A Dataset and Model Statistics

We use 9 datasets and pre-trained models provided in|Chen et al.| (2019b), which can be downloaded
from https://github.com/chenhongge/RobustTrees. summarized the statistics of
the datasets as well as the standard (natural) GBDT models, and we report the average complexity
statistics for | Neighborgy,q(+)| from 500 test examples. For multi-class datasets we count trees
either belong to the victim class or the class of the initial adversarial example. Datasets may contain
duplicate feature split thresholds and the extra complexity is covered in the statistics. We disabled the
random noise optimization discussed in §3.5|to provide a cleaner picture of [Algorithm T| We train
standard (natural) RF models using XGBoost’s native RF API and provide the statistics in [Table 7l

Table 6: The average complexity statistics for | Neighborg,,,q(+)| from 500 test examples.

Dataset features classes trees depth! iterations |Tpouna(-)| | Neighbor(lt) ()] | Neighborgy.a()l
breast-cancer 10 2 4 6 2.1 32 52 9.2

diabetes 8 2 20 5 6.3 6.1 3.4 10.6
MNIST2-6 784 2 1,000 4 121.7 3742 14.9 256.5
ijenn 22 2 60 8 26.5 74 33 17.8
MNIST 784 10 400 8 159.4 124.7 5.0 367.9
F-MNIST 784 10 400 8 236.8 149.1 6.5 717.4
webspam 254 2 100 8 100.7 37.0 3.8 129.7
covtype 54 7 160 8 36.7 30.8 10.6 39.2
HIGGS 28 2 300 8 107.1 13.5 2.1 24.0

Table 7: Parameters and statistics for datasets and the standard (natural) RFs.

Dataset train size testsize trees depth! subsampling test acc.
breast-cancer 546 137 4 6 8 974
diabetes 614 154 25 8 .8 175
MNIST2-6 11,876 1,990 1000 4 .8 963
ijjenn 49,990 91,701 100 8 .8 919
MNIST 60,000 10,000 400 8 .8 .907
F-MNIST 60,000 10,000 400 8 .8 .823
webspam 300,000 50,000 100 8 .8 948
covtype 400,000 180,000 160 8 .8 745
HIGGS 10,500,000 500,000 300 8 .8 702

B Supplementary Experiments
B.1 Additional Experimental Results on Random Forests
Table 8: Average {, perturbation over 100 test examples on the standard (natural) random forests

(RF) models. Datasets are ordered by training data size. Bold and blue highlight the best and the
second best entries respectively (not including MILP).

Standard RF Cube LT-Attack (Ours) MILP Ours vs. MILP
{~ Perturbation 7 time Tour time r* time Tou/T* Speedup
breast-cancer 797 .208s .340 .001s 332 .008s 1.02 8X
diabetes 159 271s 111 .002s 103 .054s 1.08 27X
MNIST2-6 135 1.85s .130 .041s 121 .335s 1.07 8.2X
ijenn .032 .340s .026 .003s 026 .338s 1.00 112.7X
MNIST 017 1.98s .010 .056s .009 21.4s 1.11 382.1X

F-MNIST 036 2.57s .036 .084s 032 341s 113 406X

webspam 004 .652s .002 .023s 002 2.63s 1.00 114.3X
covtype .050 .684s .048 037s .048 72.2s 1.00 1951.4X
HIGGS .008 .389s .007 011s .006 209s 1.17 1900X

B.2 Attack Success Rate

We present attack success rate in|Fig. 3| which is calculated as the ratio of constructed adversarial
examples that have smaller perturbation than the thresholds. We use 50 test examples for MILP due
to long running time, and 500 test examples for other methods.

1https ://xgboost .readthedocs.io/en/release_1.0.0/tutorials/rf.html

13

https://github.com/chenhongge/RobustTrees
https://xgboost.readthedocs.io/en/release_1.0.0/tutorials/rf.html

Standard GBDT (covtype) Robust GBDT (covtype) Standard GBDT (covtype) Robust GBDT (covtype)

