4 57.9 0.0
CEDA 95.3]1 99.9 63.9 0.0] 99.9 68.7 0.0 99.9 80.7 0.0] 99.9 99.3 0.0
OE 95.51100.0 60.2 0.0/100.0 62.5 0.0/100.0 77.3 0.0/100.0 98.2 0.0
ACET 96.0/100.0 99.4 0.0{100.0 99.5 0.0/100.0 99.8 0.0] 99.9 96.3 0.0
CCU 95.71100.0 52.5 0.0/100.0 56.8 0.0/100.0 72.1 0.0{100.0 100.0 0.0
GOODy 97.0(100.0 61.0 0.0{100.0 60.0 0.0{100.0 60.8 0.0/100.0 82.5 0.0
GOODyy 95.9| 99.8 78.2 24.4| 999 81.8 20.3|] 99.9 91.2 21.6| 99.7 99.5 99.5
GOOD4 96.3| 99.5 81.6 46.0| 99.5 85.0 50.6| 99.5 95.1 55.7| 99.5 99.5 994
GOODgy 96.1| 99.4 839 67.4| 99.4 87.4 729| 994 96.5 82.3| 99.4 994 994
GOODgy 96.3{100.0 93.5 87.7(100.0 95.3 91.3/100.0 98.8 96.7|100.0 100.0 99.7
GOODyy 96.2| 99.8 96.0 93.9| 99.8 97.3 96.1| 99.8 98.9 98.3| 99.8 99.8 99.8
GOODys 96.4| 99.8 97.2 96.1| 99.8 98.0 97.3|] 99.8 99.3 98.9| 99.9 99.9 99.8
GOODip9 96.3| 99.6 97.7 97.3| 99.7 98.4 98.1| 99.9 99.2 98.9/100.0 99.9 99.8

IN: CIFAR-10 e =0.01
METHOD ACC. CIFAR-100 SVHN LSUN CLASSROOM | UNIFORM NOISE
AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC| AUC AAUC GAUC
PLAIN 90.1| 84.3 13.0 0.0| 87.7 10.6 0.0| 88.9 13.6 0.0] 90.8 56.4 0.0
CEDA 88.6| 91.8 31.9 0.0| 97.9 25.7 0.0| 98.9 539 0.0] 97.3 70.5 0.0
OE 90.7| 924 11.0 0.0| 97.6 3.7 0.0] 98.9 20.0 0.0| 98.7 75.7 0.0
ACET 89.3| 90.7 174.5 0.0] 96.6 88.0 0.0] 98.3 91.2 0.0| 99.7 98.9 0.0
CCU 91.6| 93.0 23.3 0.0] 97.1 14.8 0.0] 99.3 38.2 0.0{100.0 100.0 0.0
GOODy 89.8| 92.9 22.5 0.0 97.0 12.8 0.0] 98.3 48.4 0.0] 96.3 95.6 0.0
GOOD,y 88.5| 90.3 324 11.8| 959 28.3 15.8] 98.2 48.2 34 994 97.6 87.5
GOOD4y 89.5| 89.6 38.2 24.8| 954 38.0 24.9| 96.0 62.0 27.4| 92.1 89.9 89.8
GOODgy 90.2| 88.6 42.6 34.9| 95.6 444 39.0| 97.0 67.6 49.1| 91.8 91.3 91.2
GOODgy 90.1| 85.6 48.2 42.3| 94.0 41.4 38.0] 93.3 66.9 55.2| 958 954 0953
GOODyy 90.2| 81.7 51.5 49.6| 91.4 48.7 46.9| 90.2 63.5 57.7| 89.3 87.7 87.7
GOODys 90.4| 80.3 52.0 50.8| 90.2 44.4 43.3| 88.3 62.6 60.3| 96.6 959 0958
GOODjop0 90.1| 70.0 54.7 54.2| 75.5 589 56.9| 752 61.5 61.0] 99.5 99.2 99.0




Plain 9: 63.6 8: 97.9 6: 87.2 0: 100.0 2: 60.0 4: 75.6  9: 100.0 4: 100.0 1: 100.0 5: 99.2
OE 9: 79.7 0: 26.8 0: 78.8 0: 100.0 0: 694 4: 80.9 9: 100.0 4: 100.0 1: 100.0 5: 98.7
CCu 4: 96.4 8: 31.8 6: 90.6 0: 100.0 2: 81.8 4: 86.8 9: 100.0 4: 100.0 1: 100.0 5: 96.2
ACET 4: 79.6 0: 38.4 0: 61.6 0: 99.7 2: 55.7 4: 944 9: 100.0 4: 984 1. 99.9 5: 79.4
GOOD;g0 _8: 10.0 8: 11.4 0 8: 8 4: 24. 9 8: 1. 959 5: 12.1

Figure 2: Random samples from 10 letters in the out-distribution dataset EMNIST. The predictions
and confidences of all methods trained on MNIST are shown on top. GOODy is the only method
which is not overconfident (e.g. “H”) unless the letter is indistinguishable from a digit (“T”).

