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Abstract

Domain generalization aims to learn from multiple source domains a predictive
model that can generalize to unseen target domains. One essential problem in do-
main generalization is to learn discriminative domain-invariant features. To arrive at
this, some methods introduce a domain discriminator through adversarial learning
to match the feature distributions in multiple source domains. However, adversarial
training can only guarantee that the learned features have invariant marginal dis-
tributions, while the invariance of conditional distributions is more important for
prediction in new domains. To ensure the conditional invariance of learned features,
we propose an entropy regularization term that measures the dependency between
the learned features and the class labels. Combined with the typical task-related
loss, e.g., cross-entropy loss for classification, and adversarial loss for domain
discrimination, our overall objective is guaranteed to learn conditional-invariant
features across all source domains and thus can learn classifiers with better gen-
eralization capabilities. We demonstrate the effectiveness of our method through
comparison with state-of-the-art methods on both simulated and real-world datasets.
Code is available at: https://github.com/sshan-zhao/DG_via_ER.

1 Introduction

Recent years have witnessed the remarkable success of modern machine learning techniques in
various applications. However, a fundamental problem machine learning suffers from is that the
model learned from training data often does not generalize well on data sampled from a different
distribution, due to the existence of data bias [1, 2] between the training and test data. To tackle this
issue, a significant effort has been made in domain adaptation, which reduces the discrepancy between
source and target domains [3–8]. The main drawback of this approach is that one has to repeat training
for each new dataset, which can be time-consuming. Therefore, domain generalization [9] is proposed
to learn generalizable models by leveraging information from multiple source domains [10–13].

Since there is no prior information about the distribution of the target domain during training, it
is difficult to match the distributions between source and target domains, which makes domain
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generalization more challenging. To improve the generalization capabilities of learned models,
various solutions have been developed from different perspectives. A classic but effective solution to
domain generalization is learning a domain-invariant feature representation [11, 12, 14, 10, 15, 14]
across source domains. Muandet et al. [10] presented a kernel-based optimization algorithm, called
Domain-Invariant Component Analysis, to learn an invariant transformation by minimizing the
dissimilarity across domains. Ghifary et al. [11] proposed to learn features robust to variations across
domains by introducing multi-task auto-encoders. Another line of research explores various data
augmentation strategies [16–18]. For example, Shankar et al. [16] presented a gradient-based domain
perturbation strategy to perturb the input data. By augmenting the original feature space, Blanchard
et al. [19] viewed the problem of domain generalization as a kind of supervised learning problem.
Then, they developed a kernel-based method that predicts classifiers from the augmented feature
space. To make theoretical complementary to these empirically supported approaches, Deshmukh
et al. [20] proved the first known generalization error bound for multi-class domain generalization
through studying a kernel-based learning algorithm. Apart from the clues aforementioned, some
recent works [21–24] attempted to exploit meta-learning for domain generalization. A latest work,
MASF [21], proposed a model-agnostic episodic learning procedure to regularize the semantic
structure of the feature space.

In this paper, we revisit the domain-invariant feature representation learning methods. Most of exist-
ing methods assume that the marginal distribution P (X) changes while the conditional distribution
P (Y |X) stays stable across domains. Therefore, significant effort has been made in learning a
feature representation F (X) that has invariant P (F (X)), either by traditional moment matching
[25] or modern adversarial training [15, 14]. To ensure the universality of F (X) and also make it
discriminative, a joint classification model is trained on all the source domains and can be used for
prediction in new datasets. However, the stability of P (Y |X) is often violated in real applications,
leading to sub-optimal solutions. Li et al. [14] proposed to learn invariant class-conditional distribu-
tion (P (F (X)|Y )) by doing adversarial training for each class. However, the method becomes less
effective as the number of classes increases.

To tackle the aforementioned issues, we propose an entropy-regularization approach which directly
learns features that have invariant P (Y |F (X)) across domains. In specific, the conditional entropy
term H(Y |F (X)) measures the dependency between F (X) and class label Y , and we aim to
minimize the dependency by maximizing the conditional entropy. We show theoretically that our
entropy-regularization together with the cross-entropy classification loss effectively minimize the
divergence between P (Y |F (X)) in all source domains. In addition, we show that H(Y |F (X))
can be effectively estimated by assuming a multinomial distribution for P (Y |F (X)), which is a
weak assumption for discrete class labels. Together with the adversarial training on P (F (X)), our
approach can guarantee the invariance of the joint distribution P (F (X), Y ) and thus has a better
generalization capability. We demonstrate the effectiveness of our approach through conducting
comprehensive experiments on several benchmark datasets.

