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Abstract

Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to
their ability to scale to different resolutions. However, despite the success of deep
learning-based models applied to rasterized images, the problem of vector graphics
representation learning and generation remains largely unexplored. In this work,
we propose a novel hierarchical generative network, called DeepSVG, for complex
SVG icons generation and interpolation. Our architecture effectively disentangles
high-level shapes from the low-level commands that encode the shape itself. The
network directly predicts a set of shapes in a non-autoregressive fashion. We
introduce the task of complex SVG icons generation by releasing a new large-scale
dataset along with an open-source library for SVG manipulation. We demonstrate
that our network learns to accurately reconstruct diverse vector graphics, and can
serve as a powerful animation tool by performing interpolations and other latent
space operations. Our code is available at https://github.com/alexandre01/
deepsvg.

Figure 1: DeepSVG generates vector graphics by predicting draw commands, such as lines and
Bézier curves. Our latent space allows meaningful animations between complex vector graphics
icons.

1 Introduction

Despite recent success of rasterized image generation and content creation, little effort has been
directed towards generation of vector graphics. Yet, vector images, often in the form of Scalable
Vector Graphics [20] (SVG), have become a standard in digital graphics, publication-ready image
assets, and web-animations. The main advantage over their rasterized counterpart is their scaling
ability, making the same image file suitable for both tiny web-icons or billboard-scale graphics.
Generative models for vector graphics could serve as powerful tools, allowing artists to generate,
manipulate, and animate vector graphics, potentially enhancing their creativity and productivity.
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Figure 2: One-stage autoregressive autoencoder architectures [5, 11, 17] (a) take the entire draw
commands as input and decode the latent vector one command at a time. Our approach (b) exploits
the hierarchical nature of vector graphics in both the encoder and decoder, and decodes the draw
commands with a single forward pass (non-autoregressively).

Raster images are most often represented as a rectangular grid of pixels containing a shade or color
value. The recent success of deep learning on these images much owes to the effectiveness of
convolutional neural networks (CNNs) [9], learning powerful representations by taking advantage of
the inherent translational invariance. On the other hand, vector images are generally represented as
lists of 2D shapes, each encoded as sequence of 2D points connected by parametric curves. While
this brings the task of learning SVG representations closer to that of sequence generation, there
are fundamental differences with other applications, such as Natural Language Processing. For
instance, similar to the translation invariance in raster images, an SVG image experiences permutation
invariance as the order of shapes in an SVG image is arbitrary. This brings important challenges in
the design of both architectures and learning objectives.

We address the task of learning generative models of complex vector graphics. To this end, we
propose a Hierarchical Transformer-based architecture that effectively disentangles high-level shapes
from the low-level commands that encode the shape itself. Our encoder exploits the permutation
invariance of its input by first encoding every shape separately, then producing the latent vector by
reasoning about the relations between the encoded shapes. Our decoder mirrors this 2-stage approach
by first predicting, in a single forward pass, a set of shape representations along with their associated
attributes. These vectors are finally decoded into sequences of draw commands, which combined
produce the output SVG image. A schematic overview of our architecture is given in Fig. 2.

Contributions Our contributions are three-fold: 1. We propose DeepSVG, a hierarchical transformer-
based generative model for vector graphics. Our model is capable of both encoding and predicting
the draw commands that constitute an SVG image. 2. We perform comprehensive experiments,
demonstrating successful interpolation and manipulation of complex icons in vector-graphics format.
Examples are presented in Fig. 1. 3. We introduce a large-scale dataset of SVG icons along with a
framework for deep learning-based SVG manipulation, in order to facilitate further research in this
area. To the best of our knowledge, this is the first work to explore generative models of complex
vector graphics, and to show successful interpolation and manipulation results for this task.

2 Related Work

Previous works [18, 13] for icon and logo generation mainly address rasterized image, by building
on Generative Adversarial Networks [3]. Unlike raster graphics, vector graphics generation has not
received extensive attention yet, and has been mostly limited to high-level shape synthesis [2] or
sketch generation, using the ‘Quick, Draw!’ [19] dataset. SketchRNN [5] was the first Long Short
Term Memory (LSTM) [6] based variational auto-encoder (VAE) [7] addressing the generation of
sketches. More recently, Sketchformer [17] has shown that a Transformer-based architecture enables
more stable interpolations between sketches, without tackling the generation task. One reason of this
success is the ability of transformers [21] to more effectively represent long temporal dependencies.

