
Skeleton-bridged Point Completion: From Global Inference to Local Adjustment
We thank all reviewers for the time and expertise they have invested in the comments. We really appreciate their1

recognition of our work on the method novelty, experiment performance and writing clarity. We sort out our responses2

(R) to the comments (C) as follows. Hope they can address reviewers’ concerns.3

Figure 1: Com-
paring with coarse
points (right: ours).

C1.1: 1) “Only using skeleton module (baseline of the ablation study) cannot beat MSN, etc.” 2)4

“It is necessary to replace the skeleton generated with a coarse point cloud to see the difference.”5

R1.1: Thanks for this advice. 1) It is because this baseline completes surface points only using6

predicted skeletons (see Sec 5.4). Details from input scans could be lost. We devise this baseline7

to instigate how much the other modules leverage the input to improve the results. 2) We made8

this ablation on ‘chair’ category (see Figure 1). The (CD↓, Normal Cons.↑) values are (2.96e-4,9

0.81) and our (1.59e-4, 0.86). We think the reason could be that: coarse point cloud is still a10

type of surface points. While skeletal points keep compact topology of the shape without surface11

details. Using it as a bridge makes our method easier to recover complex structures. We will discuss it in detail.12

C1.2: “Please show the skeleton points result and the ground-truth and provide quantitative analysis.”13

R1.2: Thanks for the suggestion. We output some skeleton results (2,048 points) in Figure 2 and will put them in the14

final version. The average CD and EMD values to the GT are 2.98e-4 and 1.44e-2. Our codes will also be released.15

Figure 2: Skeleton
results. l->r: input,
prediction, GT

C2.1: "Whether the baseline methods will improve to be comparable to this method if using the16

same losses? Also, does using normal loss means more supervision than the baseline methods?"17

R2.1: We keep their original loss because some methods (ONet, DMC) adopt implicit functions18

to represent shapes, which do not support point losses, and some methods use similar losses with19

us (PF-Net). In Sec 5.3 and supp. material, we have augmented the baseline P2PNet with our20

modules + repulsive and normal losses (P2PNet*) to see the difference with us. The normal loss21

indeed means an extra supervision but to supervise normal estimation. We augment P2PNet with22

our modules to (P2PNet+normal loss) and (P2PNet+normal&adversarial loss) on ‘chair’ category.23

Repulsive loss is added for each. The (CD×e4↓, EMD×e2↓) values are (2.94, 3.13), (2.98, 3.19),24

(2.76, 1.70) respectively, and ours are (2.55, 0.49). We cannot see improvements in CD/EMD involving the normal loss.25

C2.2: "Such a multi-stage pipeline may perform worse if the first-step prediction is of low quality. Is this true?..."26

R2.2: Indeed the skeleton quality would affect surface results, but since our network is trained jointly, subsequent27

modules can optimize the skeleton deviations and produce optimal results. We will put failure cases in the final version.28

C3.1: "In my opinion, the fact that this work learns skeleton from partial scan, compared to learning skeleton from29

other modality [31], does not form a strong contribution."30

R3.1: The meso-skeleton provides a topology-consistent shape abstraction that inspires us to learn surface completion31

bridged by skeletal points. As mentioned in other reviews, it is a novel attempt and achieves SOTA results. [31] also32

adopts skeletal points but for another task (single-view reconstruction). Their image input presents totally different33

modality with our sparse and irregular partial points. It thus requires us to tailor a unique method for partial-to-full34

point completion, which is inherently different from their image-skeleton-voxel reconstruction with an encoder-decoder35

network. Indeed we share an intuitive insight that skeleton can provide a global structure. For shape completion,36

however, the major bottleneck lies on inferring the complicated topology from irregular points, where the meso-skeleton37

presents a distinct advantage. The experiments also verified the worthiness of this first attempt. As mentioned by38

reviewer#4, we also believe this work can provide a new perspective of point completion guided by shape skeleton.39

C3.2: "It would be much better if a figure showing the whole pipeline is given. Fig 3, 4 are not easy to follow."40

R3.2: Thanks for this comment. The whole pipeline is illustrated in Figure 2 (in our paper), and the detailed layer41

information and data flow are demonstrated in the supplementary file. We will mention this in the paper to make it easier42

to follow. Figure 3 and 4 are explained in Section 3.2 and 3.3, which will be further detailed in the revised version.43

C3.3: "I would suggest to provide the performance of the model with each component removed..."44

R3.3: Sec 5.4 presents the ablation study on our main modules. We will further ablate the skeleton module as in R1.1.45

C3.4: "It is better to provide experiments on real dataset in order to understand the robustness against real data noise."46

R3.4: Thanks for the advice. We test our network on real scans in Figure 3. More results will be put in the final version.47

Figure 3: In-the-wild tests. l-
>r: input, points, mesh.

C4.1: "Although paper claims the importance of preserve the geometry on the observ-48

able region, I do not see clear motivation using the adversarial training..."49

R4.1: Before considering the adversary loss, we actually refined the scan with observ-50

able points only using CD loss. However, we observed uneven point distribution on51

the observable area as discussed in PU-GAN. Thus we adopted the adversarial loss in52

PU-GAN to improve the visual quality on surfaces (see Section 3.3).53

C4.2: "More qualitative results of generated skeleton and discussions on its effects...”54

R4.2: Thanks for this suggestion. Here we list some results in Figure 2. For the page55

limit, we will analyze its effectiveness in the revised version. Our current skeleton generation is designed for supervised56

learning. We hope it can lay a foundation for the future work in unsupervised skeleton learning.57


