
Structure of the supplementary material.
The supplementary material consists of six sections:

• Appendix A provides the formal description of the algorithm and the instantiations of
CONPLANNER as well as how it can be expressed as a (linear/convex) mathematical program.

• Appendix B provides the proofs for the results of the basic setting presented in Section 3.

• Appendix C provides the proofs and additional discussion for the results of the concave-
convex setting presented in Section 4.

• Appendix D provides the proofs and additional discussion for the results of knapsack setting
presented in Section 5.

• Appendix E provides further details regarding the experiments presented in Section 6.

• Appendix F provides auxiliary concentration lemmas useful for the derivation of our results.

.

A Algorithm: Formal description and design choices
Our main algorithm, denoted by CONRL, is presented at Algorithm 1. We instantiate CONRL for
our different settings (i.e. basic setting, concave-convex, and knapsack) by using the appropriate
CONPLANNER that we discuss in the remainder of this section.

Algorithm 1 CONRL
1: for Episode k from 1 to K do
2: Compute empirical estimates:

Compute Nk, p̂k, r̂k, and ĉk based on equations (4-7)
3: Compute bonus:

Compute b̂k as equation (9)
4: Call constrained planner:

πk ← CONPLANNER(p̂k, r̂k, ĉk, b̂k)
5: Execute policy: initial state sk,1 = s0

6: for Stage h from 1 to H do
7: Select ak,h ∼ πk

(
sk,h

)
8: Observe reward rk,h, consumptions ∀i ∈ D : ck,h,i, and new state sk,h+1

9: end for
10: end for

A.1 Basic setting - BASICCONPLANNER

We define the bonus-enhanced CMDP, i.e.M(k) =
(
p(k), r(k), c(k)

)
, as

p(k)(s′|s, a) = p̂k(s′|s, a) ∀s, a, s′

r(k)(s, a) = r̂k(s, a) + b̂k(s, a) ∀s, a

c(k)(s, a, i) = ĉk(s, a, i)− b̂k(s, a) ∀s, a, i ∈ D

then we solve the following optimization problem

max
π

Eπ,p
(k)
[H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[H∑
h=1

c(k)
(
sh, ah, i

)]
≤ ξ(i).

This optimization problem can be solved exactly since it is equivalent to the following linear program
on occupation measures (Rosenberg and Mansour, 2019; Altman, 1999). Decision variables are

13

ρ(s, a, h), i.e. probability of agent being at state action pair (s, a) at time step h.

max
ρ

∑
s,a,h

ρ(s, a, h)r(k)(s, a) s.t.
∑
s,a,h

ρ(s, a, h)c(k)(s, a, i) ≤ ξ(i) ∀i ∈ D

∀s′, h
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p(k)(s′|s, a)

∀s, a, h 0 ≤ ρ(s, a, h) ≤ 1
∑
s,a

ρ(s, a, h) = 1

(14)

A.2 Concave-convex setting - CONVEXCONPLANNER

In this setting, unlike basic setting, objective and constraints are not linear. Therefore, due to lack
of monotonicity, we cannot explicitly define the bonus-enhanced CMDPM(k) =

(
p(k), r(k), c(k)

)
.

The bonus-enhanced CMDP is implicit in the following program that we solve (see section 4)

max
π

max
r(k)∈

[
r̂k±b̂k

] f(Eπ,p(k)[H∑
h=1

r(k)
(
sh, ah

)])
s.t. min

c(k)∈
[
ĉk±b̂k·1

] g(Eπ,p(k)[H∑
h=1

c(k)
(
sh, ah

)])
≤ 0.

Similar to before, expressing this program based on occupation measures provides a convex program.

max
ρ

max
r∈
[
r̂k±b̂k

] f(∑
s,a,h

ρ(s, a, h)r(s, a)
)

s.t. min
c∈
[
ĉk±b̂k·1

] g(∑
s,a,h

ρ(s, a, h)c(s, a)
)
≤ 0

∀s′, h :
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p̂k(s′|s, a)

∀s, a, h : 0 ≤ ρ(s, a, h) ≤ 1 and
∑
s,a

ρ(s, a, h) = 1

(15)
The notations r ∈

[
r̂k ± b̂k

]
and c ∈

[
ĉk ± b̂k · 1

]
are defined as

r ∈
[
r̂k ± b̂k

]
⇐⇒ ∀s, a : r(s, a) ∈ [r̂k(s, a)− b̂k(s, a), r̂k(s, a) + b̂k(s, a)]

c ∈
[
ĉk ± b̂k · 1

]
⇐⇒ ∀i ∈ D, s, a : c(s, a, i) ∈ [ĉk(s, a, i)− b̂k(s, a), ĉk(s, a, i) + b̂k(s, a)]

Note that if f and g are linear, we end up with a linear program similar to (14)

A.3 Knapsack setting - KNAPSACKCONPLANNER

We define the bonus-enhanced cMDP, i.e. M(k) =
(
p(k), r(k), c(k)

)
similar to basic setting (A.1).

We also solve a similar optimization problem with tighter constraints:

max
π

Eπ,p
(k)
[H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[H∑
h=1

c(k)
(
sh, ah, i

)]
≤ (1− ε)Bi

K
.

This optimization problem can again be solved using the following linear program on occupation
measures. Decision variables are ρ(s, a, h), i.e. probability of agent being at state action pair (s, a)
at step h.

max
ρ

∑
s,a,h

ρ(s, a, h)r(k)(s, a) s.t.
∑
s,a,h

ρ(s, a, h)c(k)(s, a, i) ≤ (1− ε)Bi
K

∀i ∈ D

∀s′, h
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p(k)(s′|s, a)

∀s, a, h 0 ≤ ρ(s, a, h) ≤ 1
∑
s,a

ρ(s, a, h) = 1

(16)

B Analysis: Basic setting (Section 3)
In this section, we prove the main guarantee for the basic setting.