2 Method

2.1 Problem Definition

Let X and Y be the feature and label spaces, respectively. In the domain generalization subject, there
are K source domains {Di}Ki=1 and L target domains1 {Di}L+K

i=K+1. The goal is to generalize the
model learned using data samples of source domains to unseen target domains. In the following,
we denote the joint distribution of domain i by Pi(X,Y ) (defined on X × Y). During the training
process, there are K datasets {Si}Ki=1 available, where Si = {(x(i)

j , y
(i)
j )}Ni

j=1. Here, Ni is the
number of samples of Si, which are sampled from the ith domain. In the test stage, we evaluate the
generalization capabilities of the learned model on L datasets sampled from the L target domains,
respectively. This paper mainly studies domain generalization for image classification, where the
label space Y contains C discrete labels {1, 2, · · · , C}.

1Source/Target: seen/unseen during training.
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2.2 Domain Generalization Through Adversarial Learning

We first present how domain generalization can be learned in an adversarial learning framework.

For the classification subject, the model consists of one feature extractor F parameterized by θ and
one classifier T parameterized by φ. We can optimize θ and φ on theK source datasets by minimizing
a cross-entropy loss:

min
F,T
Lcls(θ, φ) = −

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[log(QT (Y |F (X)))]

= −
K∑
i=1

Ni∑
j=1

y
(i)
j · log(T (F (x

(i)
j )),

(1)

where y
(i)
j is the one-hot vector of the class label y(i)

j , “·” represents the dot product operation,
and QT (Y |F (X)) denotes the predicted label distribution (conditioned on F (X)) corresponding to
domain i.

However, optimized by the classification loss solely, the model cannot learn domain-invariant features,
and thus shows limitations in generalizing to the unseen domains. By exploiting the adversarial
learning [26], we can alleviate the issue. Specifically, we further introduce a domain discriminator D
parameterized by ψ, and train D and F in a minimax game as follows:

min
F

max
D
Ladv(θ, ψ) =

K∑
i=1

E
X∼Pi(X)

[logD(F (X))]

=

K∑
i=1

Ni∑
j=1

d
(i)
j · log(D(F (x

(i)
j ))),

(2)

where d
(i)
j is the one-hot representation of the domain label i.

Although optimizing Eq. 2 can lead to invariant marginal distributions i.e., P1(F (X)) =
P2(F (X)) = · · · = PK(F (X)), it cannot guarantee the conditional distribution P (Y |F (X)) is
invariant across domains. This would degrade the generalization capabilities of the model. Even
though the classifier attempts to cluster the samples from the same category together in the feature
space, which benefits to the learning of the invariant conditional distribution, there still exists an
issue. We take the simulated data for example. Firstly, we sample data from two 2D-distributions
(shown in Figure 1) as the Domain_0 and Domain_1, respectively. The marginal distributions of
the first dimension (x0) in the two domain are the same, while the second (x1) comes from different
marginal distributions. Each domain consists of three components. We take each dimension as the
input to train a classifier using Eq. 1 and Eq. 2, and we find that the classifier distinguishes the second
dimension better than the first (loss: −0.34 v.s. −0.16). This indicates that the classifier might not
select the domain-invariant feature, but select the features easier to discriminate. Therefore, it is
challenging for the typical classification loss to achieve a balance between learning domain-invariant
features and discriminative features.

