
A Dataset and Model Statistics

We use 9 datasets and pre-trained models provided in Chen et al. (2019b), which can be downloaded
from https://github.com/chenhongge/RobustTrees. Table 6 summarized the statistics of
the datasets as well as the standard (natural) GBDT models, and we report the average complexity
statistics for |NeighborBound(·)| from 500 test examples. For multi-class datasets we count trees
either belong to the victim class or the class of the initial adversarial example. Datasets may contain
duplicate feature split thresholds and the extra complexity is covered in the statistics. We disabled the
random noise optimization discussed in §3.5 to provide a cleaner picture of Algorithm 1. We train
standard (natural) RF models using XGBoost’s native RF APIs1, and provide the statistics in Table 7.

Table 6: The average complexity statistics for |NeighborBound(·)| from 500 test examples.

Dataset features classes trees depth l iterations |TBound(·)| |Neighbor
(t)
1 (·)| |NeighborBound(·)|

breast-cancer 10 2 4 6 2.1 3.2 5.2 9.2
diabetes 8 2 20 5 6.3 6.1 3.4 10.6

MNIST2-6 784 2 1,000 4 121.7 374.2 14.9 256.5
ijcnn 22 2 60 8 26.5 7.4 3.3 17.8

MNIST 784 10 400 8 159.4 124.7 5.0 367.9
F-MNIST 784 10 400 8 236.8 149.1 6.5 717.4
webspam 254 2 100 8 100.7 37.0 3.8 129.7
covtype 54 7 160 8 36.7 30.8 10.6 39.2
HIGGS 28 2 300 8 107.1 13.5 2.1 24.0

Table 7: Parameters and statistics for datasets and the standard (natural) RFs.

Dataset train size test size trees depth l subsampling test acc.

breast-cancer 546 137 4 6 .8 .974
diabetes 614 154 25 8 .8 .775

MNIST2-6 11,876 1,990 1000 4 .8 .963
ijcnn 49,990 91,701 100 8 .8 .919

MNIST 60,000 10,000 400 8 .8 .907
F-MNIST 60,000 10,000 400 8 .8 .823
webspam 300,000 50,000 100 8 .8 .948
covtype 400,000 180,000 160 8 .8 .745
HIGGS 10,500,000 500,000 300 8 .8 .702

B Supplementary Experiments

B.1 Additional Experimental Results on Random Forests

Table 8: Average `∞ perturbation over 100 test examples on the standard (natural) random forests
(RF) models. Datasets are ordered by training data size. Bold and blue highlight the best and the
second best entries respectively (not including MILP).

Standard RF Cube LT-Attack (Ours) MILP Ours vs. MILP

`∞ Perturbation r̄ time r̄our time r∗ time r̄our/r
∗ Speedup

breast-cancer .797 .208s .340 .001s .332 .008s 1.02 8X
diabetes .159 .271s .111 .002s .103 .054s 1.08 27X

MNIST2-6 .135 1.85s .130 .041s .121 .335s 1.07 8.2X
ijcnn .032 .340s .026 .003s .026 .338s 1.00 112.7X

MNIST .017 1.98s .010 .056s .009 21.4s 1.11 382.1X
F-MNIST .036 2.57s .036 .084s .032 34.1s 1.13 406X
webspam .004 .652s .002 .023s .002 2.63s 1.00 114.3X
covtype .050 .684s .048 .037s .048 72.2s 1.00 1951.4X
HIGGS .008 .389s .007 .011s .006 20.9s 1.17 1900X

B.2 Attack Success Rate

We present attack success rate in Fig. 3, which is calculated as the ratio of constructed adversarial
examples that have smaller perturbation than the thresholds. We use 50 test examples for MILP due
to long running time, and 500 test examples for other methods.

1https://xgboost.readthedocs.io/en/release_1.0.0/tutorials/rf.html

13

https://github.com/chenhongge/RobustTrees
https://xgboost.readthedocs.io/en/release_1.0.0/tutorials/rf.html

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

`∞ threshold

su
cc

es
s

ra
te

Standard GBDT (covtype)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

`∞ threshold

Robust GBDT (covtype)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

`2 threshold

Standard GBDT (covtype)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

`2 threshold

Robust GBDT (covtype)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

`∞ threshold

su
cc

es
s

ra
te

Standard GBDT (F-MNIST)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

`∞ threshold

Robust GBDT (F-MNIST)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

`2 threshold

Standard GBDT (F-MNIST)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

`2 threshold

Robust GBDT (F-MNIST)

MILP Ours RBA-Appr Cube HSJA SignOPT

Figure 3: Attack success rate vs. perturbation thresholds.