14

B.1 Validity of bonus (Lemma 3.2)

We first prove that b̂k(s, a) = H

√
2 ln
(

8SAH(d+1)k2/δ)

Nk(s,a) of Eq. (9) is valid as in the Definition 3.1.

Proof of Lemma 3.2. We focus on a single state-action pair s, a, stage h, and objective m. Since
the support of m is in [0, 1] and the one of the value is in [0, H − 1], by Hoeffding inequality (see
Lemma F.2), it holds that, for all k, since (s, a)-pair is visited Nk(s, a) times prior to episode k, with
probability at least 1− δ′:∣∣∣(m̂k(s, a)−m?(s, a)

)
+
∑
s′∈S

(
p̂k(s′|s, a)− p?(s′|s, a)

)
V
∣∣∣ ≤ H√2 ln(2/δ′)

Nk(s, a)
.

As a result, the bonus b̂k(s, a, δ) satisfies this inequality for a particular state-action-step-objective
with failure probability at most δ′ = δ

4SAH(d+1)k2 and is therefore valid (satisfying it for all states-
actions-steps-objectives) with failure probability δ

4k2 . Union bounding across episodes, the probability
of b̂k(s, a, δ) not being valid for some k is at most

∑K
k=1

δ
4k2 ≤ δ.

B.2 Valid bonus implies optimism
The main reason to optimize a bonus-enhanced model with valid bonuses is because the latter render
the model optimistic, i.e., its estimated reward is an overestimate of the true reward. Similarly, in
constrained settings, its estimated resource consumptions are underestimates of the true resource
consumptions. This is formalized in the following definition.

Definition B.1. A CMDPM = (p, r, c) is optimistic if its estimated reward (resp. consumption)
value function for policy π? upper (resp. lower) bounds its corresponding value function under the
ground truth:

E
[
V π

?,p
r (s1, 1)

]
≥ E

[
V π

?,p?

r? (s1, 1)
]

and E
[
V π

?,p
ci (s1, 1)

]
≤ E

[
V π

?,p?

c?i
(s1, 1)

]
∀i ∈ D.

An important block of the analysis for the basic setting is to show that, when using a bonus-enhanced
model with valid bonuses, the resulting CMDP is optimistic.

Lemma B.2. If the bonus b̂k(s, a) of Eq. (9) in episode k is valid (Definition 3.1) for the correspond-
ing CMDPM(k) =

(
p(k), r(k), c(k)

)
thenM(k) is optimistic.

Proof. We first prove the optimism of the model for the reward objective. More concretely, we show
by induction that for any state s, action a, and stage h, Qπ

?,p(k)

r(k)
(s, a, h) ≥ Qπ

?,p?

r? (s, a, h); taking
expectation on the state-action pair of the first state, the claim then follows.

Since the setting ends at episode H , Qπ
?,p(k)

r(k)
(s, a,H + 1) = Qπ

?,p?

r? (s, a,H + 1) = 0.

We assume that the inductive hypothesis Qπ
?,p(k)

r(k)
(s, a, h+ 1) ≥ Qπ

?,p?

r? (s, a, h+ 1) (and thus also

V π
?,p(k)

r(k)
(s, h+ 1) ≥ V π

?,p?

r? (s, h+ 1)) holds, and proceed with the inductive step. The Q-functions
in question are:

Qπ
?,p(k)

r(k)
(s, a, h) = r(k)(s, a) +

∑
s′∈S

p(k)(s′|s, a)V π
?,p(k)

r(k)
(s′, h+ 1)

≥ r(k)(s, a) +
∑
s′∈S

p(k)(s′|s, a)V π
?,p?

r? (s′, h+ 1)

Qπ
?,p?

r? (s, a, h) = r?(s, a) +
∑
s′∈S

p?(s′|s, a)V π
?,p?

r? (s′, h+ 1)

Subtracting, we have:

Qπ
?,p(k)

r(k)
(s, a, h)−Qπ

?,p?

r? (s, a, h) ≥
(
r̂k(s, a) + b̂k(s, a)− r?(s, a)

)
+
∑
s′∈S

(
p̂k(s′|s, a)− p?(s′|s, a)

)
V π

?,p?

r? (s′, h+ 1) ≥ 0,

15

where the last inequality holds since the bonuses are valid.

The optimism of the model with respect to the consumption objectives follows the same steps altering
the direction of the inequalities and setting the estimate as empirical mean minus the bonus.

We emphasize that our bonus in Eq (9) does not scale polynomially with respect to |S|; despite that,
as indicated by the above lemma, it suffices to prove optimism.

B.3 Simulation lemma
To prove the Bellman-error regret decomposition, an essential piece is the so called simulation lemma
(Kearns and Singh, 2002) which we adapt to constrained settings below:

Lemma B.3 (Simulation lemma). For any policy π, any CMDPM = (p, r, c), and any objective
m ∈ {r} ∪ {ci}i∈D with corresponding true objective m? ∈ {r?} ∪ {c?i }i∈D,, it holds that:

Eπ
[
V π,pm (s1, 1)

]
− Eπ

[
V π,p

?

m? (s1, 1)
]

= Eπ
[H∑
h=1

BELLπ,pm (sh, ah, h)
]
. (17)

Proof. For all of m ∈ {r} ∪ {ci}i∈D, rearranging the definitions of Bellman errors, we obtain:

Qπ,pm (s, a, h) =
(

BELLπ,pm (s, a, h) +m?(s, a)
)

+
∑
s′∈S

p?(s′|s, a)V π,pm (s′, h+ 1)

Qπ,p
?

m? (s, a, h) =
(

BELLπ,p
?

m? (s, a, h) +m?(s, a)
)

+
∑
s′∈S

p?(s′|s, a)V π,p
∗

m∗ (s′, h+ 1)

By definition of the Bellman error, the Bellman error with respect to the true model is equal to 0. As
a result, subtracting the two above equations, we obtain:

Qπ,pm (s, a, h)−Qπ,p
?

m? (s, a, h) = BELLπ,pm (s, a, h) +
∑
s′∈S

p?(s′|s, a)
(
V π,pm (s′, h+ 1)− V π,p

?

m? (s′, h+ 1)
)
.