2.3 Entropy Regularization

Description. To address the issues aforementioned, we propose to regularize the distributions of the
features by minimizing the KL divergence between the conditional distribution Pi(Y |F (X)) in the
ith domain and the conditional distribution QT (Y |X). Pi(Y |F (X)) denotes the predicted label dis-
tribution conditioned on the learned features. By matching any conditional distribution Pi(Y |F (X))
to a common distribution QT (Y |F (X)), we can obtain the domain-invariant conditional distribution
P (Y |F (X)). For the purpose, we define an optimization problem as follows:

min
F,T

K∑
i=1

KL(Pi(Y |F (X))||QT (Y |F (X))). (3)
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Figure 1: Simulated data. We create two domains from the two 2D-distributions (left and right),
respectively. The data in Domain_0 and Domain_1 is two-dimensional. In specific, the first dimen-
sions in two domains are both sampled from Marginal_0 (top-middle), while the second dimension in
Domain_0 and Domain_1 is sampled from Marginal_0 and Marginal_1 (bottom-middle), respectively.

By using the definition of the KL divergence, we have:

min
F,T

K∑
i=1

KL(Pi(Y |F (X))||QT (Y |F (X))) =

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[log
Pi(Y |F (X))

QT (Y |F (X))
]

=

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logPi(Y |F (X))]−
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQT (Y |F (X))].

(4)

The second term is actually the cross-entropy classification loss (Eq. 1), while the first one is the
sum of K negative conditional entropy terms

∑K
i=1−HPi(Y |F (X)). However, it is difficult to

optimize −HPi
(Y |F (X)) directly, since we do not know the conditional distribution Pi(Y |F (X)).

To overcome this issue, we first provide the following theorem to exploit the relationship between the
negative conditional entropy term and the Jensen-Shannon divergence (JSD) between the conditional
distributions {Pi(F (X)|Y = c)}Cc=1.
Theorem 1. Assuming that all classes are equally likely, minimizing −HPi(Y |F (X)) is equivalent
to minimizing the JSD between the conditional distributions {Pi(F (X)|Y = c)}Cc=1. The global
minimum is achieved if and only if Pi(F (X)|Y = 1) = Pi(F (X)|Y = 2) = · · · = Pi(F (X)|Y =
C). Note that, if the dataset is balanced, it is easy to make the assumption satisfied. Otherwise, we
can enforce it through biased batch sampling.

The proof is given in Sec. S1 of the Supplementary Materials. Inspired by Theorem 1 and the minimax
game proposed in GAN [26] and conditional GAN [27], we introduce K additional classifiers
{T ′i}Ki=1, and then present the following minimax game:

min
F

max
{T ′

i}Ki=1

V (F, T ′1, T
′
2, · · · , T ′K) =

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQ
T ′
i
i (Y |F (X))], (5)

where T ′i parameterized by φ′i represents a classifier trained on data sampled from domain Di, and
Q
T ′
i
i (Y |F (X)) denotes the conditional distribution induced by T ′i . The following theorem (the proof

can be found in Sec. S2 of the Supplementary Materials) shows that the minimax game is equal to
minimizing the JSD between the conditional distributions {Pi(F (X)|Y = c)}Cc=1. According to
Theorem 1, we can thus achieve the optimization of

∑K
i=1−HPi(Y |F (X)).

Theorem 2. If U(F ) is the maximum value of V (F, T ′1, T
′
2, · · · , T ′K), i.e.,

U(F ) = max
{T ′

i}Ki=1

V (F, T ′1, T
′
2, · · · , T ′K), (6)

the global minimum of the minimax game is attained if and only if Pi(F (X)|Y = 1) =
Pi(F (X)|Y = 2) = · · · = Pi(F (X)|Y = C). At this point, U(F ) attains the value −KC logC.

Therefore, our proposed entropy regularization loss can be defined as:

min
F

max
{T ′

i}Ki=1

Ler(θ, {φ′i}Ki=1) =

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQ
T ′
i
i (Y |F (X))]. (7)
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Combining Eq. 7 with the classification loss (Eq. 1) and the domain discrimination loss (Eq. 2), we
obtain the training objective:

min
F,T

max
D,{T ′

i}Ki=1

L(θ, φ, ψ, {φ′i}Ki=1) = Lcls(θ, φ) + α1Ladv(θ, ψ) + α2Ler(θ, {φ′i}Ki=1), (8)

where α1 and α2 are trade-off parameters.