1 T T /\/ 1 T T T T ~ 1 T — 1 T T T
0.8 408 408 — 08} —
L s
2 061 o | 06| 0.6} 1 o6f e
8 04| . 1 o4l 04l / 1 o4l ” |
Z g p
0.2} 4 02f 0.2} 4 02/ g
0 .S 1 Il Il Il U 5 Il Il Il Il 0 2 Il Il Il 0 Il Il Il
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.05 0.1 015 0.2 0 005 01 015 02
£ threshold {+ threshold {5 threshold {5 threshold
Standard GBDT (F-MNIST) Robust GBDT (F-MNIST) Standard GBDT (F-MNIST) Robust GBDT (F-MNIST)
1 T : —8— 1 T }3—'—@ 1 = g8 1 T —
0.8F . 4 08F y/ o1 08F 4 08F E
£) /
S 0.6 4 06 4 06F 4 06 4
2 £ /] # / .
% f
g 04y 1 04f y 4 04 . 1 04f 1
@ I /
0.2 1 02t 4 1 02y 1 02t 7 e
0 ‘ % | | 0 —9¢ | 0 | | 0 Al M |
0.05 01 015 0.2 0.05 01 015 0.2 0.2 0.4 0.6 0.2 0.4 0.6
(. threshold {+ threshold {5 threshold {5 threshold
\ —+ MILP —=Ours —— RBA-Appr Cube = HSJA SignOPT \

Figure 3: Attack success rate vs. perturbation thresholds.

B.3 /. Perturbation Using Different Number of Initial Examples

[Fig. 4] presents the average /., perturbation of 50 test examples vs. runtime per test example in log
scale. We plot the results for SignOPT, HSJA, Cube, and LT-Attack on {1, 2,4, 6, 10, 20, 40} initial
examples, using 2 threads per task. Initial examples are not applicable to RBA-Appr and MILP thus
we only plot a single point for each method.

Standard GBDT (covtype) Standard GBDT (F-MNIST) Standard GBDT (HIGGS) Standard GBDT (webspam)
N — e 0.012 7 . ; T
0.15 b
= 0.08F x B . °
g 'Y 0.01 b 0.02 - b
g 0.1} g
=}
E 0.06 - b 0.008 - L b Y
2 \ 0.05 0.006 A ooty X |
.05 . - 0. - (11 8 .
R 0.04 - m ’o... b E\EE % %0e 0o EHEEEE » g
L v o o [0)T R ot | 0'0047\ ! ! 1 Op o ogy o S
10721071 10° 10' 102 103 1071 10° 10t 102 10% 10-2 10° 102 10* 10-t 10° 10t
time/s time/s time/s time/s
Robust GBDT (covtype) Robust GBDT (F-MNIST) Robust GBDT (HIGGS) Robust GBDT (webspam)
e e e TN 0 SRR T
L] x L] L]
= L B
S 0.08 L 4 02) : oot °
2 0.015 - 8 *
] L B
2 0.15 - E 0.03 %
2 o .
a. 0.06 |- L N ’.,... “m
& E&Eﬂsﬁ * A 1 001f tee | 002 Fugg 0)
0.04 b ol v ol v YIRS RTTITY MM Am ool ol ol ol ‘Lmu T ST T mLm
101 10° 10' 10? 10° 1071 10° 10' 102 10% 107110° 10 10% 10° 10-1 10° 10t 107
time/s time/s time/s time/s
‘ ——MILP —5-Ours ——RBA-Appr Cube e HSJA SignOPT ‘

Figure 4: Average /., perturbation of 50 test examples vs. runtime per test example in log scale.
Methods on the bottom-left corner are better.

B.4 Experimental Results for /; Norm and Verification

[Table 9] presents the experimental results on ¢; norm perturbation. Cube doesn’t support ¢, objective
by default and we report the ¢; perturbation of the constructed adversarial examples from ¢, objective
attacks. For completeness we include verification results (Chen et al.,|2019b; |Wang et al., [2020) in
[Table 9]and [Table 10} which output lower bounds of the minimal adversarial perturbation denoted as
7 (in contrast to adversarial attacks that aim to output an upper bound 7).

14

Table 9: Average /; perturbation over 50 test examples on the standard (natural) GBDT models
and robustly trained GBDT models. Datasets are ordered by training data size. Bold and blue
highlight the best and the second best entries respectively (not including MILP and Verification).