Taking expectation over policy π to select a, the initial state s1, and setting h = 1, we obtain:

Es1
[
V π,pm

(
s(1), 1

)
− V π,p

?

m?
(
s1, 1

)]
= Eπ

[
BELLπ,pm

(
s1, a1, 1

)]
+ Eπ

[
V π,pm

(
s2, 2

)
− V π,p

∗

m?
(
s2, 2

)]
.

Recursively bounding the second term of the RHS as above concludes the lemma.

B.4 Bellman-error regret decomposition (Proposition 3.3)

Proof of Proposition 3.3. The consumption requirement (11) for resource i follows by applying the
simulation lemma (Lemma B.3) on CMDPM(k) and objective m = c

(k)
i (with corresponding true

objective m? = c?i) and using that πk is feasible for CONPLANNER(p(k), r(k), c(k)):

Eπk,p
?
[H∑
h=1

c?(sh, ah, i)
]

= Eπk
[
V π,p

?

c?i
(s1, 1)

]
= E

[
V πk,pci (s1, 1)

]
− Eπk

[H∑
h=1

BELLπk,p
(k)

c
(k)
i

(
sh, ah, h)

]
≤ ξ(i) + Eπk

[H∑
h=1

∣∣∣BELLπk,p
(k)

c
(k)
i

(
sh, ah, h

)∣∣∣]
Regarding the reward requirement (10), what we wish to bound is:

Eπ
?,p?
[H∑
h=1

r?(sh, ah)
]
− Eπk,p

?
[H∑
h=1

r?(sh, ah)
]

= E
[
V π

?,p?

r? (s1, 1)
]
− E

[
V πk,p

?

r? (s1, 1)
]

the validity of the bonus implies that the modelM(k) is optimistic (Lemma B.2), i.e., we have that
E
[
V π

?,p?

r? (s1, 1)
]
≤ E

[
V π

?,p(k)

r(k)
(s1, 1)

]
. If π? is feasible for CONPLANNER(p(k), r(k), c(k)) then,

since πk is the maximizer for this program:

E
[
V π

?,p(k)

r(k)
(s1, 1)

]
− E

[
V πk,p

?

r? (s1, 1)
]
≤ E

[
V πk,p

(k)

r(k)
(s1, 1)

]
− E

[
V πk,p

?

r? (s1, 1)
]

(18)

= Eπk
[H∑
h=1

BELLπk,p
(k)

r(k)

(
sh, ah, h

)]

16

where the last equality holds by applying the simulation lemma with m = r. Hence, this proves (10).

What is left to show is that π? is indeed feasible for CONPLANNER(p(k), r(k), c(k)). SinceM(k) is
optimistic and π? is feasible for the ground truthM?, for all resources i ∈ D:

E
[
V π

?,p(k)

c
(k)
i

(s1, 1)
]
≤ E

[
V π

?,p?

c?i
(s1, 1)

]
≤ ξ(i).

This completes the proof of the proposition.

B.5 Bounding the Bellman error
We now provide an upper bound on the Bellman error which arises in the RHS of the regret
decomposition (Proposition 3.3).

Lemma B.4. Let ε > 0. If the bonus b̂k is valid for all episodes k simultaneously then, with
probability at least 1− δ: for all objectives m(k) ∈ {r(k)} ∪ {c(k)

i }i∈D, transitions p = p(k), and
stages h, the Bellman error at episode k is upper bounded by:∣∣∣BELLπk,p

(k)

m(k) (s, a, h)
∣∣∣ ≤ 2H

√
2S ln

(
16SAH2(d+ 1)k2/(εδ))

Nk(s, a)
+ εS.

Proof of Lemma B.4. Let Ψ be an ε-net in [−(H − 1), (H − 1)]S . For a fixed value V̄ ∈ Ψ, similar
to Lemma 3.2, with probability 1 − δ′, simultaneously for all states s ∈ S, actions a ∈ A, steps
h ∈ [H], episodes k ∈ [K], and objectives m(k) ∈ {r(k)} ∪ {c(k)

i }i∈D, it holds that:∣∣∣m(k)(s, a)−m?(s, a) +
∑
s′∈S

(
p(s′|s, a)− p?(s′|s, a)

)
V̄ (s′)

∣∣∣
≤ b̂k(s, a) +H

√
2 ln

(
8SAH(d+ 1)k2/δ′)

Nk(s, a)

Since Ψ is an ε-net for V̄ , there are (2H/ε)S potential values. In order to have the above hold
simultaneously for all these values with probability 1− δ, we need to set δ′ = δ

(2H/ε)S
.

Since the value
(
p(k)(s′|s, a)− p?(s′|s, a)

)
V πk,p
m(k) (s′, h+ 1) is in [−(H − 1), (H − 1)] for all s′, it

holds that there exists a value V in the ε-net with distance at most εS. As a result, since b̂k(s, a) is
valid for k:∣∣∣BELLπk,p

(k)

m(k) (s, a, h)
∣∣∣ ≤ ∣∣∣m(k)(s, a)−m?(s, a) +

∑
s′∈S

(
p(k)(s′|s, a)− p?(s′|s, a)

)
V (s′)

∣∣∣
+
∣∣∣ ∑
s′∈S

(
p(k)(s′|s, a)− p?(s′|s, a)

)(
V (s′)− V πk,p

(k)

m(k) (s′, h+ 1)
)∣∣∣

≤ b̂k(s, a) +H

√
2S ln

(
16SAH2(d+ 1)k2/(εδ))

Nk(s, a)
+ εS.