Algorithm. In our experiments, we observed that directly optimizing the loss Eq. 8 may show
instability, since the minimax game in Eq. 7 encourages the learned features not to be distinguished
by the classifiers. That may impede the optimization of the classification loss. To alleviate this issue,
we introduce additional classifiers {Ti}Ki=1 and add a new cross-entropy loss Lcel:

min
F,{Ti}Ki=1

Lcel(θ, {φi}Ki=1) =−
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQTi
i (Y |F̄ (X))]

−
K∑
i=1

K∑
j=1,j 6=i

E
(X,Y )∼Pj(X,Y )

[logQT̄i
i (Y |F (X))],

(9)

where QTi
i (Y |F (X)) denotes the conditional distribution induced by Ti. Here, F̄ and T̄i mean that

we fix the parameters of F and T during the training procedure, respectively. Specifically, we feed
the learned features in the ith domain into Ti to optimize its parameters φi. Additionally, we expect
the feature extractor can map the data in domains {Dj}Kj=1,j 6=i to a representation, which can be
distinguished by Ti accurately. This strategy, on the one hand, can impose regularization on the
feature distribution of domains {Dj}Kj=1,j 6=i. On the other hand, the new loss can be considered as a
complementary of Lcls.
Thus, our final objective is formulated as:

min
F,T,{Ti}Ki=1

max
D,{T ′

i}Ki=1

L(θ, φ, ψ, {φi}Ki=1, {φ′i}Ki=1) = Lcls + α1Ladv + α2Ler + α3Lcel, (10)

where α3 is a weighting factor. To illustrate the training process clearly, we provide the pseudo-code
of our algorithm in Alg. 1. We also provide the framework in the Supplementary Materials.

Algorithm 1: Training algorithm for domain generalization via entropy regularization.

Input: {Si}Ki=1: K source training datasets
Input: α1, α2, α3: weighting factors
Output: F : feature extractor; T, {Ti}Ki=1, {T ′i}Ki=1: classifier; D: discriminator
while training is not end do

Sample data from each training dataset respectively
Update θ, φ, and ψ by optimizing the first and second terms of Eq. 10
for i in 1 : K do

Sample data from the ith dataset Si
Update {φi}Ki=1 by optimizing the forth term of Eq. 10
Update θ, and {φ′i}Ki=1 by optimizing the third term of Eq. 10
Sample data from datasets {Sj}Kj=1,j 6=i
Update θ by optimizing the forth term of Eq. 10.

end
end

Discussion. In comparison with the typical classification loss, our entropy regularization loss can
push the network to learn domain-invariant features. For instance, in the example of simulated data in
Figure 1, the summation of the classification loss, the regularization loss and the domain adversarial
loss is −0.16 in classifying the first dimension, and is −0.02 in classifying the second dimension.
Therefore, our training objective can enforce the learned features to be domain-invariant.

3 Experiments

In this section, we study domain generalization on four datasets, including two simulated datasets
(i.e., Rotated MNIST [11] and Rotated CIFAR-10) and two real-world datasets (i.e., VLCS [11],
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Table 1: Results on MNIST dataset with object recognition accuracy (%) averaged over 10 runs.
Target CrossGrad [16] MetaReg [23] Reptile [34] Feature-Critic [30] DeepAll Basic-Adv Ours

M0 86.03 85.70 87.78 87.04 88.37± 1.19 88.88± 1.08 90.09± 1.25
M15 98.92 98.87 99.44 99.53 99.13± 0.41 99.10± 0.19 99.24± 0.37
M30 98.60 98.32 98.42 99.41 99.28± 0.27 99.25± 0.14 99.27± 0.16
M45 98.39 98.58 98.80 99.52 99.09± 0.29 99.25± 0.17 99.31± 0.21
M60 98.68 98.93 99.03 99.23 99.14± 0.28 99.16± 0.32 99.45± 0.19
M75 88.94 89.44 87.42 91.52 87.48± 1.01 89.06± 1.54 90.81± 1.35
Avg. 94.93 94.97 95.15 96.04 95.42 95.78 96.36

Table 2: Results on CIFAR-10 dataset with object recognition accuracy (%) averaged over 5 runs.
Method M0 M15 M30 M45 M60 M75 Avg.