B.3 `∞ Perturbation Using Different Number of Initial Examples

Fig. 4 presents the average `∞ perturbation of 50 test examples vs. runtime per test example in log
scale. We plot the results for SignOPT, HSJA, Cube, and LT-Attack on {1, 2, 4, 6, 10, 20, 40} initial
examples, using 2 threads per task. Initial examples are not applicable to RBA-Appr and MILP thus
we only plot a single point for each method.

10−2 10−1 100 101 102 103

0.04

0.06

0.08

time/s

` ∞
pe

rt
ur

ba
tio

n

Standard GBDT (covtype)

10−1 100 101 102 103
0

0.05

0.1

0.15

time/s

Standard GBDT (F-MNIST)

10−2 100 102 104

0.004

0.006

0.008

0.01

0.012

time/s

Standard GBDT (HIGGS)

10−1 100 101

0

0.01

0.02

time/s

Standard GBDT (webspam)

10−1 100 101 102 103
0.04

0.06

0.08

time/s

` ∞
pe

rt
ur

ba
tio

n

Robust GBDT (covtype)

10−1 100 101 102 103

0.1

0.15

0.2

0.25

time/s

Robust GBDT (F-MNIST)

10−1 100 101 102 103

0.01

0.015

time/s

Robust GBDT (HIGGS)

10−1 100 101 102

0.02

0.03

0.04

time/s

Robust GBDT (webspam)

MILP Ours RBA-Appr Cube HSJA SignOPT

Figure 4: Average `∞ perturbation of 50 test examples vs. runtime per test example in log scale.
Methods on the bottom-left corner are better.

B.4 Experimental Results for `1 Norm and Verification

Table 9 presents the experimental results on `1 norm perturbation. Cube doesn’t support `1 objective
by default and we report the `1 perturbation of the constructed adversarial examples from `∞ objective
attacks. For completeness we include verification results (Chen et al., 2019b; Wang et al., 2020) in
Table 9 and Table 10, which output lower bounds of the minimal adversarial perturbation denoted as
r (in contrast to adversarial attacks that aim to output an upper bound r̄).

14

Table 9: Average `1 perturbation over 50 test examples on the standard (natural) GBDT models
and robustly trained GBDT models. Datasets are ordered by training data size. Bold and blue
highlight the best and the second best entries respectively (not including MILP and Verification).

Standard GBDT SignOPT RBA-Appr Cube LT-Attack (Ours) MILP Verification Ours vs. MILP

`1 Perturbation r̄ time r̄ time r̄ time r̄our time r∗ time r time r̄our/r
∗ Speedup

breast-cancer .413 .686s .535 .0002s 1.02 .234s .372 .002s .372 .012s .367 .003s 1.00 6.X
diabetes .183 1.04s .294 .0005s .290 .238s .131 .003s .126 .080s .095 .133s 1.04 26.7X

MNIST2-6 35.4 6.81s 25.9 .109s 3.73 3.47s .783 .230s .568 2.51s .057 1.17s 1.38 10.9X
ijcnn .075 .889s .286 .016s .247 .340s .064 .008s .060 3.28s .044 1.68s 1.07 410.X

MNIST 22.8 8.77s 46.5 3.13s 2.16 7.11s .341 .267s .207 56.8s .013 5.40s 1.65 212.7X
F-MNIST 13.8 9.55s 42.7 4.57s 1.20 9.04s .260 .479s .181 70.3s .013 7.19s 1.44 146.8X
webspam .287 3.43s .614 .630s .036 1.01s .006 .062s .004 4.17s .0003 6.40s 1.50 67.3X
covtype .074 1.74s .223 2.29s .132 1.01s .057 .039s .052 314s .024 2.26s 1.10 8051.3X
HIGGS .050 1.20s .611 44.7s .039 .854s .016 .049s .013 25min .002 7.36s 1.23 30183.7X

Robust GBDT SignOPT RBA-Appr Cube LT-Attack (Ours) MILP Verification Ours vs. MILP

`1 Perturbation r̄ time r̄ time r̄ time r̄our time r∗ time r time r̄our/r
∗ Speedup

breast-cancer .654 .869s .598 .0008s 1.23 .210s .574 .002s .574 .008s .506 .001s 1.00 4.X
diabetes .201 .667s .228 .001s .514 .235s .189 .002s .189 .028s .166 .007s 1.00 14.X

MNIST2-6 23.8 6.51s 17.8 .106s 6.69 3.47s 2.76 .523s 1.78 23.2s .381 2.91s 1.55 44.4X
ijcnn .076 .693s .205 .015s .233 .337s .067 .007s .065 1.02s .043 .279s 1.03 145.7X

