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Abstract

Fine-tuning pre-trained deep networks on a small dataset is an important compo-
nent in the deep learning pipeline. A critical problem in fine-tuning is how to avoid
over-fitting when data are limited. Existing efforts work from two aspects: (1)
impose regularization on parameters or features; (2) transfer prior knowledge to
fine-tuning by reusing pre-trained parameters. In this paper, we take an alternative
approach by refactoring the widely used Batch Normalization (BN) module to mit-
igate over-fitting. We propose a two-branch design with one branch normalized by
mini-batch statistics and the other branch normalized by moving statistics. During
training, two branches are stochastically selected to avoid over-depending on some
sample statistics, resulting in a strong regularization effect, which we interpret as
“architecture regularization.” The resulting method is dubbed stochastic normal-
ization (StochNorm). With the two-branch architecture, it naturally incorporates
pre-trained moving statistics in BN layers during fine-tuning, exploiting more
prior knowledge of pre-trained networks. Extensive empirical experiments show
that StochNorm is a powerful tool to avoid over-fitting in fine-tuning with small
datasets. Besides, StochNorm is readily pluggable in modern CNN backbones. It
is complementary to other fine-tuning methods and can work together to achieve
stronger regularization effect.

1 Introduction

Training deep networks (Szegedy et al., 2015; He et al., 2016b; Huang et al., 2017) from scratch
requires large amounts of data. Nevertheless, data collecting is not easy. It took years to build
the ImageNet dataset (Deng et al., 2009) with millions of images. For each new task at hand, it is
unrealistic to collect a new dataset at the scale of ImageNet. Thanks to the release of pre-trained
deep networks in PyTorch (Benoit et al., 2019) and TensorFlow (Abadi et al., 2016), practitioners
can benefit from deep learning (LeCun et al., 2015) even with a small amount of data. The practice
of transferring pre-trained parameters, a.k.a. fine-tuning, is prevalent in both computer vision (Jung
et al., 2015) and natural language processing (Devlin et al., 2019).

Because the dataset used in fine-tuning is typically very small, the universal approximation abil-
ity (Zhang et al., 2017) of neural networks makes them prone to over-fitting, which is a critical
problem in fine-tuning. In general, there are two ways to avoid over-fitting during fine-tuning: impose
appropriate regularization to explicitly reduce over-fitting, and transfer prior knowledge by reusing
pre-trained networks as an initialization point for implicit regularization.

To avoid over-fitting better, we choose to refactor the widely used Batch Normalization (BN) (Ioffe
& Szegedy, 2015) module and come up with a two-branch design: one branch is normalized by
mini-batch statistics and the other branch is normalized by moving statistics. During training, the
activations of each channel are normalized by either mini-batch statistics or moving statistics, which
is determined stochastically in a dropout (Srivastava et al., 2014) style to avoid over-depending on
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Table 1: Comparing StochNorm and existing methods on regularization type and knowledge transfer.

method regularization
L2-SP parameter

DELTA feature

BSS feature

StochNorm architecture

layer type knowledge transferred
convolutional layer weight & bias

√

batch normalization
weight & bias

√

moving statistics × (
√

for StochNorm)

fully-connected layer weight & bias ×

some sample statistics. The proposed stochastic normalization (StochNorm) brings a straightforward
byproduct: the moving statistics branch can naturally inherit pre-trained moving statistics which are
discarded by existing methods. Therefore, StochNorm transfers more pre-trained knowledge than
existing methods to better combat over-fitting.

Table 1(left) lists primary regularization techniques. Li et al. (2018) regularize the parameters
near their pre-trained values, Li et al. (2019b) regularize the features near features computed by
pre-trained networks, and Chen et al. (2019) penalize small eigenvalues of feature representations.
As an alternative to parameter regularization and feature regularization, the proposed StochNorm
regularizes fine-tuning by module design, which we interpret as “architecture regularization.”

Table 1(right) lists whether each type of knowledge is transferred during fine-tuning, with a focus on
commonly used ConvNets. Knowledge-free layers like max-pooling and ReLU function are omitted
in the table. Usually ConvNets are constructed by stacking Conv-BN-ReLU blocks, followed by
a task-specific fully-connected layer. It is a common belief that the knowledge in fully-connected
layers is task-specific and cannot be transferred. Transferring learnable parameters (weight and bias)
is as easy as just reusing them. Nevertheless, moving statistics in BN layers are simply discarded
due to the characteristic behavior of BN (see Section 4.2). The proposed StochNorm also transfers
moving statistics of pre-trained networks to exploit prior knowledge in pre-trained networks better.