Standard GBDT SignOPT RBA-Appr Cube LT-Attack (Ours) MILP Verification Ours vs. MILP
{1 Perturbation T time T time T time Tour time ¥ time T time 7oy /r* Speedup
breast-cancer 413 .686s .535 .0002s 1.02 .234s .372 .002s 372 .012s 367 .003s 1.00 6.X
diabetes 183 1.04s 294 .0005s 290 .238s .131 .003s 126 .080s 095 .133s 1.04 26.7X
MNIST2-6 354 681s 259 .109s 3.73 3.47s .783 .230s 568 2.51s 057 1.17s 1.38 10.9X
ijenn 075 .889s .286 .0l16s .247 .340s .064 .008s 060 3.28s .044 1.68s 1.07 410.X
MNIST 228 8.77s 465 3.13s 216 7.11s .341 267s 207 56.8s .013 5.40s 1.65 212.7X
F-MNIST 13.8 9.55s 427 457s 120 9.04s .260 479s 181 703s .013 7.19s 1.44 146.8X
webspam 287 343s .614 .630s .036 1.0ls .006 .062s 004 4.17s .0003 6.40s 1.50 67.3X
covtype 074 1.74s 223 229s .132 1.0ls .057 .039s 052 314s 024 2.26s 1.10 8051.3X
HIGGS 050 1.20s .611 447s .039 .854s .016 .049s 013 25min .002 7.36s 123 30183.7X
Robust GBDT SignOPT RBA-Appr Cube LT-Attack (Ours) MILP Verification Ours vs. MILP
{1 Perturbation T time T time T time Tour time r* time T time 7ou/r* Speedup
breast-cancer .654 .869s .598 .0008s 1.23 .210s .574 .002s 574 .008s .506 .001s 1.00 4X
diabetes 201 .667s 228 .001s 514 .235s .189 .002s 189 .028s .166 .007s 1.00 14.X
MNIST2-6 238 6.51s 17.8 .106s 6.69 3.47s 276 .523s 1.78 232s 381 2091s 1.55 44.4X
ijenn 076 .693s 205 .015s 233 .337s .067 007s 065 1.02s .043 .279s 1.03 145.7X

MNIST 574 793s 327 3.70s 9.76 8.35s 4.00 455s 1.72° 13min 270 8.61s 2.33 1652.7X
F-MNIST 28.6 104s 413 496s 3.70 9.96s 1.20 A477s 720 244s 077 13.6s 1.67 511.5X
webspam 186 3.65s .540 .522s 309 1.00s .119 .037s 073 67.7s .014 2.17s 1.63 1829.7X

covtype .097 1.65s 217 243s 241 1.02s .080 075s 071 437s .033 3.12s 1.13 5826.7X

HIGGS 033 1.12s .226 43.6s .071 .839s .028 .052s .021 40min .006 5.55s 1.33 46576.9X

Table 10: Average ¢, and ¢ perturbation over 500 test examples on the standard (natural) GBDT
models and robustly trained GBDT models. ("*"): Average of 50 examples due to long running time.

Standard GBDT ~ LT-Attack (Ours) MILP Verification Robust GBDT LT-Attack (Ours) MILP Verification
l~ Perturbation 7oy time r* time r time lo Perturbation 7oy time r* time r time
breast-cancer 235 .001s 222 .013s 220 .002s breast-cancer 415 .001s 415 .008s 414 .001s
diabetes 059 .002s 056 .084s 047 910s diabetes 122 .002s 21 .036s .119 .0lls
MNIST2-6 097 2225 065 287s 053 1.27s MNIST2-6 331 .302s 317 987s 311 29.4s
ijenn 033 .007s 031 6.60s 027 6.25s ijenn 038 .006s 036 3.60s .032 .799s
MNIST 029 237s 014 375s% 011 9.38s MNIST 298 315s 278 13min* 255 7.47s
F-MNIST 028 .370s 013 15min* 012 6.96s F-MNIST 098 403s 078 29min* 075 13.3s
webspam .001 051s 0008 27.5s .0002 9.79s webspam 016 .038s 014 512s .0l11 5.85s
covtype 032 .038s 028 10min* 021 4.21s covtype 047 .053s 044 518s* 031 3.24s
HIGGS .004 .036s .004 52min* .002 13.2s HIGGS 01 054s 009 45min* .005 8.42s
Standard GBDT ~ LT-Attack (Ours) MILP Verification Robust GBDT ~ LT-Attack (Ours) MILP Verification
(o Perturbation 7y time r* time T time {5 Perturbation 7our time r* time T time
breast-cancer 283 .001s 280 Olls 277 .002s breast-cancer .452 .001s 452 .007s 450 .001s
diabetes 077 .003s 073 .055s .058 .458s diabetes 144 .002s 143 .024s 130 .009s
MNIST2-6 245 2355 .183 2525 .058 1.06s MNIST2-6 .968 401s 803 17.3s 358 4.42s
ijenn 044 010s .043 218 .030 4.62s ijenn .048 .007s 046 7285 .035 .575s
MNIST 072 243s .043 3255 013 68ls MNIST 1996 3955 701 200s 273 10.1s
F-MNIST 073 400s 049 493s 013 6.72s F-MNIST 326 468s 251 993s 079 13.5s
webspam .002 .053s 002 3.17s .0002 8.95s webspam .039 .036s .033 12.0s 012 4.72s
covtype 045 .039s 042 237s 023 2.96s covtype .063 .054s 059 280s .033 3.10s
HIGGS .008 .037s 007 13min* .002 10.3s HIGGS 016 054s 015 15min* .006 7.16s