Upper bounding b̂k(s, a) ≤ H
√

2S ln
(

16SAH2(d+1)k2/(εδ))

Nk(s,a) completes the lemma.

B.6 Final guaraantee for the basic setting (Theorem 3.4)

Proof. The failure probability of the algorithm is δ due to the validity of bonus b̂k(s, a) (Lemma 3.2)
and another δ by the bound on Bellman error (Lemma B.4). When neither failure events occur
(probability 1 − 2δ), Proposition 3.3 upper bounds either of reward or consumption regret by
Eπk

[∣∣∣BELLπk,p
(k)

m(k) (sh, ah, h)
∣∣∣]. By Lemma B.4, the Bellman error at episode t, for ε > 0, is at most:

∣∣∣BELLπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣ ≤ 2H

√
2S ln

(
16SAH2(d+ 1)t2/(εδ))

Nt(s, a)
+ εS

17

Summing across all h = 1 . . . H and t = 1, . . . , k, the sum of Bellman errors is at most:
k∑
t=1

H∑
h=1

∣∣∣BELLπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣

≤
k∑
t=1

H∑
h=1

(
2H

√
2S ln

(
16SAH2(d+ 1)t2/(εδ))

Nt(s, a)
+ εS

)
≤
∑
s,a

(2H∑
j=1

2H
√

2S ln
(
16SAH2(d+ 1)k2/(εδ

)
+

Nk(s,a)∑
j=H+1

2H

√
4S ln

(
16SAH2(d+ 1)k2/(εδ))

j
+ εS

)
The second inequality follows since a particular state-action pair may have the same visitations for H
times (as we only update this quantity at the end of the episode). To avoid incurring an additional
dependence on H , we separate the first H visitations of each state-action pair and treat the bound as
if j = 1 for them. 11 For the remaining visitations, j and Nk(s, a) are always within a factor of 2 and
this factor therefore appears within the square root.

We now bound the second term:∑
s,a

(Nk(s,a)∑
j=H+1

2H

√
4S ln

(
16SAH2(d+ 1)k2/(εδ))

j
+ εS

)
≤ 2SAH

√
Nk(s, a) ln

(
Nk(s, a)

)
· 4S ln

(
16SAH2(d+ 1)k2/(εδ)) + εkHS

≤ 2SAH

√
kH · 4S · ln(k) ln

(
16SAH2(d+ 1)k2/(εδ)

)
SA

+ εkHS

≤ 8S
√
AH3 ·

√
k ·
√

ln(k) ln
(
2SAH(d+ 1)k/δ

)
+ 1.

The last inequality holds by setting ε = 1
kHS .

The first term can be bounded by additive terms that depend only logarithmically on k:∑
s,a

(2H∑
j=1

2H
√

2S ln
(
16SAH2(d+ 1)k2/(εδ

)
≤ 16S3/2AH2

√
ln(2SAH(d+ 1)k/δ

)
As a result:

k∑
t=1

H∑
h=1

∣∣∣BELLπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣ ≤ 8S

√
AH3

√
k ·
√

ln(k) ln
(
2SAH(d+ 1)k/δ

)
+ 1

+ 16S3/2AH2
√

ln
(
2SAH(d+ 1)k/δ

)
Now we link the additive Bellman error to the expected sum of Bellman errors under the expectation of
the policies {πt} (as needed by Proposition 3.3) via a simple martingale argument. From Lemma F.3,
with probability at least 1− δ, we have:∣∣∣∣∣

k∑
t=1

H∑
h=1

∣∣∣BELLπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣− k∑

t=1

H∑
h=1

Eπt
[
H∑
h=1

∣∣∣BELLπt,p
(t)

m(t) (sh, ah, h)
∣∣∣]∣∣∣∣∣

≤ H1.5
√

2 ln(4k2/δ)k,

where we use the fact that |BELLπ,pm | ≤ 3H due to of Qπ,pm (s, a) ∈ [0, H], m?(s, a) ∈ [0, 1], and
V π,pm (s) ∈ [0, H]. Combining the above, we conclude the proof.

11The reason why we sum until 2H in the first term is since we want to consider all such visitations that
occur in an episode that started with Nk(s, a) < H; the additional factor of 2 in the second term comes since,
j/Nt(s, a) ≤ 2 if Nt(s, a) ≥ H and the j-th visitation happens within the same episode.

18

C Analysis: concave-convex setting (Section 4)
In this section, we prove the main guarantee for the convex-concave setting. Since the regret
decomposition of the basic setting (Proposition 3.3) does not hold direclty as f and g are not linear,
we need to create an analogous regret decomposition (Proposition C.2) for the convex-concave setting.
This can be done by leveraging the Lipschitzness of the functions. Armed with this new regret
decomposition, we can directly call the results we have for for the basic setting (e.g., upper bounds of
Bellman errors) to conclude the regret analysis for the convex-concave setting. The first step leading
to this regret decomposition is to show that π? is a feasible solution of CONVEXCONPLANNER.

C.1 Feasibility of optimal policy in concave-convex setting (Lemma C.1)

Lemma C.1. If the bonus b̂k is valid (in the sense of Definition 3.1) then policy π? that maximizes
the objective of the convex-concave setting is feasible in CONVEXCONPLANNER.