In summary, we study the problem of avoiding over-fitting during fine-tuning, and propose StochNorm,
a pluggable module that can be easily in place of BN layers. The novel two-branch architecture
design and the stochastic selection mechanism facilitate explicit architecture regularization, while
the transfer of pre-trained moving statistics brings implicit initialization regularization, both making
StochNorm a powerful tool for fine-tuning with small data. We compare StochNorm with state-of-
the-art fine-tuning methods and empirically validate its efficacy with limited data. StochNorm is also
complementary to them and they can achieve better performance when combined together.

2 Related Work

Our work is related to regularization and normalization techniques used in deep learning, which are
reviewed respectively in the following.

2.1 Normalization Techniques

Normalizing input features helps optimization because widely used first-order optimization algorithms
such as SGD work better on more isotropic landscape (Boyd & Vandenberghe, 2004). Later Ioffe
& Szegedy (2015) propose Batch Normalization (BN) to normalize intermediate feature maps by
statistics computed with mini-batch samples and find that it greatly helps training of deep networks.

Inspired by Ioffe & Szegedy (2015), many normalization techniques are introduced to deal with
different learning scenarios. Layer Normalization (Ba et al., 2016) and Recurrent Batch Normaliza-
tion (Cooijmans et al., 2017) are effective in recurrent neural networks, Group Normalization (Wu &
He, 2018) is designed for object detection, Instance Normalization (Ulyanov et al., 2016) fastens the
neural stylization, Weight Normalization (Salimans & Kingma, 2016) speeds up convergence of SGD
by a simple re-parameterization, and Spectral Normalization (Miyato et al., 2018) addresses the mode
collapse problem in generative adversarial networks. Shekhovtsov & Flach (2018) interprets BN
as Bayesian learning, and proposes how to incorporate Bayesian learning into other normalization
modules. These normalization modules are tailored to specific optimization problems but are not
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related to fine-tuning. Among them, BN is the most widely used normalization module in deep
learning. Thus, this paper focuses on ConvNets normalized by BN layers.

BN suffers when the batch-size is small (because of the limited GPU memory) and the estimated
statistics are not accurate. Ioffe (2017) propose Batch Renormalization (BRN) for small batch-size
learning by combining mini-batch statistics with moving statistics according to a hand-tuned schedule.
Guo et al. (2018) normalize features with recent mini-batches and use double-forward to deal with
the resulting distribution shift. Peng et al. (2018) utilize distributed training across multiple GPUs to
manually increase the batch-size. In fine-tuning, the small batch-size is not a bottleneck problem.

Recent advances in self-supervised learning (He et al., 2020; Chen et al., 2020) show promising
results of unsupervised pre-trained representations. One of the techniques they use is to replace
BN with ShuffleBN (He et al., 2020), which uses mini-batch statistics of other samples to replace
current mini-batch statistics. They confirm that ShuffleBN greatly improves unsupervised contrastive
learning. Inspired by this practice, we assume refactoring the BN module can potentially improve the
ability of networks to avoid over-fitting during fine-tuning.

Despite its empirical success, BN still lacks a convincing theoretical support on why it works. In the
first BN paper, Ioffe & Szegedy (2015) claimed that BN works by reducing the internal covariate
shift, which was challenged by several following papers (Bjorck et al., 2018; Santurkar et al., 2018).
The proposed StochNorm in this paper randomly mix parameter-sensitive mini-batch statistics with
parameter-insensitive moving statistics, effectively improving fine-tuning performance. The success
of StochNorm may motivate something new for further research: BN works not by reducing internal
covariate-shift, but by allowing for a quick adjustment when a covariate-shift happens.

2.2 Regularization Techniques

Regularization is an important topic in machine learning (Bishop, 2006). It is also important for
fine-tuning on a small dataset. Existing regularization techniques in fine-tuning can be categorized
into parameter regularization and feature regularization, as shown in Table 1(left). Li et al. (2018)
regularize the fine-tuned parameters near the pre-trained parameters by L2 constraint, which we
call “parameter regularization”. Li et al. (2019b) regularize new feature maps near the feature maps
computed by pre-trained networks with loss-aware attention and Chen et al. (2019) penalize small
eigenvalues of fine-tuned representations, which we call “feature regularization”. These methods
carefully design additional loss functions to achieve proper regularization.