MNIST 57.4 7.93s 32.7 3.70s 9.76 8.35s 4.00 .455s 1.72 13min .270 8.61s 2.33 1652.7X
F-MNIST 28.6 10.4s 41.3 4.96s 3.70 9.96s 1.20 .477s .720 244s .077 13.6s 1.67 511.5X
webspam .186 3.65s .540 .522s .309 1.00s .119 .037s .073 67.7s .014 2.17s 1.63 1829.7X
covtype .097 1.65s .217 2.43s .241 1.02s .080 .075s .071 437s .033 3.12s 1.13 5826.7X
HIGGS .033 1.12s .226 43.6s .071 .839s .028 .052s .021 40min .006 5.55s 1.33 46576.9X

Table 10: Average `∞ and `2 perturbation over 500 test examples on the standard (natural) GBDT
models and robustly trained GBDT models. ("*"): Average of 50 examples due to long running time.

Standard GBDT LT-Attack (Ours) MILP Verification

`∞ Perturbation r̄our time r∗ time r time

breast-cancer .235 .001s .222 .013s .220 .002s
diabetes .059 .002s .056 .084s .047 .910s

MNIST2-6 .097 .222s .065 28.7s .053 1.27s
ijcnn .033 .007s .031 6.60s .027 6.25s

MNIST .029 .237s .014 375s* .011 9.38s
F-MNIST .028 .370s .013 15min* .012 6.96s
webspam .001 .051s .0008 27.5s .0002 9.79s
covtype .032 .038s .028 10min* .021 4.21s
HIGGS .004 .036s .004 52min* .002 13.2s

Robust GBDT LT-Attack (Ours) MILP Verification

`∞ Perturbation r̄our time r∗ time r time

breast-cancer .415 .001s .415 .008s .414 .001s
diabetes .122 .002s .121 .036s .119 .011s

MNIST2-6 .331 .302s .317 98.7s .311 29.4s
ijcnn .038 .006s .036 3.60s .032 .799s

MNIST .298 .315s .278 13min* .255 7.47s
F-MNIST .098 .403s .078 29min* .075 13.3s
webspam .016 .038s .014 51.2s .011 5.85s
covtype .047 .053s .044 518s* .031 3.24s
HIGGS .01 .054s .009 45min* .005 8.42s

Standard GBDT LT-Attack (Ours) MILP Verification

`2 Perturbation r̄our time r∗ time r time

breast-cancer .283 .001s .280 .011s .277 .002s
diabetes .077 .003s .073 .055s .058 .458s

MNIST2-6 .245 .235s .183 2.52s .058 1.06s
ijcnn .044 .010s .043 2.18s .030 4.62s

MNIST .072 .243s .043 32.5s .013 6.81s
F-MNIST .073 .400s .049 49.3s .013 6.72s
webspam .002 .053s .002 3.17s .0002 8.95s
covtype .045 .039s .042 237s .023 2.96s
HIGGS .008 .037s .007 13min* .002 10.3s

Robust GBDT LT-Attack (Ours) MILP Verification

`2 Perturbation r̄our time r∗ time r time

breast-cancer .452 .001s .452 .007s .450 .001s
diabetes .144 .002s .143 .024s .130 .009s

MNIST2-6 .968 .401s .803 17.3s .358 4.42s
ijcnn .048 .007s .046 .728s .035 .575s

MNIST .996 .395s .701 200s .273 10.1s
F-MNIST .326 .468s .251 99.3s .079 13.5s
webspam .039 .036s .033 12.0s .012 4.72s
covtype .063 .054s .059 280s .033 3.10s
HIGGS .016 .054s .015 15min* .006 7.16s

C Proofs

C.1 Proof of Theorem 2

Proof. By contradiction. Given adversarial tuple C′ and victim example x0, assume

∃C1 ∈ Neighbor+
1 (C′) s.t. C1 /∈ NeighborBound(C′).

Assume p ∈ {1, 2,∞}. Let x1 = argminx∈B(C1) ‖x− x0‖p, x′ = argminx∈B(C′) ‖x− x0‖p, and
let J be the set of dimensions that x1 is closer to x0:

J = {j | |x1,j − x0,j | < |x′j − x0,j |}.

According to the definition of Neighbor+
1 (C′) we have distp(C1, x0) < distp(C′, x0), and conse-

quently J 6= ∅. We choose any j′ ∈ J and for cleanness we use (l′, r′] to denote the interval from
B(C′) on j′th dimension, and let d0 = x0,j′ , d1 = x1,j′ , d′ = x′j′ .