Proof. Unlike the linear case, the feasibility of π?, requires more care. Applying the same dynamic
programming arguments as in Lemma B.2, it follows that:

∀i ∈ D : E
[
V π

?,p(k)

ĉi,k−bk (s1, 1)
]
≤ Es

[
V π

?,p?

c?i
(s1, 1)

]
≤ E

[
V π

?,p(k)

ĉi,k+bk
(s1, 1)

]
.

Letting g̃(α) = E
[
V π

?,p(k)

ĉi,k+αbk
(s(1), 1)

]
, the above can be rewritten as:

∀i ∈ D : g̃(−1) ≤ E
[
V π

?,p?

c?i
(s1, 1)

]
≤ g̃(1).

Since g̃(·) is the expected value over the same policy and under the same transitions, it is continuous
with respect to its argument. As a result, applying mean-value theorem on each i separately, there
exists some αi such that g̃(αi) = Es

[
V π

?,p?

c?i
(s1, 1)

]
. Due to the feasibility of π? on the true

transitions and consumptions, it holds that g
(
g̃(αi)

)
≤ 0. Hence, selecting estimates ĉi,k + αib̂k

creates a feasible solution for π? under the estimated transitions of the CONVEXCONPLANNER
program. The final value of π? at this program maximizes the objective retaining feasibility; hence
the existence of one feasible selection of consumption estimates concludes the proof of the lemma.

We conclude by remarking that proving optimism feasibility for the concave-convex setting in
multiple-step RL setting is more challenging than that in single-step multi-arm bandit setting Agrawal
and Devanur (2014) since in bandits, there are no transitions. In the proof above, to show that
π? is feasible in CONVEXCONPLANNER which is defined with respect to p(k), we leverage the
fact that g̃(α) is continuous and a novel application of mean-value theorem to link π?’s perfor-

mance in the optimistic model E
[
V π

?,p(k)

ĉi,k+αibk
(s1, 1)

]
and π?’s performance under the real model

Es
[
V π

?,p?

c?i
(s1, 1)

]
.

C.2 Regret decomposition for concave-convex setting
Using the Lipschitz continuous assumption of f and g, we can decompose the regret into a sum of
Bellman errors as before, but scaled by the Lipschitz constant this time.

Proposition C.2. Let L be the Lipschitz constant for f and g. If b̂k(s, a, δ) is valid for all episodes
k simultaneously then the per-episode reward and consumption regrets can be upper bounded by:

f
(
Eπ

?,p?
[H∑
h=1

r?(sh, ah)
])
− f

(
Eπk,p

?
[H∑
h=1

r?(sh, ah)
])
≤ L · Eπk

[H∑
h=1

BELLπk,p
(k)

r(k)

(
sh, ah, h)

])
g
(
Eπk,p

?
[H∑
h=1

c?(sh, ah, i)
])
≤ L

∑
i∈D
·Eπk

[H∑
h=1

∣∣∣BELLπk,p
(k)

c
(k)
i

(sh, ah, h)
∣∣∣]

Proof. We first prove the reward requirement. Let r(π) be the solution of the inner maximization
program for policy π, and we define r(k) = r(πk). For notational convenience, we denote V π,pm =

19

Eπ,p
[
V π,pm

]
Since r?(s, a) ∈ [r̂(s, a) − b̂k(s, a, δ), r̂(s, a) + b̂k(s, a, δ)] and the bonus b̂k is valid,

similar to Lemma B.2, it holds:

V π
?,p?

r? ∈
[
V π

?,p(k)

r̂−b , V π
?,p(k)

r̂+b

]
. (19)

As a result, by mean-value theorem, there exists α ∈ [−1, 1] such that V π
?,p?

r? = V π
?,p(k)

r̂+αb . Since πk
is the maximizer of CONVEXCONPLANNER and π? is feasible for that program, it holds that:

f
(
V πk,p

(k)

r(πk)

)
≥ f

(
V π

?,p(k)

r(π?)

)
≥ f

(
V π

?,p(k)

r̂+αb

)
=f
(
V π

?,p?

r?

)
, (20)

where the second-to-last inequality holds since r(π?) is the maximizer of the inner program for π?
and the equality holds by (19).

We are now ready to provide the equivalent of the regret decomposition:

f(V π
?,p?

r?)− f(V πk,p
?

r?) ≤ f(V πk,p
(k)

r(πk))− f(V πk,p
?

r?) ≤ L ·
∣∣∣V πk,p(k)r(πk) − V πk,p

?

r?

∣∣∣
≤ L · Eπk

(
H∑
h=1

BELLπk,p
(k)

r(k)

(
sh, ah, h

))

where the first inequality holds by (20). the second inequality by Lipschitzness and the last inequality
holds by simulation lemma (Lemma B.3).

For the consumption requirement, since πk is feasible in CONVEXCONPLANNER, denoting again by
c(π) the consumption in the maximizer for policy π in the inner mathematical program. Same as
above we define c(k) = c(πk). It holds that:

g
(
Eπk,p

(k)
[H∑
h=1

ch(πk)
])
≤ 0 (21)

As a result,

g
(
Eπk,p

?
[H∑
h=1

c?h

])
− g
(
Eπk,p

(k)
[H∑
h=1

ch(πk)
])
≤ L

∥∥∥∥∥Eπk,p?[
H∑
h=1

c?h

]
− Eπk,p

(k)
[H∑
h=1

ch(πk)
]∥∥∥∥∥

1

=L
∑
i∈D

∣∣∣Eπk,p?[H∑
h=1

c?h(i)
]
− Eπk,p

(k)
[H∑
h=1

ch(πk, i)
]∣∣∣

≤ L ·
∑
i∈D

Eπ
(

H∑
h=1

∣∣∣BELLπk,p
(k)

c
(k)
i

(
sh, ah, h

)∣∣∣) ,
where again we applied Lipschitness and simulation lemma.

