
We thank all reviewers for their valuable comments and suggestions. Here we focus on clarifying major concerns, and1

will address all minor points (fix notations, typos, and improve legibility for tables and figures) in our next revision.2

[R1] 1) Larger sample size: In Table A, we repeat our experiments on 5000 test examples for each dataset (or the3

entire test set when its size is less than 5000), 10X larger than originally reported. We highlighted the best and the4

second best methods. The average r̄ are similar to Table 3 across all datasets, showing the effectiveness of our algorithm.5

We had to use a different machine for this larger experiment so time is not comparable, but the speedups are also similar6

to those in Table 3. We have 2 large datasets, HIGGS and Bosch (see reply to [R3]-1)). 2) Difference with prior7

works: Our major novelty is to discretize the input space into a set of valid leaf tuples, on which we perform the greedy8

search. Table B highlights our differences. 3) Motivation: We provide a strong attack as a tool for evaluating the9

robustness of tree based models. (see reply to [R4]-1)). 4) Figure 2 explanation: We run each method with different10

number of random initial examples (x-axis). More initial examples lead to better attacks (smaller perturbation size on11

y-axis), but runtime cost is higher. Methods on bottom-left corner are better. We will enlarge figures and explain more.12

Table A: Average `∞ and `2 perturbation of 5000 test examples on
robustly trained GBDT models. Bold and blue highlight the best and
the second best entries respectively (not including MILP).
("*" / "?"): Average of 1000 / 500 examples due to long running time.

Robust GBDT SignOPT HSJA RBA-Appr Cube LT-Attack (Ours) MILP Ours vs. MILP

`∞ Perturbation r̄ time r̄ time r̄ time r̄ time r̄our time r∗ time r̄our/r
∗ Speedup

MNIST2-6 .588 3.06s .470 1.30s .671 .137s .337 2.15s .333 .275s .313 177s* 1.06 641.6X
breast-cancer .403 .371s .405 .073s .405 .002s .888 .238s .404 .002s .401 .010s* 1.01 5.6X

covtype .064 .540s .080 .186s .093 3.61s .055 .720s .047 .047s .045 14min* 1.04 17164.9X
diabetes .119 .364s .123 .068s .138 .001s .230 .239s .113 .003s .112 .039s* 1.01 14.4X
FMNIST .254 4.31s .154 1.79s .596 7.83s .101 4.45s .095 .412s .076 74min* 1.25 10778.5X
HIGGS .015 .466s .016 .134s .048 72.4s* .012 .644s .01 .050s .009 73min? 1.11 87149.2X

ijcnn .032 .353s .030 .105s .032 .018s .027 .313s .025 .006s .022 4.24s* 1.14 759.6X
MNIST .513 3.93s .389 1.68s .690 6.42s .296 3.95s .290 .234s .270 20min* 1.07 5067.5X

webspam .047 1.00s .043 .414s .061 .641s .020 .756s .017 .031s .015 129s* 1.13 4129.4X
bosch .343 3.28s .337 1.42s .533 1.22s .158 2.49s .143 .213s .100 237s* 1.43 1112.0X

Robust GBDT SignOPT HSJA RBA-Appr Cube LT-Attack (Ours) MILP Ours vs. MILP

`2 Perturbation r̄ time r̄ time r̄ time r̄ time r̄our time r∗ time r̄our/r
∗ Speedup

MNIST2-6 2.97 7.37s 3.32 1.28s 2.95 .156s 1.31 3.19s .971 .438s .762 25.0s* 1.27 57.1X
breast-cancer .437 .711s .449 .069s .436 .002s .940 .239s .434 .002s .431 .011s* 1.01 5.2X

covtype .076 1.11s .104 .196s .137 3.26s .096 .726s .062 .047s .058 9min* 1.07 11183.1X
diabetes .142 .591s .150 .061s .161 .003s .274 .240s .133 .005s .132 .025s* 1.01 4.8X
FMNIST 1.67 9.27s 1.34 1.64s 3.72 7.01s .500 7.01s .310 .385s .233 231s* 1.33 600.8X
HIGGS .020 .879s .020 .128s .085 66.5s* .023 .580s .016 .045s .014 24min? 1.14 31715.5X

ijcnn .033 .572s .035 .096s .040 .014s .042 .307s .030 .006s .025 .853s* 1.20 140.3X
MNIST 3.08 9.14s 3.04 1.61s 4.07 5.11s 1.33 6.26s .932 .291s .670 7min* 1.39 1523.6X

webspam .097 3.24s .100 .431s .148 .589s .068 .869s .041 .034s .035 28.3s* 1.17 840.6X
bosch .750 9.62s 2.33 1.54s 1.45 1.21s .480 3.84s .258 .232s .214 28.0s* 1.21 120.7X