Besides introducing additional loss to reflect appropriate prior for better regularization, there are other
regularization techniques. Dropout (Srivastava et al., 2014) is one of the most famous regularization
techniques in deep learning. It randomly removes some neurons during training so that networks do
not over-depend on some neurons but pay attention to all of the features. Disout (Tang et al., 2020)
is an improved version of Dropout that perturbs neuron outputs rather than drops them. Dropout is
simple to implement and can outperform loss-based regularization (such as weight decay). However,
Dropout and BN rarely co-occur in deep learning. Li et al. (2019a) studied why Dropout and BN
conflict with each other and found that BN and Dropout suffer from variance shift when combined
together. An effective way to integrate BN and Dropout is yet unclear.

The proposed StochNorm in this paper improves regularization by new architecture design rather
than adding new loss functions. It has two branches normalized by different statistics. Two branches
are stochastically selected in the Dropout (Srivastava et al., 2014) style to prevent over-depending on
some sample statistics. Hence it endows a hybrid normalization-regularization effect. As a byproduct,
it seamlessly transfers moving statistics of BN layers in pre-trained networks during fine-tuning.

3 Batch Normalization

Here we introduce notations of Batch Normalization (BN) for later sections. BN (Ioffe & Szegedy,
2015) is widely used in common deep models such as Inception Net (Szegedy et al., 2015) and
ResNet (He et al., 2016b). These models usually serve as the backbones for fine-tuning tasks.

As a normalization layer, BN takes the input feature map and outputs the normalized feature map.
Since BN is a channel-wise normalization technique, we omit the indexing for channel dimension
and only discuss the batch dimension in the following sections.
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Given a feature map distribution x ∼ P , BN aims to normalize the feature map by population-level
mean and variance: x̂ = x−Ex∼P [x]√

Varx∼P [x]+ε
, where ε is a small constant to avoid zero division.

Population-level statistics cannot be explicitly computed, but can be estimated by samples {xi}ni=1,
with n as the size of the dataset. In mini-batch {xi}mi=1 with batch size of m (m� n), BN estimates
the mini-batch statistics (mean and variance) by µ = 1

m

∑m
i=1 xi, σ

2 = 1
m

∑m
i=1 (xi − µ)

2
.

These estimated mini-batch statistics are used to normalize the layer output to have zero mean and

unit variance at training stage with x̂i =
xi − µ√
σ2 + ε

. At the inference stage, mini-batch estimations

µ and σ2 are not available, so BN tracks moving average of the statistics during training: µ̃ ,
αµ+ (1− α)µ̃, σ̃2 , ασ2 + (1− α)σ̃2, where α is the coefficient of moving average, µ̃ and σ̃2 are
moving average versions of µ and σ2. These moving statistics µ̃ and σ̃2 are used to normalize the

feature map as x̂i =
xi − µ̃√
σ̃2 + ε

for inference. Note that moving statistics µ̃ and σ̃2 have no influence

on training but only affects inference, which we will revisit in Section 4.2.

To recover the representation power of deep features, BN introduces additional trainable parameters
β and γ to scale and shift the normalized values by yi = γx̂i + β.

4 Stochastic Normalization

4.1 Two-Branch Design
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Figure 1: The computation graph of StochNorm at
training. c is channel size of input feature map x
and j is the channel index; (µ̃∗, σ̃2∗) are the pre-
trained moving mean and variance. At inference,
the yellow and green parts will be removed.

During training, the output of BN depends on
the statistics of mini-batch data, while the mov-
ing statistics µ̃ and σ̃2 are only used at inference
stage. It means networks trained by BN may
over-depend on some mini-batch statistics dur-
ing training, but generalize worse during infer-
ence, especially when the number of samples is
small and the diversity of mini-batches is low.
Hence, we split the normalization process into
two branches, one uses mean and variance of
current mini-batch data as usual, while the other
uses current moving statistics µ̃ and σ̃ of the
training data:

x̂i,0 =
xi − µ̃√
σ̃2 + ε

, x̂i,1 =
xi − µ√
σ2 + ε

. (1)

Now that we have two normalization branches,
we have to decide which one to use. We propose
to stochastically select one branch with probabil-
ity p for forward propagation in each channel of
the normalization layers and each step of train-
ing. Let s be the branch-selection variable, then
s is generated from the Bernoulli distribution

P (s) =

{
p, s = 1

1− p, s = 0
. The discrete selec-

tion operator can be written as a summation
x̂i = (1 − s)x̂i,0 + sx̂i,1. Then the scale and
shift parameters β and γ can be applied after the stochastic forward as usual. By adjusting the
selection parameter p of Bernoulli distribution, we can balance the selection of two branches.

