
We thank the reviewers for the positive and constructive feedback. Below we respond to their questions.1

R1 + R4. "The regret curves have a very tight confidence bound, starting from the very first iterations.2

Shouldn’t it vary more? Variances are almost same across iterations?" For the error bars (or variances), we3

use the standard error: Std. Err = Std. Dev/
√
n, n being the number of runs. In our case, n = 15. Division4

by
√
n definitely makes the error bars look smaller. We have now included an example case for Beale function5

using standard deviation for error bars without diving by
√
n. See the plot here. We also confirm that our initial6

search spaces are randomly placed across different runs and therefore, we see variances even in the beginning.7

0 5 10 15 20 25 30 35
Iterations

1
0
1
2
3
4

Lo
g 

Re
gr

et

Beale (d = 2)
UBO
Vol2
FBO
RE-H
RE-Q
HuBO
HD-HuBO

8

We would like to emphasise that, different from traditional BO al-9

gorithms with fixed search space where error bars (or variances) of10

regret curves tend to get tighter over time, in the context of unbounded11

search space where the search space is being expanded over time,12

error bars do not always have this property, they may even become13

higher over time till the search spaces have not contained the global14

optimum. This trend can be seen for many unbounded search space15

methods such as Ha et al [8] and Vu et al [17] in our references.16

R1. "Optimization of the acq. function insideHt isn’t mentioned17

anywhere?" We optimise acq. function for each hypercube in Ht and then take the overall maximum across all18

hypercubes. We did mention this in detail in our supp. material (see section "On the computational effectiveness").19

R1. "The performance of HD-HuBO against HuBO in high dimensions". In high dimension, HD-HuBO works20

better than HuBO just because of the acquisition function optimization step in practice. Up to a large value of t, the21

volume of search space Ht for HD-HuBO remains much smaller than the volume of search space Xt for HuBO. For22

example, assuming α = −1, λ = 1 and the dimension d = 50, HD-HuBO at iteration t only uses t small hypercubes23

with size of 10% of the initial search space [0, 1]50. Considering t = 1000, the volume of Ht is at most 1000× 0.15024

which is at least (1 +
∑1000
j=1 j

α)50/(1000× 0.150) u 5.66 × 1090 times smaller compared to the volume of Xt of25

HuBO. However, despite this, HD-HuBO still attains a sub-linear convergence.26

R1 + R2 + R3. "On the comparison with GP-UCB". To see whether our method does better than a BO method using27

a large, fixed search space, we compared our HuBO against a GP-UCB algorithm with search domain: [−100, 100]5 for28

the optimization of 5-dim Levy function. After 200 iters, the smallest function value found by the GP-UCB and our29

HuBO were 23.10 and 2.21 respectively - a clear evidence in favor of our method. We will add these to the paper.30

R1 + R3 + R4. "Drawback of setting α = −1; X0 being far from x∗?" α = −1 and X0 being far from x∗ make31

our algorithms reach to x∗ slowly. However, in practice, the translation mechanism of our algorithms permits them to32

jump faster toward the promising regions. We already had results shown in Figure 3 of our Sup. Material where we33

used α = −1 and set X0 to be only 2% of the initial search space. Our algorithms clearly outperformed all baselines.34

R2. "Why we do not start from a large domain?". For this approach, the crucial problem is "how large a compact35

search space should be set so that x∗ belongs almost surely to the search domain"? Without any prior knowledge, we36

should set the domain as large as possible. We consider two cases. Case 1: Using a fixed search space. In section37

"Additional Results" of our Supp. Material, we already showed using GP-UCB and EI algorithms that the larger the38

fixed search space, the slower is the convergence. Further, we have also compared our HuBO with GP-UCB with a39

large search space [−100, 100]5 and performed better. See our detail answer above in lines 27-30 in this rebuttal. Case40

2: Successively cutting down the search space. One strategy may be to use confidence bounds UCB and LCB to cut the41

search space down to a new space St as in the algorithm branch and bound of Nando de Freitas et al (ICML 2012):42

St = {x|µt(x) +
√
βtσt(x) > sup µt(x)−

√
βtσt(x)}. However, St is usually not compact and expensive to compute43

in high dimensions. Further, x∗ only belongs to St with probability 1− δ, not probability 1, and when cutting the search44

space successively, it is difficult to achieve a significant reduction from the initial large search space while maintaining45

a high 1− δ across all t. In contrast, our algorithms do not suffer from such difficulties, easy to implement and achieve46

a sub-linear rate of convergence.47

R3. "The dependence of the regret bound on X0 and lh". Theorem 4 is our main result providing the regret bound48

for HD-HuBO in terms of T ignoring all variables that are not the function of T . However, we can see the regret49

bound’s explicit dependence on X0 (via A) and lh (via βt) through Lemma 10 in Supp. material.50

R4. "On using small α". We do not see a small α as a limitation. A small α is meant to slow the search space expansion51

rate and in fact becomes beneficial once the search space contains the global optimum. As seen from Theorem 2, our52

HuBO algorithm achieves a sub-linear regret O∗(T ((α+1)d+1)/2) (e.g. for SE kernel) implying that the smaller the α,53

the tighter is the regret provided −1 ≤ α < −1 + 1/d. We note that our algorithm is the only one to guarantee an exact54

convergence and further with a sub-linear convergence rate despite such small α values.55