SVG-VAE [11] was one of the first deep learning-based works that generate full vector graphics
outputs, composed of straight lines and Bézier curves. However, it only tackles glyph icons, without
global attributes, using an LSTM-based model. In contrast, our work considers the hierarchical nature
of SVG images, crucial for representing and generating arbitrarily complex vector graphics. Fig. 2
compares previous one-stage autoregressive approaches [5, 11, 17] to our hierarchical architecture.
Our work is also related to the very recent PolyGen [15] for generating 3D polygon meshes using
sequential prediction vertices and faces using a Transformer-based architecture.
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Figure 3: Samples from the SVG-Icons8 dataset in vector graphics format. Although icons have
similar scale and style, they have drastically diverse semantic meanings, shapes and number of paths.

3 DeepSVG

Here, we introduce our DeepSVG method. First, we propose a dataset of complex vector graphics
and describe the SVG data representation in Sec. 3.1. We describe our learned embedding in Sec. 3.2.
Finally, we present our architecture in Sec. 3.3 and training strategy in Sec. 3.4.

3.1 SVG Dataset and Representation

SVG-Icons8 Dataset. Existing vector graphics datasets either only contain straight lines [19] or are
constrained to font generation [11]. These datasets therefore do not pose the challenges associated
with the generation of complex vector graphics, addressed in this work. Thus, we first introduce a new
dataset, called SVG-Icons81. It is composed of SVG icons obtained from the https://icons8.com
website. In the compilation of the dataset, we carefully considered the consistency and diversity of
the collected icons. This was mainly performed by ensuring that the vector graphics have similar
scale, colors and style, while capturing diverse real-world graphics allowing to learn meaningful
and generalizable shape representations. In summary, our dataset consists of 100,000 high-quality
icons in 56 different categories. Samples from the dataset are shown in Fig. 3. We believe that the
SVG-Icons8 dataset constitutes a challenging new benchmark for the growing task of vector graphics
generation and representation learning.

Vector Graphics and SVG. In contrast to Raster graphics, where the content is represented by a
rectangular grid of pixels, Vector graphics employs in essence mathematical formulas to encode
different shapes. Importantly, this allows vector graphics to be scaled without any aliasing or loss
in detail. Scalable Vector Graphics (SVG) is an XML-based format for vector graphics [20]. In its
simplest form, an SVG image is built up hierarchically as a set of shapes, called paths. A path is itself
defined as a sequence of specific draw-commands (see Tab. 1) that constitute a closed or open curve.

Data structure. In order to learn deep neural networks capable of encoding and predicting vector
graphics, we first need a well defined and simple representation of the data. This is obtained by
adopting the SVG format with the following simplifications. We employ the commands listed in
Tab. 1. In fact, this does not significantly reduce the expressivity since other basic shapes can
be converted into a sequence of Bézier curves and lines. We consider a Vector graphics image
V = {P1, . . . , PNP

} to be a set of NP paths Pi. Each path is itself defined as a triplet Pi =

Table 1: List of the SVG draw-commands, along with their arguments and a visualization, used in this
work. The start-position (x1, y1) is implicitly defined as the end-position of the preceding command.

Command Arguments Description Visualization

<SOS> ∅ ’Start of SVG’ token.

M
(MoveTo)

x2, y2 Move the cursor to the end-point (x2, y2)
without drawing anything.

L
(LineTo)

x2, y2 Draw a line to the point (x2, y2).

C
(Cubic
Bézier)

qx1, qy1
qx2, qy2
x2, y2

Draw a cubic Bézier curve with control
points (qx1, qy1), (qx2, qy2) and end-point
(x2, y2).

z
(ClosePath) ∅ Close the path by moving the cursor back

to the path’s starting position (x0, y0).

<EOS> ∅ ’End of SVG’ token.