GOOD is provably better than OE/CEDA with regard to worst case OOD detection. We note
that for almost all OOD datasets GOOD achieves non-trivial GAUCs. Thus the guarantees generalize
from the training out-distribution 80M to the test OOD datasets. For the easier in-distributions
MNIST and SVHN, which are more clearly separated from the out-distribution, the overall best
results are achieved for GOOD(y. For CIFAR-10, the clean AUCs of GOOD are low even when
compared to plain training. Arguably the best trade-off for CIFAR-10 is achieved by GOODyy.
Note that the guaranteed AUC (GAUC) of these models is always better than the adversarial AUC
(AAUC) of OE/CEDA (except for EMNIST). Thus it is fair to say that the worst-case OOD detection
performance of GOOD is provably better than that of OE/CEDA. As expected, ACET yields good
AAUC:S but has no guarantees. The failure of CCU regarding guarantees is discussed in Appendix
It is notable that GOOD g has close to perfect guaranteed OOD detection performance for MNIST
on CIFAR-10/uniform noise and for SVHN on all out-distribution datasets. In Appendix |l we show
that the guarantees of GOOD generalize surprisingly well to larger radii than seen during training.

GOOD achieves certified OOD performance with almost no loss in accuracy. While there is a
small drop in clean accuracy for MNIST, on SVHN, with 96.3% GOOD has a better clean accuracy
than all competing methods. On CIFAR-10, GOODg achieves an accuracy of 90.1% which is better
than ACET and only slightly worse than CCU and OE. This is remarkable as we are not aware of
any model with certified adversarial robustness on the in-distribution which gets even close to this
range; e.g. IBP [13] achieves an accuracy of 85.2% on SVHN with € = 0.01 (we have 96.3%), on
CIFAR-10 with € = % they get 71.2% (we have 90.1%). Previous certified methods had even worse
clean accuracy. Since a significant loss in prediction performance is usually not acceptable, certified
methods have not yet had much practical impact. Thus we think it is an encouraging and interesting
observation that properties different from adversarial robustness like worst-case out-of-distribution
detection can be certified without suffering much in accuracy. In particular, it is quite surprising that
certified methods can be trained effectively with aggressive data augmentation like AutoAugment.

Trade-off between clean and guaranteed AUC via Quantile-GOOD. As discussed above, for the
CIFAR-10 experiments, our training out-distribution contains images from in-distribution classes.
This seems to be the reason why GOOD suffers from a significant drop in clean AUC, as the only
way to ensure small loss Lcyg, if in- and out-distribution can partially not be distinguished, is to
reduce also the confidence on the in-distribution. This conflict is resolved via GOODg, and GOODy
which both have better clean AUCs. It is an interesting open question if similar trade-offs can also be
useful for certified adversarial robustness.

EMNIST: distinguishing letters from digits without ever having seen letters. GOOD achieves
an excellent AUC of 99.0% for the letters of EMNIST which is, up to our knowledge, state-of-the-art.
Indeed, an AUC of 100% should not be expected as even for humans some letters like i and 1 are
indistinguishable from digits. This result is quite remarkable as GOOD;( has never seen letters
during training. Moreover, as the AUC just distinguishes the separation of in- and out-distribution
based on the confidence, we provide the mean confidence on all datasets in the Appendix in Table ]
and in Figure 2] (see also Figure[3]in the Appendix) we show some samples from EMNIST together
with their prediction/confidences for all models. GOODyy has a mean confidence of 98.4% on
MNIST but only 27.1% on EMNIST in contrast to ACET with 75.0%, OE 87.9% and Plain 91.5%.
This shows that while the AUC’s of ACET and OE are good for EMNIST, these methods are still
highly overconfident on EMNIST. Only GOOD)y produces meaningful higher confidences on
EMNIST, when the letter has clear features of the corresponding digit.



5 Conclusion

We propose GOOD, a novel training method to achieve guaranteed OOD detection in a worst-case
setting. GOOD provably outperforms OE, the state-of-the-art in OOD detection, in worst case OOD
detection and has state-of-the-art performance on EMNIST which is a particularly challenging out-
distribution dataset. As the test accuracy of GOOD is comparable to the one of normal training, this
shows that certified methods have the potential to be useful in practice even for more complex tasks.
In future work it will be interesting to explore how close certified methods can get to state-of-the-art
test performance.

Broader Impact

In order to use machine learning in safety-critical systems it is required that the machine learning
system correctly flags its uncertainty. As neural networks have been shown to be overconfident far
away from the training data, this work aims at overcoming this issue by not only enforcing low
confidence on out-distribution images but even guaranteeing low confidence in a neighborhood around
it. As a neural network should not flag that it knows when it does not know, this paper contributes to
a safer use of deep learning classifiers.
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