
Supplementary for Learning Continuous System
Dynamics from Irregularly-Sampled Partial

Observations

Zijie Huang
Department of Computer Science

University of California, Los Angeles
zijiehuang@cs.ucla.edu

Yizhou Sun
Department of Computer Science

University of California, Los Angeles
yzsun@cs.ucla.edu

Wei Wang
Department of Computer Science

University of California, Los Angeles
weiwang@cs.ucla.edu

1 Experiment Setup

We evaluate the performance of LG-ODE across different datasets on two tasks: Interpolation
and Extrapolation. For each task, there exists a special time tstart where we put a prior p(z0i) ≈
qφ(z

0
i |o1, o2 · · · oN) on for each object. We now present the normalization across times and the

selection of tstart for each task respectively.

1.1 Interpolation

In this task, we condition on a subset of observations (40%, 60%, 80%) from time (t0, tN) and aim
to reconstruct the full trajectories in the same time range. In single-agent dynamic system [1], tstart
is the time point of the first observation in each sequence. However in multi-agent dynamic system,
the first observable time point for each object may differ. We therefore define a system starting time
tstart = 0 as the initial time point, and normalize all the observation times within [0, 1]. In this way,
we assume the continuous interaction among objects starts at tstart = 0 and therefore solve the ODE
forward in time range [0, 1].

1.2 Extrapolation

In this task we split the time into two parts: (t0, tN1) and (tN1 , tN). We condition on the first half of
observations and reconstruct the second half. In other words, we solve the ODE forward in time range
[tN1 , tN] with tN1 as tstart. For training, we condition on observations from (t1, t2) and reconstruct
the trajectories in (t2, t3). For testing, we condition on the observations from (t1, t3) but tries to
reconstruct future trajectories within (t3, t4).

For training, as we sample each whole sequence from [t1, t3], we manually separate each sequence
into two halves by choosing tstart = tN1 = t1+t3

2 as system starting time. Observations with time
less than tstart are sent into encoder to estimate the latent initial states, observations with time
equal are greater than tstart are viewed as ground truth for reconstructing trajectories in the second
half. For testing, as we additionally sampled 40 observations in a wider time range [t3, t4], we set
tstart = tN1

= t3 and try to reconstruct the full trajectories on them. Observations with time less than
t3 are used to infer latent initial state. Similar to interpolation task, we experiment on conditioning
only on a subset of observations (40%, 60%, 80%) in the first half and run the encoder on the subset
to estimate the latent initial states. We normalize all the observation times within [0, 1].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Spring System Charged Particles

Figure 1: Examples of trajectories with 5 objects.

2 Data Generation and Preprocessing

2.1 Simulated Datasets

We generate two simulated datasets: particles connected by springs and charged particles based
on Kipf et al. [2]. Each sample system contains 5 interacting objects. For the spring system,
objects do or do not interact with equal probability and interact via forces given by Hooke’s law.
For the charged particles, they attract or repel with equal probability. Trajectories are simulated by
leapfrog integration with a fixed step size and we subsample each 100 steps to get trajectories. For
training, we use total 6000 forward steps. To generate irregularly-sampled partial observations, for
each object we sample the number of observations n from U(40, 52) and draw the n observations
uniformly. For testing, besides generating observations from steps [1, 6000], we additionally sample
40 observations following the same procedure from PDE steps [6000, 12000], to evaluate extrapolation
task. The above sampling procedure is conducted independently for each object. We generate 20k
training samples and 5k testing samples for two datasets respectively. We normalize all features
(position/velocity) to maximum absolute value of 1 across training and testing datasets. Example
trajectories can be seen in Figure 1.

2.2 CMU walking capture dataset

For motion capture data, we select the walking sequences of subject 35 from CMU [3]. Every sample
is in the form of 31 trajectories, each tracking a single joint. Similar as simulated datasets, for each
joint we sample the number of observations n from U(30, 42) and draw the n observations uniformly
from first 50 frames for training trajectories. For testing, we additionally sampled 40 observations
from frames [51, 99]. We split different walking sequences into training (15 trials) and test sets (7
trials). For each walking sequence, we further split it into several non-overlapping small sequences
with maximum length 50 for training, and maximum length 100 for testing. In this way, we generate
total 120 training samples and 27 testing samples. We normalize all features (position/velocity) to
maximum absolute value of 1 across training and testing datasets.