DeepAll 71.28± 1.59 97.94± 0.32 99.14± 0.04 99.06± 0.19 99.07± 0.40 76.59± 0.89 90.51
Basic-Adv 75.85± 1.45 99.03± 0.18 99.16± 0.06 99.14± 0.11 99.29± 0.13 81.14± 1.34 92.27

Ours 77.91± 0.83 99.05± 0.22 99.33± 0.09 99.39± 0.14 99.40± 0.29 80.12± 0.60 92.53

PACS [28]). We make comparisons against state-of-the-art methods to demonstrate the effectiveness
of the proposed algorithm. We conduct extensive ablations to discuss our method comprehensively.

3.1 Simulated Datasets

Rotated MNIST. Following the setting in [11], we first randomly choose 100 samples per category
(1000 in total) from the original dataset [29] to form the domain M0. Then, we create 5 rotating
domains {M15,M30,M45,M60,M75} by rotating each image in M0 five times with 15 degrees
intervals in clock-wise direction. As done by previous works [30, 16], we conduct leave-one-domain-
out experiments by selecting one domain to hold out as the target. For fair comparisons, we exploit
the standard MNIST CNN, where the feature network consists of two convolutional layers and one
fully-connected (FC) layer, and the classifier has one FC layer. We train our model with the learning
rate of 1e− 4 (F , T , and D), and 1e− 5 ({Ti, T ′i}5i=1) for 3, 000 iterations. We set the weighting
factors to 0.5 (α1), 0.005 (α2), and 0.01 (α3), respectively. We repeat all of the experiments 10 times,
and report the average mean and standard deviation of recognition accuracy in Table 1.

Rotated CIFAR-10. We randomly choose 500 samples per category (5000 in total) from the original
CIFAR-10 dataset [31], and then create additional 5 domains using the same strategy as stated in
Rotated MNIST. We use AlexNet [32] as our backbone network. In specific, the feature extractor F
consists of the top layers of AlexNet model till the POOL5 layer, while T contains FC6, FC7, and an
additional FC layer. For {Ti, T ′i}5i=1 and D, we use a similar architecture to T . We train the whole
network from scratch with the learning rate of 1e− 3 (F , T , and D) and 1e− 4 ({Ti, T ′i}5i=1) using
the Adam optimizer [33] for 2000 iterations. The weighting factors (α1, α2, α3) are set to 0.5, 0.001,
and 0.1, respectively. We repeat all experiments 5 times, and provide the results in Table 2.

Results. We make comparisons against several recent works, e.g., CrossGrad [16], MetaReg [23],
Reptile [34], and Feature-Critic [30], on Rotated MNIST. To better illustrate the generalization
capabilities of our model, we also evaluate the performance of two additional models, i.e., DeepAll
and Basic-Adv, on both Rotated MNIST and Rotated CIFAR-10. DeepAll trains F and T on all
of the source domains without performing any domain generalization (Eq. 1), while Basic-Adv is
the basic solution through adversarial learning (Eq. 1 and Eq. 2). We can find all of the algorithms
perform well on Rotated MNIST from Table 1, which means the generated domains have similar
distributions. Nevertheless, our approach still performs better than existing approaches. Furthermore,
the higher accuracy compared with DeepAll and Basic-Adv on both Rotated MNIST and Rotated
CIFAR-10 shows the better generalization capabilities of the proposed algorithm.

3.2 Real-World Datasets

VLCS. VLCS [11] contains images from four well-known datasets, i.e., Pascal VOC2007 (V) [37],
LabelMe (L) [38], Caltech (C) [39], and SUN09 (S) [40]. There are five categories, including bird, car,
chair, dog, and person. Following previous works [11, 22, 21], we randomly split each domain data
into training (70%) and test (30%) sets, and do the leave-one-out evaluation. For the configuration of
the network, we consider two cases, i.e., MLP and E2E. In specific, in MLP, we use the pre-extracted
DeCAF6 features (4096-dimensional vector) as the input, and F consists of two FC layers with latent
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Table 3: Results on VLCS dataset with object recognition accuracy (%) averaged over 20 runs.
Method Pascal VOC2007 LabelMe Caltech SUN09 Average

MLP
D-MATE [11] 63.90 60.13 89.05 61.33 68.60
DBADG [28] 65.58 58.74 92.43 61.85 69.65
CCSA [35] 67.10 62.10 92.30 59.10 70.15