Note that when s = 1, StochNorm boils down to BN. As the dataset in fine-tuning is pretty small,
regular training is prone to over-fitting. When s = 0, StochNorm uses moving statistics to normalize
the activations, which forces the network to learn well even when some statistics deviate from mini-
batch statistics. Note that many works (Ioffe & Szegedy, 2015; Ioffe, 2017) have found normalizing
the whole feature map using moving statistics can lead to collapse during training. StochNorm
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does not suffer from that because only some randomly selected channels are normalized by moving
statistics, successfully stabilizing fine-tuning without relying on techniques like BRN. By randomly
selecting the value of s, we also require the network not to over-depend on some sample statistics.
This regularizes the network in a dropout style to combat over-fitting.

StochNorm is intuitively described in Figure 1 and summarized in detail by Algorithm 1.

Algorithm 1 Stochastic Normalization (StochNorm)
Input: mini-batch feature maps of each channel x = {xi}mi=1;

moving statistics update rate α ∈ (0, 1) and learnable parameters β, γ;
moving statistics µ̃, σ̃2 (initialized by µ̃∗, σ̃2∗ ) and branch-selection probability p ∈ (0, 1).

Output: y = StochNorm(x).
Training:

µ← 1

m

m∑
i=1

xi, σ
2 ← 1

m

m∑
i=1

(xi − µ)2 // mini-batch mean and variance

x̂i,0 ←
xi − µ̃√
σ̃2 + ε

, x̂i,1 ←
xi − µ√
σ2 + ε

// normalize with moving/mini-batch statistics

x̂i = (1− s)x̂i,0 + sx̂i,1, s ∼ B(p) // stochastic forward-prop for each channel

yi ← γx̂i + β // scale and shift

µ̃← µ̃+ α(µ− µ̃), σ̃2 ← σ̃2 + α(σ2 − σ̃2) // update estimations of moving statistics

Inference:

yi ← γ
xi − µ̃√
σ̃2 + ε

+ β // normalize with moving statistics

4.2 Transferring Pre-trained Moving Statistics

From the formal notation of BN described in Section 3, it is clear that moving statistics do not affect
training. Because the moving statistics take the form of exponential moving average, the influence of
initialization of moving statistics decays exponentially. Put it together, pre-trained moving statistics
in BN have no influence on fine-tuning.

Nevertheless, moving statistics are computed by data and parameters which are learned from data,
so moving statistics in pre-trained BN layers also have valuable knowledge about pre-trained data.
Because StochNorm has a branch which normalizes activations by moving statistics, it is natural to
initialize the moving statistics as the pre-trained moving statistics µ̃∗ and σ̃2∗ , as indicated by the
top-left part of Figure 1. This way, pre-trained moving statistics join the training through StochNorm
and contribute to fine-tuning. This initialization strategy takes effect as an implicit regularization.

In a summary, StochNorm makes fine-tuning robust to over-fitting from two aspects: (i) the two-
branch design and the stochastic selection mechanism facilitate a hybrid normalization-regularization
effect, which penalizes over-fitting, (ii) more knowledge from pre-trained models is transferred.

4.3 Fine-Tuning with StochNorm

Integration with fine-tuning methods. Many methods for fine-tuning can be described by a uniform
framework with supervised cross-entropy loss function combined with regularization terms. They vary
on how to design regularization terms, i.e., how to reuse the knowledge in the pre-trained network
while avoiding over-fitting on the small target dataset. They are complementary to StochNorm.
By replacing BN with StochNorm in their network backbones, these methods enjoy additional
performance gains, as shown in our experiments.

Integration with network backbones. As a general and lightweight normalization layer, StochNorm
can be easily plugged into common network backbones in place of the standard BN. As shown in
Figure 2, we can apply StochNorm to several kinds of deep neural networks, from VGG (Simonyan
& Zisserman, 2015), ResNet (He et al., 2016a) to Inception Net (Szegedy et al., 2016), with no other
modifications to the network architectures.