C Proofs

C.1 Proof of Theorem 2]
Proof. By contradiction. Given adversarial tuple C’ and victim example z, assume
3C; € Neighborf (C') st. €y ¢ Neighborg,q(C').
Assume p € {1,2,00}. Letz; = argmingc g c,) lx — x0||p, i argmin,c g(cr) |z — moHp, and
let J be the set of dimensions that x is closer to zg:
J={j |1y =zl <laf — w01}
According to the definition of Neighbor{ (C’) we have dist,(Cy, o) < dist,(C’,z0), and conse-

quently J # @. We choose any j' € J and for cleanness we use (I’, 7] to denote the interval from

B(C’) on j}, dimension, and let dy =z j/, d1 = x1,j,,d' = x;,.

15

Observe dy ¢ (I',7'], otherwise we have |d’ — dy| = 0 and |d; — dg| cannot be smaller. W.Lo.g.
assume dy is on the right side of the interval, i.e., ' < dy, then according to the argmin property of
a2’ we have d’ = r'.

Recall that B(C') is the intersection of K bounding boxes from the ensemble, then

3t e[K] st BSar=r.

Observe ' = d’ < dj since dqg is on the right side of d’ and d; has smaller distance to dg, which means
C1 has different leaf than C’ on tree ¢. Also according to the above equation t' € Tgoung(C’), and C; €

Neighborgt/)(C’)» thus C1 € Uery,uien Neighborgt) (C") = Neighborg,,,q4(C’), contradiction.
O

C.2 Proof of Corollary2]

Proof. According to B(1) is the intersection of K — 1 bounding boxes and can be written
as the Cartesian product of d intervals, we call it a box. Each tree ¢ of depth [splits the R? space into up

to 2! non-overlapping axis-aligned boxes, and | Neighborgt) (C")] + 1 (plus current box) corresponds

to the number of boxes that has non-empty intersection with B(~*), thus | Neighborgt) <2t —1.

Observe that k(*) axis-aligned feature split thresholds can split R? into at most k" non-overlapping
boxes, assuming d > k(*), and the maximum can be reached by having at most 1 split threshold on
each dimension. In conclusion there are at most 22 (*-)) boxes that has non-empty intersection
with B9, thus | Neighbor!"” (¢")| < 2min(:".) _ 1 (minus the current box). O

C.3 Proof of Theorem[3

Proof. By contradiction. Let g, yo be the victim example and assume
e (VHENC st f(C*) #wyo A dist,(C*,x0) < dist,(C’,20).

Assume p € {1,2,00}. Recall f(C) = sign(}_,c v*), we compute the tree-wise prediction differ-
ence
ogiy =" = e K],
Let tmin be the tree with the smallest functional margin difference
(t)

tmin = argmin o - Vg
te[K]

tmin)

We construct a tuple C; which is the same as C’ except on t,;,, where Ci = C*(tnin) consequently

we have
CieC A diStp(Cl,l‘o) < diStp(C/,xo).

Now we show f(C1) # Yo, O 4o D _;ce, v < 0

i. Case yp - v((ﬁtf?“) < 0. Then
' ‘ tmin '
yOZvZ :yOZv’+y0-u§iff) gyOZvZ < 0.
i€Cy = iec’

ii. Case yo - v{m") > 0. Then

vo Y v =yo Y v +yo- vim < yo > v+ Ky ogi”

i€Cy ieC’ icC’
j t j
SyOZv’—&-yo Z vgif)f:yo Zv’ < 0.
ieC’ te[K] i€C*

In conclusion C; is a valid adversarial tuple within Neighbor, (C’) and has smaller perturbation than
C’, thus the algorithm won’t stop. O

