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We thank all reviewers for their valuable comments and suggestions. Here we focus on clarifying major concerns, and
will address all minor points (fix notations, typos, and improve legibility for tables and figures) in our next revision.

[R1] 1) Larger sample size: In we repeat our experiments on 5000 test examples for each dataset (or the
entire test set when its size is less than 5000), 10X larger than originally reported. We highlighted the best and the
second best methods. The average  are similar to Table 3 across all datasets, showing the effectiveness of our algorithm.
We had to use a different machine for this larger experiment so time is not comparable, but the speedups are also similar
to those in Table 3. We have 2 large datasets, HIGGS and Bosch (see reply to [R3]-1)). 2) Difference with prior
works: Our major novelty is to discretize the input space into a set of valid leaf tuples, on which we perform the greedy
search. highlights our differences. 3) Motivation: We provide a strong attack as a tool for evaluating the
robustness of tree based models. (see reply to[[R4]-1)). 4) Figure 2 explanation: We run each method with different
number of random initial examples (x-axis). More initial examples lead to better attacks (smaller perturbation size on
y-axis), but runtime cost is higher. Methods on bottom-left corner are better. We will enlarge figures and explain more.
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[R3] 1) Challenging datasets: In Table 2 and 3, HIGGS contains 10.5 million training examples and the ensemble
has 300 trees. We additionally added Bosch (1.2 million examples, 968 features) in[Table A] Both datasets are from
challenging Kaggle competitions. Our method is effective on both datasets. 2) C++/Python: Among the baselines,
we implemented RBA-Appr in C++. MILP uses a thin wrapper around the Gurobi Solver. Other methods spend
majority of time on XGBoost model inference rather than Python code. For instance, on Fashion-MNIST, SignOPT,
HSJA, Cube spent 72.8%, 57.3%, 73.4% of runtime in XGBoost library (C++) calls, respectively. 3) Ablation
experiments: Our ablation experiments are spread across the paper: (a) Size of the neighborhood: we compare
the effect of small (NaiveFeature) and large (NaiveLeaf) neighborhood space in Table 1, and study the minimum
neighborhood distance in Appendix D.3. (b) Random noise optimization also improves the solution quality. We provide
baseline results in Table 1 and optimized results in Table 2 and 3. (¢) number of initial examples affects both the
runtime and the solution quality, and we compare the effect in Figure 2. 4) Bounding boxes: The exact definition is
B(C) = MNice B* = Nicclisri] x - -+ x M;ec (1, 75]. Tt is the Cartesian product of the intersection on each feature
dimension. 5) Why 2’ and « in Figure 1 are local minimums: Decision-based attacks update solution along the
decision boundary. They will be trapped at 2’ and a since small perturbation on both sides will increase the distance to
xo. To update from a to b, the path will be a — (5,10) — b, but since a — (5, 10) will increase the distortion they
won’t find this path. Other methods such as random sampling is inefficient in a large £, ball in the order of [la — b]|,,.

[R4] 1) Motivation of minimizing /,, perturbation: We minimize the perturbation to find a smallest possible attack,
to uncover the true weakness of a model. /£, distance is widely used in previous attacks (Carlini, Wagner, 2017,
Kantchelian et al., 2015) and its prevalence is mostly due to mathematical convenience. Small £, perturbations are
usually invisible, but we agree it cannot capture many real settings. Our method can be adapted to other distance metrics:
in line 8 of Alg. 1, we enumerate the distances between x( and a set of candidates C to find the minimum. This distance
can be redefined. 2) Distance notation: We will clean up notation and use dist, (C, zo) to denote the £, distance.

[RS] 1) Size of neighborhood: Thanks for the correct understanding on this trade-off. Our ablation (Table 1) and
experiments (Table 2, 3) empirically show that distance 1 is sufficient for outperforming other attacks. 2) Robust to
structure changes: For each tree, its non-leaf nodes and structures are irrelevant to our algorithm as long as the leaves
produce the same bounding boxes. We conduct a small experiment on adversarial training and improve the /5 robustness
from .082 to .115 on diabetes dataset. 3) Random forest: We added the remaining experiments in [Table D]and [C]