1Available at https://github.com/alexandre01/deepsvg.
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(Si, fi, vi), where vi ∈ {0, 1} indicates the visibility of the path and fi ∈ {0, 1, 2} determines
the fill property. Each Si = (C1

i , . . . , C
NC
i ) contains a sequence of NC commands Cji . The

command Cji = (cji , X
j
i ) itself is defined by its type cji ∈ {<SOS>, m, l, c, z, <EOS>} and arguments,

as listed in Tab. 1. To ensure efficient parallel processing, we use a fixed-length argument list
Xj
i = (qjx1,i

, qjy1,i, q
j
x2,i

, qjy2,i, x
j
2,i, y

j
2,i) ∈ R6, where any unused argument is set to −1. Therefore,

we also use a fixed number of pathsNP and commandsNC by simply padding with invisible elements
in each case. Further details are given in appendix.

3.2 SVG Embedding

By the discrete nature of the data and in order to let the encoder reason between the different
commands, every Cji is projected to a common continuous embedding space of dimension dE ,
similarly to the de facto approach used in Natural Language Processing [21]. This enables the
encoder to perform operations across embedded vectors and learn complex dependencies between
argument types, coordinate values and relative order of commands in the sequence. We formulate
the embedding of the SVG command in a fashion similar to [1]. In particular, the command Cji is
embedded to a vector eji ∈ RdE as the sum of three embeddings, eji = ejcmd,i + ejcoord,i + ejind,i. We
describe each individual embedding next.

Command embedding. The command type (see Tab. 1) is converted to a vector of dimension dE
using a learnable matrix Wcmd ∈ RdE×6 as ejcmd,i = Wcmd δcji

∈ RdE , where δcji designates the

6-dimensional one-hot vector containing a 1 at the command index cji .

Coordinate embedding. Inspired by works such as PixelCNN [16] and PolyGen [15], which
discretize continuous signals, we first quantize the input coordinates to 8-bits. We also include a
case indicating that the coordinate argument is unused by the command, thus leading to an input
dimension of 28 + 1 = 257 for the embedding itself. Each coordinate is first embedded separately
with the weight matrix WX ∈ RdE×257. The combined result of each coordinate is then projected to
a dE-dimensional vector using a linear layer Wcoord ∈ RdE×6dE ,

ejcoord,i = Wcoord vec
(
WXX

j
i

)
, Xj

i =
[
qjx1,i

qjy1,i q
j
x2,i

qjy2,i x
j
2,i y

j
2,i

]
∈ R257×6 . (1)

Here, vec(·) denotes the vectorization of a matrix.

Index embedding. Similar to [1], we finally use a learned index embedding2 that indicates the index
of the command in the given sequence using the weight Wind ∈ RdE×NS as ejind,i = Wind δj ∈ RdE ,
where δj is the one-hot vector of dimension NS filled with a 1 at index j.

3.3 Hierarchical Generative Network

In this section, we describe our Hierarchical Generative Network architecture for complex vector
graphics interpolation and generation, called DeepSVG. A schematic representation of the model is
shown in Fig. 4. Our network is a variational auto-encoder (VAE) [7], consisting of an encoder and a
decoder network. Both networks are designed by considering the hierarchical representation of an
SVG image, which consists of a set of paths, each path being a sequence of commands.

Feed-forward prediction. For every path, we propose to predict the NC commands (ĉji , X̂
j
i ) in a

purely feed-forward manner, as opposed to the autoregressive strategy used in previous works [5, 11],
which learns a model predicting the next command conditioned on the history. Our generative model
is thus factorized as,

p
(
V̂ |z, θ

)
=

NP∏
i=1

p(v̂i|z, θ)p(f̂i|z, θ)
NC∏
j=1

p(ĉji |z, θ)p(X̂
j
i |z, θ) , (2)

where z is the latent vector and p(X̂j
i |z, θ) further factorizes into the individual arguments.

We found our approach to lead to significantly better reconstructions and smoother interpolations, as
analyzed in Sec. 4. Intuitively, the feed-forward strategy allows the network to primarily rely on the

2Known as positional embedding in the Natural Language Processing literature [21].
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Figure 4: Our Hierarchical Generative Network, DeepSVG. Input paths {Pi}NP
1 are encoded sepa-

rately using the path encoderE(1). The encoded vectors are then aggregated using the second encoder
E(2), which produces the latent vector z. The decoder D(2) outputs the path representations along
with their fill and visibility attributes {(ûi, f̂i, v̂i)}NP

1 . Finally {ûi}NP
1 are decoded independently

using the path decoder D(1), which outputs the actual draw commands and arguments.

latent encoding to reconstruct the input, without taking advantage of the additional information of pre-
vious commands and arguments. Importantly, a feed-forward model brings major advantages during
training, since inference can be directly modeled during training. On the other hand, autoregressive
methods [4, 21] condition on ground-truth to ensure efficient training through masking, while the
inference stage conditions on the previously generated commands.