5



Conv , 643 × 3

StochNorm

Conv , 643 × 3

StochNorm

relu

relu

Pool 2 × 2

(a) VGG Block
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StochNorm
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StochNorm

Conv 3 × 3

StochNorm

Conv 1 × 1

StochNormConv 1 × 1

StochNorm Conv 3 × 3

StochNorm

(c) Inception Block

Figure 2: Integration of StochNorm in mainstream deep backbones, by replacing BN with StochNorm.

5 Experiments

To evaluate StochNorm, we apply it to four visual recognition tasks. Experimental results indicate
that our method can outperform state-of-the-art fine-tuning methods over four datasets when there
are limited data. We also conduct insight analysis and ablation study to better understand StochNorm.
The code is available at https://github.com/thuml/StochNorm.

5.1 Setup

Datasets. The evaluation is conducted on four standard datasets. CUB-200-2011 (Welinder et al.,
2010) is a dataset for fine-grained bird recognition with 200 bird species and 11, 788 images. It is
an extended version of the CUB-200 dataset. Stanford Cars (Krause et al., 2013) contain 16, 185
images for 196 classes of cars. FGVC Aircraft (Maji et al., 2013) is a benchmark for the fine-grained
aircraft categorization. The dataset contains 10, 000 aircraft images, with 100 images for each of
the 100 categories. NIH Chest X-ray (Wang et al., 2017) consists of 112, 120 frontal-view X-ray
images of 30, 805 patients with fourteen disease labels (each image can have multiple labels).

Compared methods. StochNorm is compared with several fine-tuning methods: vanilla fine-tuning;
L2-SP (Li et al., 2018) which regularizes the weight parameters around pre-trained parameters to
alleviate catastrophic forgetting; DELTA (Li et al., 2019b) which selects features with a supervised
attention mechanism; and BSS (Chen et al., 2019) which penalize small eigenvalues of feature
representations to protect training from negative transfer. Despite of the vanilla fine-tuning, L2-SP,
DELTA, and BSS are state-of-the-art methods to avoid over-fitting in fine-tuning.

Implementation details. Experiments are implemented based on PyTorch (Benoit et al., 2019). We
follow previous protocols (Li et al., 2018, 2019b; Chen et al., 2019) to train the last fully connected
layer from scratch, and to fine-tune the backbone network. The learning rate for the last layer is set
to be 10 times of those for the fine-tuned layers because parameters in the last layer are randomly
initialized. We adopt SGD with momentum of 0.9 together with the progressive training strategies in
Li et al. (2018). Experiments are repeated five times to get the mean and deviation. Hyper-parameters
for each method are selected on validation data. We follow the train/validation/test partition of each
dataset. For datasets without validation data, we use 20% training data for validation and use the same
validation data for all methods. The selection probability p = 0.5 works well for most experiments.

5.2 Results

Medical image analysis. With the rapid development of transfer learning, medical image analysis
can benefit from deep learning even with a small amount of data. The NIH Chest X-ray dataset
consists of X-ray images collected across a whole country and thus is a large-scale dataset. Typically
we cannot afford the cost to build such a large dataset. Therefore, we design experiments with 5%
samples, 10% samples, and 15% samples. The task in this dataset is multi-label binary classification
and the evaluation metric is the average AUC for the fourteen diseases. ResNet-50 (He et al., 2016a)
pre-trained on ImageNet serves as the network backbone. Results are summarized in Table 2.
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Table 2: Average performances (AUC) of diagnosing different pathologies on NIH Chest X-ray.

Method 5% samples 10% samples 15% samples

vanilla (baseline) 70.37±0.31 75.85±0.22 76.64±0.11
L2-SP 70.02±0.27 72.73±0.41 75.71±0.22
DELTA 70.99±0.19 74.35±0.20 75.97±0.17
BSS 69.86±0.12 73.27±0.19 76.10±0.23
StochNorm 72.50±0.26 76.48±0.15 77.01±0.21

Due to the large discrepancy between medical images and common visual recognition images,
compared methods are inferior to vanilla fine-tuning, a phenomenon named negative transfer (Chen
et al., 2019). In contrast, the proposed StochNorm can achieve an average improvement of 1.1%
across three sampling rates in terms of AUC, by simply replacing BN layers with StochNorm.
Although Raghu et al. (2019) have found that vanilla fine-tuning with ImageNet pre-trained models
fails to achieve significant improvement on medical imaging dataset, we find that when target dataset
is insufficient, there is still room for improvement.