MetaReg [23] 65.00 60.20 92.30 64.20 70.43
CrossGrad [16] 65.50 60.00 92.00 64.70 70.55

DANN [36] 66.40 64.00 92.60 63.60 71.65
MMD-AAE [12] 67.70 62.60 94.40 64.40 72.28

MLDG [24] 67.70 61.30 94.40 65.90 72.33
Epi-FCR [22] 67.10 64.30 94.10 65.90 72.85

DeepAll 70.07± 0.79 60.54± 1.02 93.83± 1.08 65.95± 1.13 72.60
Basic-Adv 70.47± 0.59 60.94± 0.94 93.84± 1.00 66.05± 0.91 72.82

Ours 70.54± 0.55 60.81± 1.38 94.44± 0.98 66.11± 0.75 72.97

E2E
DBADG [28] 69.99 63.49 93.64 61.32 72.11

JiGen [18] 70.62 60.90 96.93 64.30 73.19
MMLD [15] 71.96 58.77 96.66 68.13 73.88
CIDDG [14] 73.00 58.30 97.02 68.89 74.30

DeepAll 73.11± 0.67 58.07± 0.52 97.15± 0.40 68.79± 0.44 74.28
Basic-Adv 72.79± 0.67 58.53± 0.69 97.00± 0.50 68.70± 0.69 74.26

Ours 73.24± 0.49 58.26± 0.82 96.92± 0.40 69.10± 0.46 74.38

Table 4: Results on PACS dataset with object recognition accuracy (%) averaged over 5 runs.
Method Art Painting Cartoon Photo Sketch Average

D-MATE [11] 60.27 58.65 91.12 47.68 64.48
CrossGrad [16] 61.00 67.20 87.60 55.90 67.93
DBADG [28] 62.86 66.97 89.50 57.51 69.21
MLDG [24] 66.23 66.88 88.00 58.96 70.01

Epi-FCR [22] 64.70 72.30 86.10 65.00 72.03
Feature-Critic [30] 64.89 71.72 89.94 61.85 71.20

CIDDG [14] 66.99 68.62 90.19 62.88 72.20
MetaReg [23] 69.82 70.35 91.07 59.26 72.62

JiGen [18] 67.63 71.71 89.00 65.18 73.38
MMLD [15] 69.27 72.83 88.98 66.44 74.38
MASF [21] 70.35 72.46 90.68 67.33 75.21

DeepAll 68.35± 0.80 70.14± 0.87 90.83± 0.32 64.98± 1.92 73.57
Basic-Adv 71.34± 0.81 70.11± 1.18 88.86± 0.50 70.91± 0.94 75.31

Ours 71.34± 0.87 70.29± 0.77 89.92± 0.42 71.15± 1.01 75.67

dimensions of 1024 and 128. For the classifiers T and {Ti, T ′i}3i=1, we use one FC layer, respectively.
For the discriminator D, we utilize three FC layers with the output dimensions of 128, 64, and 3 (the
number of source domains). In this case, we train our model with the learning rate of 1e− 3 for 30
epochs using the SGD optimizer. We set all trade-off parameters to 0.1. In another setting (E2E), we
employ the same network configuration as used on Rotated CIFAR-10, but use the model pre-trained
on ImageNet [32]. We set the learning rate to 1e− 4, and the weighting factors α1, α2, and α3 to 0.1,
0.001, and 0.05, respectively. We train the model with the batch size of 64 for each source domain
for 60 epochs and repeat all of the experiments 20 times.

PACS. PACS [28] is proposed specially for domain generalization. It contains four domains, i.e.,
Photo (P), Art Painting (A), Cartoon (C), and Sketch (S), and seven categories: dog, elephant, giraffe,
guitar, house, horse, and person. For a fair comparison, we use the same training and validation split
as presented in [28]. Our network configuration is the same as that used for VLCS (E2E), and we set
the weighting factors to 0.5 (α1), 0.01 (α2), and 0.05 (α3), respectively. Then we train the model
with the learning rate of 1e − 3 (F , T , D) and 1e − 4 ({Ti, T ′i}3i=1) for 60 epochs. We repeat all
experiments 5 times, and report the results in Tabel 4.