C.3 Concave-convex theorem (Theorem 4.1)

Proof of Theorem 4.1. The proof follows similarly to the proof of Theorem 3.4 by replacing Proposi-
tion 3.3 with Proposition C.2. The linear dependency on d in the consumption regret comes from the
fact that the Lipschitzness of g is defined in L1 norm.

D Analysis: Knapsack setting (Section 5)
In this section, we prove the guarantee for the hard-constraint setting. The goal is to show that over K
episodes, our algorithm has sublinear reward regret comparing to the best dynamic policy (formally
defined in Appendix D.2), while satisfying hard budget constraints with high probability.

20

D.1 Theorem with hard constraints (Theorem 5.1)

Proof of Theorem 5.1. We denote by OPT the expected total reward of π?. Consider now the policy
π̃? that selects the null policy with probability ε and follows π? otherwise. This policy is feasible
for (13); as a result the expected reward π̃? for (13) is at least (1− ε)OPT. Since the total reward is
upper bounded by KH , it therefore holds that:

K∑
k=1

Eπ̃
?
[H∑
h=1

r?
(
sh, ah

)]
≥ (1− ε)OPT ≥ OPT − εKH (22)

In the high-probability event where the regret guarantee of AGGREG(δ) does not fail, the reward of
the algorithm is at least:

K∑
k=1

H∑
h=1

rk,h ≥
K∑
k=1

Eπ̃
?
[H∑
h=1

r?(sh, ah)
]
− AGGREG(δ), (23)

Combining (22) and (23), with probability 1− δ, the reward regret with respect to π? is at most:

REWREG(K) ≤ 1

K
AGGREG(δ) + εH (24)

We now focus on the consumption. Since we optimize (13), for any resource i ∈ D, when the regret
guarantee AGGREG(δ) against π̃? does not fail and given that π̃? is feasible for (13), it holds that:

K∑
k=1

H∑
h=1

ck,h,i ≤
K∑
k=1

Eπ̃
?
[H∑
h=1

c
(
sh, ah, i

)]
+ AGGREG(δ) ≤ (1− ε)Bi + AGGREG(δ)

Hence, when the regret guarantee AGGREG(δ) does not fail, the consumption is less than Bi for all i
as long as ε ≥ AGGREG(δ)

mini Bi
. Moreover ε is a probability as a result it should also be less than 1 which

holds when miniBi ≥ AGGREG(δ). Applying on (24) and assuming without loss of generality that
KH > miniBi (otherwise the setting is essentially unconstrained), the reward regret is at most

REWREG(K) ≤ 2HAGGREG(δ)

miniBi
.

D.2 Dynamic policy benchmark
We call a policy dynamic if it maps the entire history to a distribution over the action space. Specifically
we denote history Hk,h as the history that contains all the information from the beginning of the
first episode to the end of the step h − 1 at the k-th episode plus the state at step h in episode
k. At any episode k and step h, a dynamic policy π̃(·|Hk;h) ∈ ∆(A) maps history Hk;h to a
distribution over action space. We denote Πdynamic as the set of all dynamic policies that satisfies
the budget constraints deterministically, i.e., for any π̃ ∈ Πdynamic, when executed for K episodes
in the MDP, we have

∑K
k=1

∑H
h=1 ci(sk,h, ak,h) ≤ Bi for all i ∈ D, deterministically. Ideally

we want to compare against the best dynamic policy that maximizes the expected total reward
maxπ̃∈Πdynamic Eπ̃

[∑K
k=1

∑K
h=1 rk,h

]
. We denote such an optimal dynamic policy as π̃? and its

expected total reward across K episodes as

OPT := max
π̃∈Πdynamic

Eπ̃
[
K∑
k=1

K∑
h=1

rk,h

]
.

The lemma below shows that indeed the stationary Markovian policy π? actually achieves no smaller
expected total reward across K episodes than that of the best dynamic policy.

Lemma D.1. The reward of the policy π? maximizing program (1) with ξ(i) = Bi
K is at least as large

as the per-episode reward of the optimal dynamic policy that is subject to hard constraints instead:

Eπ
?
[H∑
h=1

r?
(
sh, ah

)]
≥ 1

K
max

π̃∈Πdynamic

Eπ̃
[K∑
k=1

H∑
h=1

r(sk,h, ak,h)
]

=
OPT

K
.

21

Proof. Denote π̃? as the optimal dynamic policy from Πdynamic. Any policy induces a state-action
distribution at episode k and stage h, denoted as ρπ̃(s, a;h, k), which stands for the probability of π̃
visits state-action pair (s, a) at stage h in episode k. Denote ρπ̃(s, a;h) =

∑K
k=1 ρπ̃(s, a;h, k)/K

which stands for the probability of π̃ visiting (s, a) at stage h. We have:∑
a

ρπ̃(s′, a;h, k) =
∑
s,a

ρπ̃(s, a;h− 1, k)p?(s′|s, a),∀s′,

due to the Markovian transition p?(s′|s, a), which implies that:∑
a

ρπ̃(s′, a;h) =
∑
s,a

ρπ̃(s, a;h− 1)p?(s′|s, a),∀s′.

Hence, ρπ̃(s, a;h) satisfies the flow constraints, and hence induces a stationary Markovian policy:

ππ̃(a|s) ∝ ρπ̃(s, a;h)/
∑
a

ρπ̃(s, a;h),

and ππ̃ induces state-action visitation distribution that are exactly equal to ρπ̃(s, a;h).