15

Observe d0 /∈ (l′, r′], otherwise we have |d′ − d0| = 0 and |d1 − d0| cannot be smaller. W.l.o.g.
assume d0 is on the right side of the interval, i.e., r′ < d0, then according to the argmin property of
x′ we have d′ = r′.

Recall that B(C′) is the intersection of K bounding boxes from the ensemble, then

∃t′ ∈ [K] s.t. BC
′(t)

j′ .r = r′.

Observe r′ = d′ < d1 since d0 is on the right side of d′ and d1 has smaller distance to d0, which means
C1 has different leaf than C′ on tree t. Also according to the above equation t′ ∈ TBound(C′), and C1 ∈
Neighbor

(t′)
1 (C′), thus C1 ∈

⋃
t∈TBound(C′) Neighbor

(t)
1 (C′) = NeighborBound(C′), contradiction.

C.2 Proof of Corollary 2

Proof. According to Theorem 1B(−t) is the intersection ofK−1 bounding boxes and can be written
as the Cartesian product of d intervals, we call it a box. Each tree t of depth l splits the Rd space into up
to 2l non-overlapping axis-aligned boxes, and |Neighbor

(t)
1 (C′)|+ 1 (plus current box) corresponds

to the number of boxes that has non-empty intersection with B(−t), thus |Neighbor
(t)
1 (C′)| ≤ 2l − 1.

Observe that k(t) axis-aligned feature split thresholds can split Rd into at most 2k
(t)

non-overlapping
boxes, assuming d ≥ k(t), and the maximum can be reached by having at most 1 split threshold on
each dimension. In conclusion there are at most 2min(k(t),l) boxes that has non-empty intersection
with B(−t), thus |Neighbor

(t)
1 (C′)| ≤ 2min(k(t),l) − 1 (minus the current box).

C.3 Proof of Theorem 3

Proof. By contradiction. Let x0, y0 be the victim example and assume

∃C∗ ∈ (V +)K ∩ C s.t. f(C∗) 6= y0 ∧ distp(C∗, x0) < distp(C′, x0).

Assume p ∈ {1, 2,∞}. Recall f(C) = sign(
∑
i∈C v

i), we compute the tree-wise prediction differ-
ence

v
(t)
diff = vC

∗(t)
− vC

′(t)
, t ∈ [K].

Let tmin be the tree with the smallest functional margin difference

tmin = argmin
t∈[K]

y0 · v(t)
diff.

We construct a tuple C1 which is the same as C′ except on tmin, where C(tmin)
1 = C∗(tmin), consequently

we have
C1 ∈ C ∧ distp(C1, x0) < distp(C′, x0).

Now we show f(C1) 6= y0, or y0

∑
i∈C1 v

i < 0:

i. Case y0 · v(tmin)
diff ≤ 0. Then

y0

∑
i∈C1

vi = y0

∑
i∈C′

vi + y0 · v(tmin)
diff ≤ y0

∑
i∈C′

vi < 0.

ii. Case y0 · v(tmin)
diff > 0. Then

y0

∑
i∈C1

vi = y0

∑
i∈C′

vi + y0 · v(tmin)
diff < y0

∑
i∈C′

vi +Ky0 · v(tmin)
diff

≤ y0

∑
i∈C′

vi + y0

∑
t∈[K]

v
(t)
diff = y0

∑
i∈C∗

vi < 0.

In conclusion C1 is a valid adversarial tuple within Neighbor1(C′) and has smaller perturbation than
C′, thus the algorithm won’t stop.

16

D Supplementary Algorithms

D.1 Generating Initial Adversarial Examples for LT-Attack

Algorithm 2: Generating Initial Adversarial Examples for LT-Attack
Data: Target white-box model f , victim example x0.

1 begin
2 y0 ← f(x0);
3 r′, C′ ← MAX, None;
4 num_attack← 20;
5 for i← 1, . . . , num_attack do
6 do
7 x′ ← x0 + Normal(0, 1)d;
8 while f(x′) = y0;
9 x′ ← BinarySearch(x′, x0, f);

. Do a fine-grained binary search between x0 and x′ to optimize the initial perturbation of x′.
Similar to g(θ) proposed by Cheng et al. (2019).