Table B: Comparisons to prior works.
SignOPT HSJA Cube RBA-Appr Ours

Access Level B-box B-box B-box W-box + data W-box
Search Space input input input training data leaf tuple

Step Size small η small ξ `0 boundary N/A one leaf node
Queries / iter 200 100∼632 100 N/A ∼1 (line 203)

Table C: RF statistics in addition to Table 7.
Dataset training set size test set size subsample acc.

MNIST2-6 11,876 1,990 .8 .963
diabetes 614 154 .8 .775
FMNIST 60,000 10,000 .8 .823

higgs 10,500,000 500,000 .8 .702
ijcnn 49,990 91,701 .8 .919
bosch 946,997 236,750 .8 .994

Table D: RF results in addition to Table 8.
`2 Cube Ours MILP Ours vs. MILP

Perturbation r̄ time r̄our time r∗ time r̄our/r
∗ Speedup

MNIST2-6 .439 2.13s .207 .045s .194 .071s 1.07 1.6X
diabetes .260 .285s .151 .003s .146 .042s 1.03 14.X
FMNIST .141 3.51s .066 .080s .066 7.44s 1.00 93.X

higgs .015 .423s .009 .013s .009 6.66s 1.00 512.3X
ijcnn .046 .336s .028 .003s .028 .185s 1.00 61.7X

[R3] 1) Challenging datasets: In Table 2 and 3, HIGGS contains 10.5 million training examples and the ensemble13

has 300 trees. We additionally added Bosch (1.2 million examples, 968 features) in Table A. Both datasets are from14

challenging Kaggle competitions. Our method is effective on both datasets. 2) C++/Python: Among the baselines,15

we implemented RBA-Appr in C++. MILP uses a thin wrapper around the Gurobi Solver. Other methods spend16

majority of time on XGBoost model inference rather than Python code. For instance, on Fashion-MNIST, SignOPT,17

HSJA, Cube spent 72.8%, 57.3%, 73.4% of runtime in XGBoost library (C++) calls, respectively. 3) Ablation18

experiments: Our ablation experiments are spread across the paper: (a) Size of the neighborhood: we compare19

the effect of small (NaiveFeature) and large (NaiveLeaf) neighborhood space in Table 1, and study the minimum20

neighborhood distance in Appendix D.3. (b) Random noise optimization also improves the solution quality. We provide21

baseline results in Table 1 and optimized results in Table 2 and 3. (c) number of initial examples affects both the22

runtime and the solution quality, and we compare the effect in Figure 2. 4) Bounding boxes: The exact definition is23
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dimension. 5) Why x′ and a in Figure 1 are local minimums: Decision-based attacks update solution along the25

decision boundary. They will be trapped at x′ and a since small perturbation on both sides will increase the distance to26

x0. To update from a to b, the path will be a → (5, 10) → b, but since a → (5, 10) will increase the distortion they27

won’t find this path. Other methods such as random sampling is inefficient in a large `p ball in the order of ‖a− b‖p.28

[R4] 1) Motivation of minimizing `p perturbation: We minimize the perturbation to find a smallest possible attack,29

to uncover the true weakness of a model. `p distance is widely used in previous attacks (Carlini, Wagner, 2017;30

Kantchelian et al., 2015) and its prevalence is mostly due to mathematical convenience. Small `p perturbations are31

usually invisible, but we agree it cannot capture many real settings. Our method can be adapted to other distance metrics:32

in line 8 of Alg. 1, we enumerate the distances between x0 and a set of candidates C to find the minimum. This distance33

can be redefined. 2) Distance notation: We will clean up notation and use distp(C, x0) to denote the `p distance.34

[R5] 1) Size of neighborhood: Thanks for the correct understanding on this trade-off. Our ablation (Table 1) and35

experiments (Table 2, 3) empirically show that distance 1 is sufficient for outperforming other attacks. 2) Robust to36

structure changes: For each tree, its non-leaf nodes and structures are irrelevant to our algorithm as long as the leaves37

produce the same bounding boxes. We conduct a small experiment on adversarial training and improve the `2 robustness38

from .082 to .115 on diabetes dataset. 3) Random forest: We added the remaining experiments in Table D and C.39