3 Model Architecture and Hyperparameters

3.1 ODE function

The ODE function gi specifies the dynamics of latent state and we employ a graph neural network
(GNN) in [2] to model interaction among objects. It defines an object function fO and a relation
function fR to model objects and their relations in a compositional way. Following the default setting

2

in [2], given all the edges in an interaction graph, we also consider latent interactions among objects
where no edge is observed. More precisely, we have:

żti :=
dzti
dt

= gi(z
t
1, z

t
2 · · · ztN) = fO(

∑
j∈Ni

fR([z
t
i , z

t
j]) +

∑
j /∈Ni

fR([z
t
i , z

t
j]))

fR([z
t
i , z

t
j]) = eij =

{
MLP 0

r ([z
t
i ||ztj]) for j ∈ Ni

MLP 1
r ([z

t
i ||ztj]) for j /∈ Ni

fO(
∑
j∈Ni

fR([z
t
i , z

t
j]) +

∑
j /∈Ni

fR([z
t
i , z

t
j])) = MLPo(

∑
j∈Ni

eij +
∑
j /∈Ni

eij)

(1)

whereNi is the set of immediate neighbors of object oi, || is the concatenation operations, fO, fR are
two feed-forward multi-layer perception neural nets with Relu as activation function. For all datasets,
we use a one-layer GNN with 128-dim hidden node embeddings. To stablize training process, we use
the idea of [4] and add auxiliary 64-dimensions to the learned initial hidden representation zti from
the encoder.

3.2 ODE solver

We use the fourth order Runge-Kutta method from torchdiffeq python package [5] as the ODE solver,
for solving the ODE systems on a time grid that is five times denser than the observed time points.
We also utilize the Adjoint method described in [5] to reduce the memory use.

3.3 Recognition Network

We next introduce model details in the encoder, which aims to infer latent initial states for all objects
simultaneously.

Temporal Graph Edge Sampling. We preserve all temporal edges and nodes across times to form a
temporal graph, where every node is an observation, every edge exists when two object are connected
via a relation. Suppose on average every object has K observations, and there are E relations among
objects. The constructed temporal graph has O(EK2 + (K − 1)KN) edges, which grows rapidly
with the increase of average observation number K. We therefore set a slicing time window that
filters out edges when the relative temporal gap is larger than a preset threshold. As K is related to
observation percentage, we set the threshold accordingly as :

Max_Time_Length−Min_Time_Length×%observed

Max_Time_Length
(2)

where Max_Time_Length and Min_Time_Length denotes the maximum observation sequence
length and minimum observation sequence length among objects. When observation percentage gets
larger, we tend to filter more edges by setting a relatively small threshold.

Dynamic Node Representation Learning and Temporal Self-attention. We set the observation
representation dimension from the GNN as 64 and keep 2 layers across all datasets. We use Relu as
the activation function. For temporal self-attention module, we set the output dimension as 128.

We implement our model in pytorch. Encoder, generative model and the decoder parameters are
jointly optimized with Adam optimizer [6] with learning rate 0.0005. Batch size for simulated datsests
are set as 256, and is 32 for motion dataset. Code is available online1.

References
[1] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations

for irregularly-sampled time series. In Advances in Neural Information Processing Systems 32,
pages 5320–5330. 2019.

1https://github.com/ZijieH/LG-ODE.git

3

[2] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

[3] CMU. Carnegie-mellon motion capture database. 2003. URL http://mocap.cs.cmu.edu.

[4] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances in
Neural Information Processing Systems 32, pages 3140–3150. 2019.

[5] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems 31, pages 6571–
6583. 2018.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

4

http://mocap.cs.cmu.edu

	Experiment Setup
	Interpolation
	Extrapolation

	Data Generation and Preprocessing
	Simulated Datasets
	CMU walking capture dataset

	Model Architecture and Hyperparameters
	ODE function
	ODE solver
	Recognition Network