Note that π̃? satisfies the budget constraints deterministically, which means in expectation, it will
satisfies the constraints as well, i.e.,

K∑
k=1

H∑
h=1

∑
(s,a)

ρπ̃?(s, a;h)ci(s, a) ≤ Bi, ∀i ∈ D,

which implies that in expectation, for ππ̃? , we have that for all i ∈ D:

Eππ̃?
[
H∑
h=1

ci(sh, ah)

]
=

H∑
h=1

∑
(s,a)

ρππ̃? (s, a, h)ci(s, a) =

K∑
k=1

H∑
h=1

∑
(s,a)

ρπ̃?(s, a;h)ci(s, a)/K ≤ Bi/K.

This means that ππ̃? is a feasible solution of the hard-constraint program.

Similarly, we have that the expected per-episode total reward of π̃? is the same as the expected total
reward of ππ̃? :

Eππ̃?
[H∑
h=1

rh(sh, ah)
]

=
1

K
Eπ̃

?

[
K∑
k=1

H∑
h=1

rk,h

]
.

Hence, due to the optimality of π?, we immediately have:

Eπ
?
[H∑
h=1

rh

]
≥ Eππ̃?

[H∑
h=1

rh

]
=

1

K
Eπ̃

?
[K∑
k=1

H∑
h=1

rk,h

]
.

Since our approach incurs sublinear regret with respect to π?, it follows from the above lemma that
it incurs sublinear regret with respect to OPT – the total reward across K episodes from the best
dynamic policy.

E Experimental details
In the experiments, both APPROPO and RCPO use the same policy gradient algorithm, specifically,
Advantage Actor-Critic (A2C) Mnih et al. (2016) as the learning algorithm. We implemented CONRL
using two version of LAGRCONPLANNER (see algorithm 2 below) as CONPLANNER in which the
planner is either value iteration (exact planner) or A2C (approximate planner similar to Dyna model-
base RL Sutton (1991)) using fictitious samples. All three algorithms have outer-loop learning rates
which we tuned while hyperparameters used for A2C is same across all three methods. Here, we
report the result for the best learning rate for each method.

22

E.1 LAGRCONPLANNER

Our theoretical results posit that CONPLANNER is solved optimally, which can be indeed achieved
via linear programming (see Appendix A). However in our experiments it suffices to use a general
heuristic for CONPLANNER. Our approach is to Lagrangify the constraints, and create a min-max
mathematical program with the Lagrangean objective:

min
∀i∈D:λ(i)≤0

max
π

(
Eπ,p

(k)
[H∑
h=1

r(k)
(
sh, ah

)]
+
∑
i∈D

λ(i)
(
Eπ,p

(k)
[H∑
h=1

c(k)
(
sh, ah, i

)]
− ξ(i)

)
.

Define pseudo-reward r(k)
λ as

r
(k)
λ (s, a) = r(k)(s, a) +

∑
i∈D

λ(i)[c(k)(s, a)− ξ(i)]

With a fixed choice of Lagrange multipliers {λ(i)}i∈D, this is an unconstrained planning program
which we refer to as PLANNER(p(k), r

(k)
λ) and it can be solved by a planning oracle.

We update Lagrange multipliers via projected gradient descent Zinkevich (2003). The overhead
of CONPLANNER is computational, as we do not require new samples. The full procedure is in
Algorithm 2. The near-optimality of Algorithm 2 can be proved by leveraging the fact that we are
iteratively updating π and λ using no-regret online learning procedure (Best Response for π and
OGD for λ) (e.g., Cesa-Bianchi and Lugosi (2006)). We omit the analysis for Algorithm 2 as it is not
the main focus of this work.

Algorithm 2 Lagrangean-based Constrained Planner (LAGRCONPLANNER)
1: hyper-parameters: learning rate η
2: Input: Estimates p̂k, r̂k, ĉk and bonus b̂k
3: Compute bonus-enhanced modelM(k) =

(
p(k), r(k), c(k))

p(k)(s′|s, a) = p̂k(s′|s, a) ∀s, a, s′

r(k)(s, a) = r̂k(s, a) + b̂k(s, a) ∀s, a

c(k)(s, a, i) = ĉk(s, a, i)− b̂k(s, a) ∀s, a, i ∈ D

4: Initialize Lagrange parameters λ1(i)← 0 for i ∈ D
5: for Iteration k from 1 to N do
6: Define

r
(k)
λ (s, a) = r(k)(s, a) +

∑
i∈D

λ(i)[c(k)(s, a)− ξ(i)]

7: πk ← PLANNER(p(k), r
(k)
λ)

8: λk+1(i)← min
{

0, λk(i)− ηEπk,p(k)
[∑H

h=1[c(k)(sh, ah, i)]− ξ(i)
]}

∀i ∈ D
9: end for

10: Return mixture policy π := 1
N

∑N
k=1 πk

In our experiments, two versions of PLANNER have been implemented: Value Iteration (exact planner)
and A2C with fictitious samples (approximate planner)

Value Iteration as PLANNER This program takes p and r as input. Finite horizon value iteration
is simply solving the following acyclic dynamic program.