Results. As shown in Table 3, although the baselines (DeepAll and Basic-Adv) are competitive with
previous methods in both cases (MLP and E2E), our proposed entropy regularization still improves
the performance further on VLCS. Furthermore, the highest average score and the highest score
on several domains of PACS can also demonstrate the effectiveness of our approach. For example,
Table 4 shows that our method improves the average accuracy by 2.1% on PACS over DeepAll, and
improves 6.17% and 2.99% on Sketch and Art Painting, respectively. In addition, from the results
in Table 3 and Table 4, we can observe that the performance (Ours v.s. DeepAll and Basic-Adv v.s.
DeepAll) gains obtained by our regularization policy on PACS are more notable than those on VLCS.
A possible reason we guess is that only one domain (C) in VLCS is object-centric, while others are
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Table 5: Results with different weighting factors on PACS.
α1, α2, α3 Art Painting Cartoon Photo Sketch Average

- , - , - 68.35± 0.80 70.14± 0.87 90.83± 0.32 64.98± 1.92 73.57

1.0 , - , - 64.46± 3.80 64.07± 3.01 83.48± 1.39 66.70± 2.64 69.68
0.5 , - , - 71.35± 0.81 70.11± 1.18 88.86± 0.50 70.91± 0.94 75.31
0.1 , - , - 68.22± 0.89 70.13± 0.67 90.60± 0.37 64.61± 1.93 73.39

0.5 , 0.05 , - 70.83± 1.35 70.06± 0.98 89.25± 0.38 71.34± 0.82 75.37
0.5 , 0.01 , - 71.05± 1.62 70.29± 0.88 89.44± 0.36 70.06± 1.80 75.21
0.5 , 0.001 , - 71.72± 0.77 69.84± 1.65 88.88± 0.42 70.85± 0.83 75.32

0.5 , - , 0.5 68.92± 0.59 69.62± 0.51 89.99± 0.38 70.04± 0.63 74.74
0.5 , - , 0.1 71.04± 0.96 69.78± 0.98 89.68± 0.51 70.95± 0.81 75.36

0.5 , - , 0.05 71.59± 1.01 68.97± 1.42 89.57± 0.23 69.81± 3.45 74.99

0.5 , 0.05 , 0.1 71.09± 1.10 69.55± 0.54 89.56± 0.33 71.31± 0.90 75.37
0.5 , 0.01 , 0.1 70.91± 0.81 70.05± 1.33 89.80± 0.44 71.46± 0.46 75.56

0.5 , 0.005 , 0.1 70.95± 0.77 69.78± 0.91 89.56± 0.64 71.00± 1.12 75.32
0.5 , 0.05 , 0.05 70.55± 1.17 69.57± 1.14 89.33± 0.55 70.40± 2.88 74.96
0.5 , 0.01 , 0.05 71.34± 0.87 70.29± 0.77 89.92± 0.42 71.15± 1.02 75.67

0.5 , 0.005 , 0.05 70.51± 2.26 69.60± 0.58 89.69± 0.39 71.51± 0.84 75.33

Table 6: Results of deeper networks on PACS dataset with object recognition accuracy (%) averaged
over 5 runs.

Method Art Painting Cartoon Photo Sketch Average

ResNet-18
DeepAll 78.93± 0.46 75.02± 0.89 96.60± 0.16 70.48± 0.84 80.25

Basic-Adv 80.54± 1.71 75.21± 0.92 96.67± 0.21 70.65± 1.91 80.77
Ours 80.70± 0.71 76.40± 0.34 96.65± 0.21 71.77± 1.27 81.38

ResNet-50
DeepAll 86.18± 0.34 76.79± 0.33 98.14± 0.15 74.66± 0.93 83.94

Basic-Adv 87.11± 1.08 78.65± 1.13 98.22± 0.17 76.48± 1.09 85.11
Ours 87.51± 1.03 79.31± 1.40 98.25± 0.12 76.30± 0.65 85.34

all scene-centric. This makes the generalization of the model difficult, although the domain shifts
in VLCS are small [28]. In contrast, the images in all domains of PACS are mostly object-centric,
and objects in different domains mainly have different styles and shapes. This can better evaluate the
generalization capabilities of the model.

