
A Kernels

Polynomial. This computes a covariance matrix based on the Polynomial kernel between inputs

k′(x, x′) = (x>x′ + c)p, (9)

where p is the degree of the polynomial and c is an offset parameter. We used p = 1 and p = 2 in our
experiments.

Radial Basis Function kernel (RBF). The RBF is a stationary kernel given by the squared Euclidean distance
between the two inputs

k′(x, x′) = exp

(
−||x− x

′||2

2l2

)
, (10)

where l is a lengthscale parameters learned at training time.

Matérn kernel. This is a stationary kernel which is a generalization of the RBF and the absolute exponential
kernel. It is parameterized by a value ν > 0, commonly chosen as ν = 1.5 (giving once-differentiable functions)
or ν = 2.5 (giving twice differentiable functions). The kernel is defined as follows:

k′(x, x′) = |x− x′|νKν(|x− x′|). (11)

We used a value of ν = 2.5 in our experiments.

Spectral mixture kernel. The spectral mixture kernel was introduced by Wilson and Adams (2013) as a
powerful stationary kernel for estimating periodic functions. The kernel models a spectral density with a
Gaussian mixture

k′(τ) =

Q∑
q=1

wq

P∏
p=1

exp
{
−2π2τ2pv

(p)
q

}
cos
(
2πτpµ

(p)
q

)
, (12)

where τ = x−x′,wq are weights that specify the contribution of each mixture component, µq are the component
periods, and vq are lengthscales determining how quickly a component varies with the inputs x. We used 4
mixtures in our experiments.

Cosine similarity kernel (CosSim). The cosine similarity kernel consists in taking the product between the
unit-normalized input vectors

k′(x, x′) =
xx′

||x|| ||x′|| . (13)

The cosine similarity ranges from -1 (opposite) to 1 (same), with 0 indicating decorrelation (orthogonal).
Following the suggestions in Wang et al. (2019) we experimented with another variant, meaning centering the
input vectors through BatchNorm (BN) statistics Ioffe and Szegedy (2015) before the normalization (BNCosSim).

B Training Details

Datasets. The CUB dataset (Wah et al., 2011) consists of 11788 images across 200 classes. We divide the
dataset in 100 classes for train, 50 for validation, and 50 for test (Hilliard et al., 2018; Chen et al., 2019). The
mini-ImageNet dataset (Ravi and Larochelle, 2017) consists of a subset of 100 classes (600 images for each
class) taken from the ImageNet dataset (Russakovsky et al., 2015). We use 64 classes for train, 16 for validation
and 20 for test, as is common practice (Ravi and Larochelle, 2017; Chen et al., 2019). The Omniglot dataset
(Lake et al., 2011) contains 1623 black and white characters taken from 50 different languages. Following
standard practice, the number of classes is increased to 6492 by adding examples rotated by 90◦, and we use
4114 for training. The EMNIST dataset (Cohen et al., 2017) contains single digits and characters from the
English alphabet. We split the 62 classes into 31 for validation and 31 for test.

Regression. In the function prediction experiment, we use the same backbone network described in Finn et al.
(2017): a two-layer MLP, where each layer has 40 units and ReLU activations. We use the Adam optimizer with
learning rate 10−3 over 5× 105 training iterations. For regression with feature transfer, a network is trained to
predict the output of a function over all tasks, before being fine-tuned on a new task (with 1 or 100 steps of size
10−3). For the head pose estimation backbone, we use a three-layer convolutional neural network, each with
36 output channels, stride 2, and dilation 2 to downsample the 100× 100 input images. We train for 100 steps
using the Adam optimizer with learning rate 10−3.