Q(s, a, h) =

{
0 h = H + 1

r(s, a) +
∑
s′

[
p(s′|s, a) maxa′ Q(s′, a′, h+ 1)

]
h = 1, . . . ,H

then the optimal policy for step h is computed as
πh(s) = argmaxaQ(s, a, h)

and the algorithm returns the H-step policy
π = (π)Hh=1

23

A2C with fictitious samples as PLANNER This program takes p and r as input, then, using model
p and r it generates episodes and use those samples to train our A2C agent. Since we only call this
subroutine with our estimated model (p← p̂ and r ← r̂) those episodes are fictitious (not adding to
sample complexity). The algorithm is given Algorithm 3 (Parameterized policy πθ and value function
estimate Vθ)

Algorithm 3 A2C planner with fictitious samples
1: hyper-parameters: learning rate η, α ∈ [0, 1]
2: Input: transitions p, reward function r
3: Define A2C loss

L(θ) = Eπθ,p[
H∑
h=1

− log πθ(ah|sh)(R(h)− Vθ(sh)) + α(R(h)− Vθ(sh))2]

R(h) =

H∑
h′=h

r(sh, ah)

4: Initialize θ arbitrarily
5: for Iteration i from 1 to T do
6: Emulate an episode by running πθ on MDP with transitions p and reward function r
7: update θ ← θ − η∇θL(θ)
8: end for
9: Return πθ

E.2 Hyperparameter Tuning
Both CONRL-A2C and RCPO used the Adam optimizer. For our method we performed a hyper-
paramter search on both domains over the following values in Table 1; selected values are given in
Table 2. Note that reset row refers to when using the A2C planner during each call to the planner we
tried the following options: (warm-start) reuse previous weights and reset the optimizer (warm -start),
or (continue) continue learning using the previous weights (continue) and optimizer, or (none) reset
the model weights and optimizer.

Table 1: Considered Hyperparameters

Hyperparameter Values Considered
A2C learning rate 10−2, 10−3, 10−4

lambda learning rate 100, {1, 2, 5} × 10−1, 2× 10−2, 10−3, 2× 10−3

reset warm-start, continue, none
conplanner iterations 10, 20, 30, 50, 100, 150, 200, 250
A2C Entropy coeff 10−3

A2C Value loss coeff 0.5

Table 2: Selected Hyperparameters

Hyperparameter Gridworld Box
A2C learning rate 10−3 10−3

lambda learning rate 2× 10−1 10−2

reset none none
conplanner iterations 10 10
A2C Entropy coeff 10−3 10−3

A2C Value loss coeff 0.5 0.5

E.2.1 TFW-UCRL2
We used the code provided by the author (with no algorithmic parameter changed). Moreover,
TFW-UCRL2 uses weights (L0, L1, . . . , Lk) in the objective function g(w) defined in Equation 1
in Cheung (2019). We only tuned these weights to identify the one maximizing the reward while

24

guaranteeing the constraint satisfaction (for a more fair comparison with the baseline). In our
experiments, we have k = 2 and you can see the performance of TFW-UCRL2 for L0 = 1 and
L1 ∈ {10−2, 10−3, 10−4, 10−5} in Figure 2.

100 101 102 103 104
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

re
wa

rd
TFW_UCRL2 0.001
TFW_UCRL2 0.01
TFW_UCRL2 1e-05
TFW_UCRL2 0.0001
constraint

100 101 102 103 104

number of trajectories

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
ns

tra
in

t s
at

isf
ac

tio
n

Figure 2: Performance of TFW-UCRL2 with different choices of L1 (L0 = 1)

F Concentration tools
This section contains general concentration inequalities that are not tied with the constrained RL
setting considered in the paper.

Lemma F.1 (Hoeffding). Let {Xi}Ni=1 be a set with each Xi i.i.d sampled from some distribution
and E[Xi] = 0 for all i and maxi |Xi| ≤ b. Then with probability at least 1− δ, it holds that:∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≤ b
√

2 ln(2/δ)

N
.

Lemma F.2 (Anytime version of Hoeffding). Let {Xi}∞i=1 be a set with each Xi i.i.d sampled from
some distribution and E[Xi] = 0 for all i and maxi |Xi| ≤ b. Then with probability at least 1− δ,
for any N ∈ N+, it holds that: ∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≤ b
√

2 ln(4N2/δ)

N
.

25

Proof. We first fix N ∈ N+ and apply standard Hoeffding (Lemma F.1) with a failure probability
δ/N2. Then we apply a union bound over N+ and use the fact that

∑
N>0

δ
2N2 ≤ δ to conclude the

lemma.

The following lemma is used when bounding the final regret in the above analysis where we bound the
difference between the cumulative Bellman error along the empirical trajectories and the cumulative
Bellman error under the expectation of trajectories (the expectation is taken with respect to the
policies generating these trajectories cross episodes).

Lemma F.3. Consider a sequence of episodes k = 1 to K, a sequence of policies {πk}Kk=1, and a
sequence of functions {fk}Kk=1 with corresponding filtration {Fk} with πk ∈ Fk−1 and fk ∈ Fk−1.
Each policy πk generates a sequence of trajectory {sk;h, sk;h}Hh=1. Denote a function fk : S ×A →
[0, 3H], with fk ∈ Fk−1. With probability at least 1− δ, for any K, we have:∣∣∣∣∣

K∑
i=1

H∑
h=1

fk(sk;h, ak;h)−
K∑
k=1

Eπk
(

H∑
h=1

fk(s(h), a(h))

)∣∣∣∣∣ ≤ H1.5
√

2 ln(4K2/δ)K.

Proof. Denote the random variable vk;h = fk (sk;h, ak;h). Denote Ek;h as the conditional expectation
that is conditioned on all history from the beginning to time step h (not including step h) at episode
k. Note that we have: Ek;h [vk] = Eπk (fk (sk;h, ak;h)). Note that |vk;h| ≤ 3H for any k, h by
the assumption on fk. Hence, {vk;h}k,h forms a sequence of Martingales. Applying Hoeffding’s
inequality, we have with probability at least 1− δ,∣∣∣∣∣

K∑
k=1

H∑
h=1

vk;h −
K∑
k=1

Eπk
(

H∑
h=1

fk(s(h), a(h))

)∣∣∣∣∣ ≤ 3H
√

2 ln(2/δ)KH = 3H1.5
√

2 ln(2/δ)K.

Assigning failure probability δ/k2 for each episode k and using a union bound over all episodes
conclude the proof.

26