3.3 Ablation Studies

The experimental results above have demonstrated the effectiveness of our proposed algorithm for
domain generalization. Here, we provide the ablation studies on the designed loss and network
backbone to analyze the contributions of the proposed entropy regularization further.

Different Weighting Factors. We conduct various experiments with different weighting factors
on PACS to examine their impacts. We report the average accuracy of 5 trials in Table 5. The
results marked by the “gray” color correspond to the results reported in Table 4. “-” means the
corresponding loss term is ignored. As shown in Table 5, in most cases, our proposed conditional
entropy regularization (α2 6= 0) can yield some improvements. Besides, by optimizing the full
objective, our approach can further improve the generalization capabilities of the model.

Deeper Networks. We further study the generalization capabilities of our model by taking deeper
networks, e.g., ResNet-18 and RestNet-50 [41], as the backbone network. The models are pre-trained
on ImageNet, and fine-tuned on PACS using the proposed loss. In specific, we take the last FC
layer as our task network T , and other layers as the feature extractor F . We use three FC layers
with output dimensions of 1024, 256, and the number of source domains / categories to construct
the discriminator D and classifiers {Ti, T ′i}3i=1, respectively. For both ResNet-18 and ResNet-50,
we use the same hyper-parameters, i.e., α1 = 0.1, α2 = 0.001, α3 = 0.05, and the learning rate of
1e− 3 (F , T , D) and 1e− 4 ({Ti, T ′i}3i=1). We learn models for 100 epochs, and report the average
scores of 5 trials. As shown in Table 6, even though we take deeper networks as our backbones, our
approach still yield higher scores than the two baselines.

Class Imbalance. We address the class imbalance issue by using the weighted cross-entropy loss
according to the number of each class in each batch. If not using the weighted loss i.e., setting the
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Figure 2: Feature visualization. Left: different colors represent different classes; Right: different colors indicate
different domains (Target: Photo). Best viewed in color (Zoom in for details).

weight to 1 for each class, the model yields a lower average accuracy of 75.58% (weighted loss used:
75.67%) on PACS, but still has better generalization capabilities.

Feature Visualization. To better understand the distribution of the learned features, we exploit
t-SNE [42] to analyze the feature space learned by DeepAll, Basic-Adv, and Ours, respectively. We
conduct this study on PACS, and in specific, we take the Photo dataset as the target, and others as
the source. As shown in Figure 2, both Ours and Basic-Adv are capable of minimizing the distance
between the distributions of the domains. For example, in DeepAll (Domains), we can observe that the
Sketch (Green) is far away from other domains, while in Ours (Domains) and Basic-Adv (Domain),
domains are clustered better. Furthermore, the comparison between Ours (Classes, Domains) and
Basic-Adv (Classes, Domains) can show that our approach also discriminates the data from different
categories better than Basic-Adv.

4 Conclusion

In this paper, we aim at learning the domain-invariant conditional distribution, which the basic
adversarial learning based solutions cannot reach. We analyze the issues existed in related works,
and propose an entropy regularization term, i.e., the conditional entropy H(Y |F (X)), as the remedy.
Our approach can produce domain-invariant features by optimizing the proposed regularization term
coupled with the cross-entropy loss and the domain adversarial loss, and thus has a better generaliza-
tion capability. The experimental results on both simulated and real-world datasets demonstrate the
effectiveness of our proposed method. In the future, we can extend our approach to other challenging
tasks, like semantic segmentation.
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Broader Impact

Model generalization is a significant subject, since it is almost impossible for us to train a model for
each scenario. However, due to the domain bias, the model trained on a domain often performs worse
on other domains. Through exploiting the domain generalization techniques, we can train a model
on the publicly available datasets, and then deploy it on other related scenarios directly or with few
adaptations. Therefore, the industries can reduce their costs in repeating training the models. On
the other hand, since the model is trained on multiple datasets sampled from different domains, the
domain generalization techniques can reduce over-fitting, and thus courage the model generate fair
results. Based on our knowledge, our work may not have an adverse impact on ethical aspects and
future societal consequences.
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