Classification. At training time we apply standard data augmentation (random crop, horizontal flip, and color
jitter). The 1-shot training consists of 600 epochs, and 5-shot of 400, for MAML it corresponds to 60000 and
40000 episodes, and for Feature Transfer and Baseline++ to 400 and 600 supervised epochs with a mini-batch
size of 16. In DKT, the hyperparameters of the kernel are optimized with a learning rate one order of magnitude
lower than that used for training the CNN. This helped with convergence. In all experiments we used first-order
MAML for memory efficiency. This does not significantly affect results (see Chen et al., 2019). In all cases the

12

validation set has been used to select the training epoch/episode with the best accuracy. In classification and
cross-domain experiments, each method uses the same backbone (a four layer CNN), optimizer (Adam), and
learning rate (10−3). We use shallow backbones because they have been shown to highlight differences between
methods (Chen et al., 2019). The CNN used for classification is given in Figure 2.

co
nv
(3
,6
4)

po
ol

co
nv
(6
4,
64
)

po
ol

co
nv
(6
4,
64
)

po
ol

co
nv
(6
4,
64
)

po
ol

fla
tt
en

Figure 2: The CNN used as a backbone for classification. It consists of 4 convolutional layers, each
consisting of a 2D convolution, a batch-norm layer, and a ReLU non-linearity. The first convolution
changes the the number of channels of the input to 64, and the remaining convolutions retain this
channel dimension. Each convolutional layer is followed by a max-pooling operation that decreases
the spatial resolution of its input by a half. Finally, the output is flattened into a vector when is used
as a feature.

C Additional Results: Regression Experiments

Here, we provide additional samples of the few-shot regression experiments for a qualitative comparison
(Figure 3). Additionally we compare the latent spaces in the head trajectory estimation experiment. We reduced
the number of hidden units to h = {h1, h2} and used a hyperbolic tangent activation function (tanh) to project
the values to a Cartesian plane with hi ∈ [−1, 1]. We then sampled 100 trajectories from the test set and
recorded the value of h for the targets. The resulting plot is shown in Figure 4. The spectral kernel enforces a
more compact manifold, clustering the head poses on a linear gradient based on the value of the target, leading
to more accurate predictions.

Figure 3: Additional samples for the unknown periodic function prediction experiment. We compare
methods for in-range (top row) and out-of-range (bottom row) conditions. The true function is plotted
in solid blue, the out-of-range portion in dotted blue, the approximation in red, and the uncertainty is
given by a red shadow. The 5 support points (blue stars) are uniformly sampled in the available range.

Figure 4: Latent space representation enforced by an RBF (left) and Spectral (right) kernel on the
head trajectory experiments.

13

D Additional Results: Classification Experiments

Table 4: Average accuracy and standard deviation (percentage) on the few-shot classification setting
(5-ways). [top] Results reported in recent literature. For a fair comparison we selected only those
methods that have been trained with a similar backbone and training schedule. [center-bottom]
Methods trained from scratch (three runs) with the same backbone (a four layer CNN), optimizer
(Adam), and learning rate (10−3). Test performed on novel classes with 3000 randomly generated
tasks. DKT is competitive across various datasets and conditions. Best results highlighted in bold.
∗Reported by Jerfel et al. (2019) using a comparable backbone.

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot
ML-LSTM (Ravi and Larochelle, 2017) – – 43.44 ± 0.77 60.60 ± 0.71
SNAIL (Mishra et al., 2018) – – 45.10 55.20
iMAML-HF (Rajeswaran et al., 2019) – – 49.30 ± 1.88 –
LLAMA (Grant et al., 2018) – – 49.40 ± 1.83 –
VERSA (Gordon et al., 2019)∗ – – 48.53 ± 1.84 –
Amortized VI (Gordon et al., 2019) – – 44.13 ± 1.78 55.68 ± 0.91
Meta-Mixture (Jerfel et al., 2019) – – 49.60 ± 1.50 64.60 ± 0.92
SimpleShot (Wang et al., 2019) – – 49.69 ± 0.19 66.92 ± 0.17
Feature Transfer 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55
Baseline++ (Chen et al., 2019) 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18
MatchingNet (Vinyals et al., 2016) 60.19 ± 1.02 75.11 ± 0.35 48.25 ± 0.65 62.71 ± 0.44
ProtoNet (Snell et al., 2017) 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65
MAML (Finn et al., 2017) 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53
RelationNet (Sung et al., 2018) 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28
DKT + CosSim (ours) 63.37 ± 0.19 77.73 ± 0.26 48.64 ± 0.45 62.85 ± 0.37
DKT + BNCosSim (ours) 62.96 ± 0.62 77.76 ± 0.62 49.73 ± 0.07 64.00 ± 0.09