Transformer block. Inspired by the success of transformer-based architectures for a variety of tasks
[17, 10, 1, 22], we also adopt it as the basic building block for our network. Both the Encoders and the
Decoders are Transformer-based. Specifically, as in [17], we use L = 4 layers, with a feed-forward
dimension of 512 and dE = 256.

Encoder. To keep the permutation invariance property of the paths set {Pi}NP
1 , we first encode every

path Pi independently using path encoder E(1). More specifically,E(1) takes the embeddings (eji )
NC
j=1

as input and outputs vectors (e′
j
i )
NC
j=1 of same dimension. To retrieve the single dE-dimensional

path encoding ui, we average-pool the output vectors along the sequential dimension. The NP
path encodings {ui}NP

1 are then input in encoder E(2) which, after pooling along the set-dimension,
outputs the parameters of a Gaussian distribution µ̂ and σ̂. Note how the index embedding in vector eji
enables E(1) to reason about the sequential nature of its input while E(2) maintains the permutation
invariance of the input paths. The latent vector is finally obtained using the reparametrization trick
[7] as z = µ̂+ σ̂ · ε, where ε ∼ N (0, I).

Decoder. The decoder mirrors the two-stage construction of the encoder. D(2) inputs the latent
vector z repeatedly, at each transformer block, and predicts a representation of each shape in the
image. Unlike the corresponding encoder stage, permutation invariance is not a desired property for
D(2), since its purpose is to generate the shapes in the image. We achieve this by using a learned
index embedding as input to the decoder. The embeddings are thus distinct for each path, breaking the
symmetry during generation. The decoder is followed by a Multilayer Perceptron (MLP) that outputs,
for each index 1 ≤ i ≤ NP , the predicted path encoding ûi, filling f̂i and visibility v̂i attributes.
Symmetrically to the encoder, the vectors {ûi}NP

1 are decoded by D(1) into the final output path
representations {(Ĉ1

i , · · · , Ĉ
NC
i )}NP

1 . As for D(2), we use learned constant embeddings as input
and a MLP to predict the command and argument logits. Detailed descriptions about the architectures
are given in the appendix.
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3.4 Training Objective

Next, we present the training loss used by our DeepSVG. We first define the loss between a predicted
path (Ŝı̂, f̂ı̂, v̂ı̂) and a ground-truth path (Si, fi, vi) as,

Lı̂,i(θ) = wvis`(vı̂, v̂i) + vi ·

(
wfill`(fı̂, f̂i) +

NC∑
j=1

(
wcmd`(c

j
ı̂ , ĉ

j
i ) + wargs l

j
args,̂ı,i

))
. (3)

Here, ` denotes the Cross-Entropy loss. The impact of each term is controlled by its weight w. The
losses for filling, commands and arguments are masked when the groundtruth path is not visible. The
loss ljargs,̂ı,i over the argument prediction is defined as,

ljargs,̂ı,i = 1cji∈{m,l,c}

(
`(xj2,̂ı, x̂

j
2,i)+`(yj2,̂ı, ŷ

j
2,i)
)

+ 1cji=c

∑
k∈{1,2}

`(qjxk ,̂ı
, q̂jxk,i

)+`(qjyk ,̂ı, q̂
j
yk,i

). (4)

Having formulated the loss for a single path, the next question regards how to this can be used to
achieve a loss on the entire prediction. However, recall that the collection of paths in a vector image
has no natural ordering, raising the question of how to assign ground-truth paths to each prediction.
Formally, a ground-truth assignment π is a permutation π ∈ SNP

, mapping the path index of the
prediction ı̂ to the corresponding ground-truth path index i = π(̂ı). We discuss two alternatives for
solving the ground-truth assignment problem.