Fine-grained tasks. We present the classification results for three fine-grained tasks in Table 3. Note
that the bold results are the best results.To explore the effect of StochNorm when the target dataset is
small, we randomly sample a proportion of the data to reduce the dataset size. The sampling rates are
15%, 30%, 50% and 100%. Again the network backbone is ResNet-50 pre-trained on ImageNet.

Table 3: Top-1 Accuracy (%) of StochNorm and different methods (Backbone: ResNet-50).

Dataset Method Sampling Rates

15% 30% 50% 100%

CUB-200-2011

vanilla (baseline) 45.25±0.12 59.68±0.21 70.12±0.29 78.01±0.16
L2-SP (Li et al., 2018) 45.08±0.19 57.78±0.24 69.47±0.29 78.44±0.17
DELTA (Li et al., 2019b) 46.83±0.21 60.37±0.25 71.38±0.20 78.63±0.18
BSS (Chen et al., 2019) 47.74±0.23 62.03±0.29 72.56±0.17 78.85±0.31

StochNorm 50.14±0.19 62.34±0.26 72.01±0.15 79.58±0.13

Stanford Cars

vanilla (baseline) 36.77±0.12 60.63±0.18 75.10±0.21 87.20±0.19
L2-SP (Li et al., 2018) 36.10±0.30 60.30±0.28 75.48±0.22 86.58±0.26
DELTA (Li et al., 2019b) 39.37±0.34 63.28±0.27 76.53±0.24 86.32±0.20
BSS (Chen et al., 2019) 40.57±0.12 64.13±0.18 76.78±0.21 87.63±0.27
StochNorm 41.08±0.17 65.02±0.21 77.39±0.26 87.35±0.22

FGVC Aircraft

vanilla (baseline) 39.57±0.20 57.46±0.12 67.93±0.28 81.13±0.21
L2-SP (Li et al., 2018) 39.27±0.24 57.12±0.27 67.46±0.26 80.98±0.29
DELTA (Li et al., 2019b) 42.16±0.21 58.60±0.29 68.51±0.25 80.44±0.20
BSS (Chen et al., 2019) 40.41±0.12 59.23±0.31 69.19±0.13 81.48±0.18

StochNorm 42.63±0.18 60.09±0.25 69.00±0.16 81.65±0.14

As shown in Table 3, StochNorm significantly outperforms vanilla fine-tuning when target data
is small (with sampling rate of 15% and 30%). In the challenging setting where there are only
15% data for training, fine-tuning is easily prone to over-fitting. In this case, StochNorm gets an
average of 4.1% increase compared with vanilla fine-tuning, demonstrating the regularization effect
of StochNorm. Compared with state-of-the-art fine-tuning methods, StochNorm is superior across a
wide spectrum of sampling rates for these three datasets.

It is worth to note that we work on avoiding over-fitting in fine-tuning. It is expected that regularization
helps less when more data are available. If there are abundant data (with sampling rate of 50% and
100%), StochNorm sometimes can improve over vanilla fine-tuning but sometimes not. State-of-the-
art fine-tuning methods do not show significant improvement with 100% data, either.
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5.3 Integration with Network Backbones and Other Methods

Network backbones. In the above experiments, we adopt the widely used ResNet-50 network
backbone. But our method can be easily integrated with other backbones, as described in Section 4.3.
Figure 3 shows the absolute improvements in the CUB-200-2011 dataset over vanilla fine-tuning
by integrating StochNorm with another two backbones: VGG-16 (Simonyan & Zisserman, 2015)
architecture which gradually increases the channel size but decreases the feature map size of convo-
lutional layers; Inception-v3 (Szegedy et al., 2016) architecture which uses parallel convolutional
layers with different kernel sizes to achieve multi-scale convolution. StochNorm works well with
different backbones and significantly outperforms the vanilla fine-tuning when data are limited,
demonstrating that the proposed StochNorm can be easily plugged into popular network backbones
for better regularization during fine-tuning.

Figure 3: StochNorm with different backbones.

Integration with other methods. Here we integrate StochNorm with other regularization methods
(L2-SP, DELTA and BSS) for fine-tuning. Table 4 summarizes the results. It is clear that integrat-
ing StochNorm with other methods can improve their performance. This is because StochNorm is
complementary to them. While L2-SP imposes parameter regularization and DELTA and BSS
impose feature regularization, the proposed StochNorm introduces architecture regularization by
designing a better module for fine-tuning.