16

1

- U 7 I N

10
11

13
14
15
16

8

9
10
11
12
13
14
15
16

D Supplementary Algorithms

D.1 Generating Initial Adversarial Examples for LT-Attack

Algorithm 2: Generating Initial Adversarial Examples for LT-Attack

Data: Target white-box model f, victim example .
begin
Yo < f(xo);
r’, C' <+ MAX, None;
num_attack < 20;
for i < 1,... num_attack do
do
z' < xo + Normal(0,1)%;
while f(z') = yo;
x' < BinarySearch(z', o, f);
> Do a fine-grained binary search between zo and =’ to optimize the initial perturbation of z’.
Similar to g(@) proposed by [Cheng et al.| (2019).
r*, C* « LT-Attack(f, zo,7');
if 7* < 7’ then
| v, C 71" C
end

end
return r’, C’

end

D.2 Algorithm for NaiveLeaf

Algorithm 3: Compute NaiveLeaf

Data: Target white-box model f, current adversarial example x’, victim example zg.
Result: The NaiveLeaf neighborhood of C(z")
begin
GV, i) —c(a);
N «— @,
fort < 1... K do
fori e SW i +£i® do
> S®) denotes the leaves of tree t.
xnew <_ m/;
for 5, (I,7] € B* do
> The jyn dimension of the bounding box B', can be acquired from f.
if Zyew,; ¢ (1, 7] then
| @new,; < min(r, max(l + €, 20 5));
end
end
N < N U{C(%new)};

end
end
return N

end

D.3 A Greedy Algorithm to Estimate the Minimum Neighborhood Distance

To understand the quality of constructed adversarial examples we use an empirical greedy algorithm to
estimate the minimum neighborhood distance h such that Neighbor), () can reach the exact solution.
Assume our method converged at C’ and the optimum solution is C*, let Tgir = {¢ | C’ ®) £ C*(t)}
be the set of trees with different prediction, then the Hamming distance h = |Ty| is a trivial upper
bound where Neighbory, (C') can reach C* with a single addition iteration. To estimate a realistic h™
we want to find the disjoint split Tyt = U3 such that we can mutate C’ into C* by changing
trees in 7; to match C* at 4y, iteration. We make sure all intermediate tuples are valid and has strictly

17

1

[7 I NI Y

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

decreasing perturbation as required by [Eq. (3)} and report h™ = max;e) [Ti|. h™ is an estimation
of the minimum h because we cannot guarantee the argmin constrain due to the large complexity.
As shown in[Table 11| we have median(h) = 23 and median(h™) = 8 on ensemble with 300 trees
(HIGGS), which suggests that our method is likely to reach the exact optimum on half of the test
examples through ~3 additional iterations on Neighborg(-). In this experiment we disabled the

random noise optimization discussed in §3.5|to provide a cleaner picture of

Algorithm 4: A greedy algorithm to estimate the minimum neighborhood distance h™.

Data: The model f, our adversarial point Zoyr, exact MILP solution x*.
Result: An estimation of neighborhood distance h"™ .
begin

cour, C* — C(xour)7 C(l'*),
r* < dist, (C*, z0);
y" < f(z");
Amin D(C(,ur,C*) 5 > Hamming distance is the upper bound.
L e {7 =00 ¢, €*®) | ¢ £C70, 1 e (KN
> Igiss is the list of tuples in the form of (label diff, our leaf, MILP leaf).
num_trial < 200;
for i < 1,... num_trial do
h « 0;
I+ shuﬂle([diﬂ-);
Clmp — Cour;
while / # @ do
Tlast <— diStp (Ctmp7 -'1;0);
Cump ¢ pop the first tuple from I with positive label diff and replace with MILP leaf;
h<«~ h+1;
while Cyp, ¢ C or distp (Comp, mo)i ﬁ 7", Tiast) O f(Comp) # Y~ do
> Making sure Cinp satisfies except the argmin. We cannot guarantee
argmin due to the high complexity. The while loop is guaranteed to exit since we
can pop all tuples in [to become C*.
Cunp < pop the first tuple from I and replace with MILP leaf,
h<« h+1;
end
end
hmin — min(hminy h),
end
return £,
end

Table 11: Convergence statistics for the standard (natural) GBDT models between our solution and
the optimum MILP solution. We collect the data after the fine-grained binary search but before
applying LT-Attack (Initial), and the data after LT-Attack (Converged). We disabled the random noise
optimization discussed in §3.5]

HammingDist h NeighborDist h™
Dataset Model " —
Initial Converged Initial Converged
#of trees max median max median max median max median
breast-cancer 4 2 0 0 0 2 0 0 0
diabetes 20 10 3 6 0 5 1 4 0
MNIST2-6 1000 676 490 347 172 172 46 64 36
ijenn 60 27 10 16 3 18 2 8 2
MNIST 400 266 115 96 33 173 8 12 7
F-MNIST 400 237 174 100 56 82 12 18 10
webspam 100 88 56 36 16 75 7 9 4
covtype 160 84 23 67 9 82 7 65 6
HIGGS 300 190 62 125 23 181 12 121 8

18