Ordered assignment. One strategy is to define the assignment π by sorting the ground-truth paths
according to some specific criterion. This induces an ordering πord, which the network learns to
reproduce. We found defining the ground-truth assignment using the lexicographic order of the
starting location of the paths to yield good results. Given any sorting criterion, the loss is defined as,

L(θ) = wKLKL (pθ(z)‖N (0, I)) +
∑NP

ı̂=1 Lı̂,πord(ı̂)(θ) , (5)
where the first term corresponds to the latent space prior induced by the VAE learning.

Hungarian assignment. We also investigate a strategy that does not require defining a sorting
criterion. For each prediction, we instead find the best possible assignment π in terms of loss,

L(θ) = wKLKL (pθ(z)‖N (0, I)) + min
π∈SNP

∑NP

ı̂=1 Lı̂,π(ı̂)(θ) . (6)

The best permutation is found through the Hungarian algorithm [8, 14].

Training details. We use the AdamW [12] optimizer with initial learning rate 10−4, reduced by a
factor of 0.9 every 5 epochs and a linear warmup period of 500 initial steps. We use a dropout rate of
0.1 in all transformer layers and gradient clipping of 1.0. We train our networks for 100 epochs with
a total batch-size of 120 on two 1080Ti GPUs, which takes about one day.

Figure 5: Comparison of interpolations between one-stage autoregressive (top row, in green), one-
stage feed-forward (2nd row, in pink), ours – Hungarian (3rd row, in orange) and ours – ordered
(bottom row, in blue). Ordered generally leads to the smoothest interpolations. The last two examples
show interpolations where Hungarian yields visually more meaningful shape transitions. For a better
visualization of these transitions, paths are colored according to their index (or order for one-stage
architectures).
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Table 2: Ablation study of our DeepSVG model showing results of the human study (1st rank % and
average rank), and quantitative measurements (RE and IS) on train/test set.

Feed-forward Hierarchical Matching 1st rank % ↑ Average rank ↑ RE ↓ IS ↓
One-stage autoregressive 9.7 3.26 0.102 / 0.170 0.25 / 0.36
One-stage feed-forward X 19.5 2.40 0.007 / 0.014 0.12 / 0.17
Ours – Hungarian X X Hungarian 25.8 2.29 0.011 / 0.017 0.09 / 0.14
Ours – Ordered X X Ordered 44.8 1.99 0.007 / 0.012 0.08 / 0.12

4 Experiments

We validate the performance of our DeepSVG method on the introduced SVG-Icons8 dataset. We
also demonstrate results for glyph generation on the SVG-Fonts [11] dataset. Further experiments are
presented in the supplementary material.

4.1 Ablation study

In order to ablate our model, we first evaluate an autoregressive one-stage architecture by concate-
nating the set of (unpadded) input sequences, sorted using the Ordered criterion 3.4. The number
of paths therefore becomes NP = 1 and only Encoder E(1) and Decoder D(1) are used; filling is
ignored in that case. We analyze the effect of feed-forward prediction, and then our hierarchical
DeepSVG architecture, using either the Ordered or Hungarian assignment loss 3.4.

Human study. We conduct a human study by randomly selecting 100 pairs of SVG icons, and
showing the interpolations generated by the four models to 10 human participants, which rank them
best (1) to worst (4). In Tab. 2 we present the results of this study by reporting the percentage of 1st

rank votes, as well as the average rank for each model. We also show qualitative results in Fig. 5,
here ignoring the filling attribute since it is not supported by one-stage architectures.

Quantitative measures. To further validate the performance of DeepSVG, we conduct a quantitative
evaluation of all the methods. We therefore here propose two vector image generation metrics. We first
define the Chamfer distance between two SVGs: dChfr(V, V̂ ) = 1

NP

∑NP

i=1 minj
∫
t
minτ ‖Pi(t) −

P̂j(τ)‖2dt, where Pi ∈ V is a path as defined in 3.1. The Reconstruction Error (RE) is dChfr(V, V̂ )

where V and V̂ are the ground-truth and reconstruction. The Interpolation Smoothness (IS) is defined
as
∑M
k=1 dChfr(V

αk−1 , V αk), where M is the number of frames, αk = k/M and V α is the predicted
SVG interpolation parametrized by α ∈ [0, 1]. Results on train and test sets are shown in Tab. 2.