Kernel comparison. In Table 5 we show a comparison between different kernels (linear, RBF, Matérn, Poly-
nomial p = 1 and p = 2, CosSim, BNCosSim) trained on CUB and mini-ImageNet. In this setting using a
BNCosSim kernel gives a large advantage in almost all conditions. This result is in line with the findings of
Wang et al. (2019), who showed how centering and unit normalizing the features considerably improve the
performance in classification tasks. The overall performance of CosSim and BNCosSim is also in accordance
with the findings of Chen et al. (2019) and their implementation of Baseline++, an effective feature transfer
method based on the cosine distance. Further investigations are necessary in this direction to understand the
reason why cosine metrics and normalization are so important in few-shot learning.

Table 5: Average accuracy and standard deviation (percentage) on the few-shot classification setting
(5-ways) for different kernels. Methods trained from scratch (three runs) with the same backbone (a
four layer CNN), optimizer (Adam), and learning rate (10−3). Test performed on novel classes with
3000 randomly generated tasks.

CUB mini-ImageNet
Kernel 1-shot 5-shot 1-shot 5-shot
Linear 60.23 ± 0.76 74.74 ± 0.22 48.44 ± 0.36 62.88 ± 0.46
RBF 55.34 ± 2.56 73.20 ± 1.41 45.92 ± 1.08 61.42 ± 0.74
Matérn 58.20 ± 0.63 73.21 ± 1.30 47.65 ± 0.85 62.59 ± 0.12
Polynomial (p = 1) 59.54 ± 1.10 74.51 ± 0.98 47.78 ± 0.60 62.54 ± 0.96
Polynomial (p = 2) 5718 ± 0.40 71.14 ± 0.58 46.36 ± 0.34 60.26 ± 0.40
CosSim 63.37 ± 0.19 77.73 ± 0.26 48.64 ± 0.45 62.85 ± 0.37
BNCosSim 62.96 ± 0.62 77.76 ± 0.62 49.73 ± 0.07 64.00 ± 0.09

14

Table 6: Average accuracy and standard deviation (percentage) over three runs on 1-shot and 5-shot
classification (5-ways), for different backbones in the CUB dataset. We use the same setup as in the
classification setting. The results for the ResNet are the ones reported in Chen et al. (2019). DKT has
the best score in 1-shot Conv-4, and 5-shot ResNet, while being competitive in the other conditions.
Best results highlighted in bold.

Conv-4 ResNet-10
Method 1-shot 5-shot 1-shot 5-shot
Feature Transfer 46.19 ± 0.64 68.40 ± 0.79 63.64 ± 0.91 81.27 ± 0.57
Baseline++ (Chen et al., 2019) 61.75 ± 0.95 78.51 ± 0.59 69.55 ± 0.89 85.17 ± 0.50
MatchingNet (Vinyals et al., 2016) 60.19 ± 1.02 75.11 ± 0.35 71.29 ± 0.87 83.47 ± 0.58
ProtoNet (Snell et al., 2017) 52.52 ± 1.90 75.93 ± 0.46 73.22 ± 0.92 85.01 ± 0.52
MAML (Finn et al., 2017) 56.11 ± 0.69 74.84 ± 0.62 70.32 ± 0.99 80.93 ± 0.71
RelationNet (Sung et al., 2018) 62.52 ± 0.34 78.22 ± 0.07 70.47 ± 0.99 83.70 ± 0.55
DKT + CosSim (ours) 63.37 ± 0.19 77.73 ± 0.26 70.81 ± 0.52 83.26 ± 0.50
DKT + BNCosSim (ours) 62.96 ± 0.62 77.76 ± 0.62 72.27 ± 0.30 85.64 ± 0.29

Table 7: Average Expected Calibration Error (ECE, Guo et al. 2017) with standard deviation
(percentage) over three runs on 1-shot and 5-shot classification (5-ways) in the CUB dataset. The
lower the better. For the training phase we used the same setup as in the classification experiments. In
the evaluation phase, the temperature of all models has been calibrated on 3000 randomly generated
tasks, then each method has been evaluated on a separate set of 3000 randomly generated test
tasks. DKT has the third lowest error in 1-shot, and the second lowest error in 5-shot. Best results
highlighted in bold.