10 r∗, C∗ ← LT-Attack(f, x0, x′);
11 if r∗ < r′ then
12 r′, C′ ← r∗, C∗;
13 end
14 end
15 return r′, C′
16 end

D.2 Algorithm for NaiveLeaf

Algorithm 3: Compute NaiveLeaf
Data: Target white-box model f , current adversarial example x′, victim example x0.
Result: The NaiveLeaf neighborhood of C(x′)

1 begin
2 (i(1), . . . , i(K))← C(x′);
3 N ← ∅;
4 for t← 1 . . .K do
5 for i ∈ S(t), i 6= i(t) do

. S(t) denotes the leaves of tree t.
6 xnew ← x′;
7 for j, (l, r] ∈ Bi do

. The jth dimension of the bounding box Bi, can be acquired from f.
8 if xnew,j /∈ (l, r] then
9 xnew,j ← min(r,max(l + ε, x0,j));

10 end
11 end
12 N ← N ∪ {C(xnew)};
13 end
14 end
15 return N
16 end

D.3 A Greedy Algorithm to Estimate the Minimum Neighborhood Distance

To understand the quality of constructed adversarial examples we use an empirical greedy algorithm to
estimate the minimum neighborhood distance h such that Neighborh(·) can reach the exact solution.
Assume our method converged at C′ and the optimum solution is C∗, let Tdiff = {t | C′(t) 6= C∗(t)}
be the set of trees with different prediction, then the Hamming distance h̄ = |Tdiff| is a trivial upper
bound where Neighborh̄(C′) can reach C∗ with a single addition iteration. To estimate a realistic h∼
we want to find the disjoint split Tdiff = ∪i∈[k]Ti such that we can mutate C′ into C∗ by changing
trees in Ti to match C∗ at ith iteration. We make sure all intermediate tuples are valid and has strictly

17

decreasing perturbation as required by Eq. (3), and report h∼ = maxi∈[k] |Ti|. h∼ is an estimation
of the minimum h because we cannot guarantee the argmin constrain due to the large complexity.
As shown in Table 11 we have median(h̄) = 23 and median(h∼) = 8 on ensemble with 300 trees
(HIGGS), which suggests that our method is likely to reach the exact optimum on half of the test
examples through ∼3 additional iterations on Neighbor8(·). In this experiment we disabled the
random noise optimization discussed in §3.5 to provide a cleaner picture of Algorithm 1.

Algorithm 4: A greedy algorithm to estimate the minimum neighborhood distance h∼.
Data: The model f , our adversarial point xour, exact MILP solution x∗.
Result: An estimation of neighborhood distance h∼.

1 begin
2 Cour, C∗ ← C(xour), C(x∗);
3 r∗ ← distp(C∗, x0);
4 y∗ ← f(x∗);
5 hmin ← D(Cour, C∗) ; . Hamming distance is the upper bound.

6 Idiff ← {(vC
∗(t)
− vC

(t)
our , C(t)our , C∗(t)) | C(t)our 6= C∗(t), t ∈ [K]};

. Idiff is the list of tuples in the form of (label diff, our leaf, MILP leaf).
7 num_trial← 200;
8 for i← 1, . . . , num_trial do
9 h← 0;

10 I ← shuffle(Idiff);
11 Ctmp ← Cour;
12 while I 6= ∅ do
13 rlast ← distp(Ctmp, x0);
14 Ctmp ← pop the first tuple from I with positive label diff and replace with MILP leaf;
15 h← h+ 1;
16 while Ctmp /∈ C or distp(Ctmp, x0)p /∈ [r∗, rlast) or f(Ctmp) 6= y∗ do

. Making sure Ctmp satisfies Equation 3 except the argmin. We cannot guarantee
argmin due to the high complexity. The while loop is guaranteed to exit since we
can pop all tuples in I to become C∗.

17 Ctmp ← pop the first tuple from I and replace with MILP leaf;
18 h← h+ 1;
19 end
20 end
21 hmin ← min(hmin, h);
22 end
23 return hmin

24 end

Table 11: Convergence statistics for the standard (natural) GBDT models between our solution and
the optimum MILP solution. We collect the data after the fine-grained binary search but before
applying LT-Attack (Initial), and the data after LT-Attack (Converged). We disabled the random noise
optimization discussed in §3.5.

Dataset Model HammingDist h̄ NeighborDist h∼

Initial Converged Initial Converged

of trees max median max median max median max median

breast-cancer 4 2 0 0 0 2 0 0 0
diabetes 20 10 3 6 0 5 1 4 0

MNIST2-6 1000 676 490 347 172 172 46 64 36
ijcnn 60 27 10 16 3 18 2 8 2

MNIST 400 266 115 96 33 173 8 12 7
F-MNIST 400 237 174 100 56 82 12 18 10
webspam 100 88 56 36 16 75 7 9 4
covtype 160 84 23 67 9 82 7 65 6
HIGGS 300 190 62 125 23 181 12 121 8

18