Table 4: Accuracy of StochNorm integrated with different methods (Backbone: ResNet-50).

Method CUB-200-2011 FGVC Aircraft Stanford Cars

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

L2-SP 45.08 57.78 69.47 78.44 39.27 57.12 67.46 80.98 36.10 60.30 75.48 86.58
+StochNorm 49.92 60.48 70.47 79.24 42.57 60.16 69.16 81.12 40.50 64.86 77.34 86.81

DELTA 46.83 60.37 71.38 78.63 42.16 58.60 68.51 80.44 39.37 63.28 76.53 86.32
+StochNorm 49.27 62.86 72.78 79.72 44.10 60.13 70.12 81.03 40.77 65.67 77.23 86.51

BSS 47.74 62.03 72.56 78.85 40.41 59.23 69.19 81.48 40.57 64.13 76.78 87.63
+StochNorm 50.67 64.10 73.01 79.91 43.89 60.25 69.41 81.50 44.04 66.28 78.03 87.85

5.4 Ablation study

We conduct ablation study in three fine-grained classification tasks with 15% data to explore each
component in StochNorm. Results are presented in Figure 4.

Initialization of µ̃ and σ̃2. Figure 4(a) shows variants of StochNorm with different initialization
of µ̃ and σ̃2. (i) We design an experiment to compare BN with StochNorm whose moving statistics
are initialized by 0 and 1. Note that StochNorm with (0,1) significantly surpasses BN, confirming the
regularization effect of our two-branch design. (ii) We design experiments to explore the benefit of
transferring pre-trained moving statistics. Apart from (0, 1) initialization for the moving statistics,
we also compare (µ̃t, σ̃2

t ), which are computed by target training data before fine-tuning starts. The
proposed StochNorm is denoted by (µ̃∗, σ̃2∗), meaning that pre-trained moving statistics are used for
initialization of the moving statistics. Among these variants, (µ̃∗, σ̃2∗) is the best, while (0, 1) is the
worst. Results indicate that reusing pre-trained moving statistics is beneficial to fine-tuning, although
the improvement is not as large as the two-branch design.
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Impact of α. Although the hyper-parameter α in Algorithm 1 is actually a hyper-parameter of BN
rather than of StochNorm, it now affects the learning (back-propagation). Therefore we compare
α = 0.001 with PyTorch’s default α = 0.1 in Figure 4(b), where the y-axis means the absolute
improvement of StochNorm over vanilla fine-tuning. Empirically we find that smaller α leads to
slower convergence and slightly worse results. The default value α = 0.1 works well.
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Figure 4: Ablation Study.

Impact of p. Figure 4(c) presents an ablation study of p. The ablation study confirms our empirical
finding that the best p sits around 0.5 and p = 0.5 works well for most experiments. Note that
p = 1 is the same as BN, while p = 0 is to normalize all features with moving statistics, which can
lead to collapse during training, as confirmed by many researchers like Ioffe & Szegedy (2015). In
StochNorm, only some randomly selected channels are normalized by moving statistics while others
by mini-batch statistics, successfully stabilizing fine-tuning without relying on techniques like BRN.

Comparison with other normalization methods. Since StochNorm is a normalization module,
it is necessary to compare StochNorm with other normalization methods. However, we focus on
fine-tuning in this paper and public available pre-trained models are all trained with BN. Therefore, we
cannot directly compare StochNorm with normalization techniques like instance normalization (IN)
or weight normalization (WN). Batch-Instance Normalization (BIN) can be compared because it is
based on BatchNorm. Figure 4(d) presents the comparison with respect to the absolute improvements
over BN, which shows that BIN is slightly better than BN but substantially inferior to StochNorm.

6 Conclusion

How to alleviate over-fitting in fine-tuning with small datasets is an important problem. This paper
proposes Stochastic Normalization (StochNorm) to improve the widely used batch normalization
module in a dropout-like way to battle against over-fitting. The two-branch design and transfer of
pre-trained moving statistics are empirically confirmed to be helpful for fine-tuning. StochNorm
can be easily integrated into popular ConvNets, has top fine-tuning results, and can work with other
fine-tuning methods.

Broader Impact

This paper proposes a new network module called StochNorm as the basic building block of deep
neural networks. It can greatly improve fine-tuning of pretrained models in the small data regime.
Its broader impact depends on the usage scenario of fine-tuning in deep learning applications. In
addition, it may inspire some researchers for further investigation of regularization techniques.
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