Method 1-shot 5-shot
Feature Transfer 12.57 ± 0.23 18.43 ± 0.16
Baseline++ (Chen et al., 2019) 4.91 ± 0.81 2.04 ± 0.67
MatchingNet (Vinyals et al., 2016) 3.11 ± 0.39 2.23 ± 0.25
ProtoNet (Snell et al., 2017) 1.07 ± 0.15 0.93 ± 0.16
MAML (Finn et al., 2017) 1.14 ± 0.22 2.47 ± 0.07
RelationNet (Sung et al., 2018) 4.13 ± 1.72 2.80 ± 0.63
DKT + BNCosSim (ours) 2.62 ± 0.19 1.15 ± 0.21

E Additional Results: Cross-Domain Experiments

Table 8: Average accuracy and standard deviation (percentage) over three runs on the cross-domain
setting (5-ways). We use the same setup as in the classification setting. The proposed method (DKT)
has the best score on most conditions. Best results highlighted in bold.

Omniglot→EMNIST mini-ImageNet→CUB
Method 1-shot 5-shot 1-shot 5-shot
Feature Transfer 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27
Baseline++ (Chen et al., 2019) 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31 ± 0.11
MatchingNet (Vinyals et al., 2016) 75.01 ± 2.09 87.41 ± 1.79 36.98 ± 0.06 50.72 ± 0.36
ProtoNet (Snell et al., 2017) 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17
MAML (Finn et al., 2017) 72.68 ± 1.85 83.54 ± 1.79 34.01 ± 1.25 48.83 ± 0.62
RelationNet (Sung et al., 2018) 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48
DKT + Linear (ours) 75.97 ± 0.70 89.51 ± 0.44 38.72 ± 0.42 54.20 ± 0.37
DKT + CosSim (ours) 73.06 ± 2.36 88.10 ± 0.78 40.22 ± 0.54 55.65 ± 0.05
DKT + BNCosSim (ours) 75.40 ± 1.10 90.30 ± 0.49 40.14 ± 0.18 56.40 ± 1.34

Kernel comparison. In Table 9 we show a comparison between different kernels (linear, RBF, Matérn, Poly-
nomial p = 1 and p = 2, CosSim, BNCosSim) trained on Omniglot→EMNIST and mini-ImageNet→CUB.
Overall using a BNCosSim kernel still gives an advantage in almost all conditions, showing stable results. The
best accuracy is achieved using more specialized kernels, however they often reach peak performance in specific
conditions while underperforming in others.

15

Table 9: Average accuracy and standard deviation (percentage) over three runs on the cross-domain
setting (5-ways) for different kernels. We use the same setup as in the classification setting.

Omniglot→EMNIST mini-ImageNet→CUB
Kernel 1-shot 5-shot 1-shot 5-shot
Linear 75.97 ± 0.70 89.51 ± 0.44 38.72 ± 0.42 54.20 ± 0.37
RBF 74.46 ± 0.41 88.38 ± 0.53 36.22 ± 0.40 51.30 ± 0.52
Matérn 75.46 ± 0.20 88.04 ± 1.81 36.98 ± 0.41 51.35 ± 0.16
Polynomial (p = 1) 74.33 ± 0.67 90.72 ± 0.47 38.24 ± 0.30 54.11 ± 0.40
Polynomial (p = 2) 75.58 ± 1.18 88.06 ± 0.70 36.83 ± 0.46 51.92 ± 0.87
CosSim 73.06 ± 2.36 88.10 ± 0.78 40.22 ± 0.54 55.65 ± 0.05
BNCosSim 75.40 ± 1.10 90.30 ± 0.49 40.14 ± 0.18 56.40 ± 1.34

16