Compared to the autoregressive baseline, the use of feed-forward prediction brings substantial
improvement in reconstruction error and interpolation quality, as also confirmed by the qualitative
results. In the human study, our hierarchical architecture with ordered assignment yields superior
results. Although providing notably better reconstruction quality, this version provides much more
stable and meaningful interpolations compared to the other approaches. The Hungarian assignment
achieves notably worse results compared to ordered assignment in average. Note that the latter is
more related to the loss employed for the one-stage baselines, although there acting on a command
level. We hypothesize that the introduction of a sensible ordering during training helps the decoder
learning by providing an explicit prior, which better breaks symmetries and reduces competition
between the predicted paths. Fig. 6 further shows how the latent SVG representation translates to
meaningful decodings by performing interpolation between 4 SVG icons.

Figure 6: Interpolation between multiple icons in the latent space of DeepSVG – Ordered.
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Figure 7: Animating SVG scenes by interpolation. Leftmost and rightmost frames are drawn by a user,
while images in between are interpolations. DeepSVG smoothly interpolates between challenging
path deformations while accurately reconstructing the 1st and last frames. A failure case is shown in
the last row where the deformation of the player’s right leg is not smoothly interpolated.

4.2 Animation by interpolation

As visually demonstrated in the previous subsection, we observe significantly better reconstruction
capability of our model than previous works. This property is crucial for real-world applications
involving SVGs since users should be able to perform various operations on vector graphics while
keeping their original drawings unchanged. With this requirement in mind, we examine if DeepSVG
can be used to animate SVGs. We investigate interpolation as one approach to perform it, in the
setting where a user provides two keyframes and wants to generate frames inbetween using shape
morphing. This process can be repeated iteratively – adding a hand-drawn keyframe at every step –
until a satisfying result is achieved. Fig. 7 shows the results of challenging scenes, after finetuning the
model on both keyframes for about 1,000 steps. Notice how DeepSVG handles well both translations
and deformations.

4.3 Latent space algebra

Figure 8: Global operations on SVG representations using latent
directions. Subtracting/adding ∆square makes an icon look more
round/rectangular, while ∆add adds or removes paths. ∆add is
obtained by removing the last path of an icon, and averaging the
difference over 500 random icons.

Given DeepSVG’s smooth la-
tent space and accurate recon-
struction ability, we next ask
if latent directions may enable
to manipulate SVGs globally in
a semantically meaningful way.
We present two experiments in
Fig. 8. In both cases, we note
∆ the difference between encod-
ings of two similar SVGs dif-
fering by some visual semantics.
We show how this latent direc-
tion can be added or subtracted
to the latent vector z of arbi-
trary SVG icons. More exper-
iments are presented in the ap-
pendix. In particular, we exam-
ine whether DeepSVG’s hierar-
chical construction enables simi-
lar operations to be performed on
single paths instead of globally.
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4.4 Font generation

Our experiments have demonstrated so far reconstruction, interpolation and manipulation of vector
graphics. In this section, we further show the generative capability of our method, by decoding
random vectors sampled from the latent space. We train our models on the SVG-Fonts dataset, for
the task of class-conditioned glyph generation. DeepSVG is extended by adding label embeddings
at every layer of each Transformer block. We compare the generative capability of our final model
with the same baselines as in Sec. 4.1. In addition, we show random samples from SVG-VAE [11].
Results are shown in Fig. 9. Notice how the non-autoregressive settings generate consistently visually
more precise font characters, without having to pick the best example from a larger set nor using
any post-processing. We also note that due to the simplicity of the SVG-Font dataset, no significant
visual improvement from our hierarchical architecture can be observed here. More details on the
architecture and results are shown in the appendix.
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Figure 9: Comparison of samples for font generation. We use the same latent vector z, sampled from
a Gaussian distribution with standard deviation σ = 0.5, and condition on each class label without
careful selection of generated samples nor post-processing.

5 Conclusion

We have demonstrated how our hierarchical network can successfully perform SVG icons interpo-
lations and manipulation. We hope that our architecture will serve as a strong baseline for future
research in this, to date, little-explored field. Interesting applications of our architecture include image
vectorisation, style transfer (Sec. 4.3), classification, animation, or the more general task of XML
generation by extending the two-level hierarchy used in this work. Furthermore, while DeepSVG was
designed specifically for the natural representation of SVGs, our architecture can be used for any task
involving data represented as a set of sequences. We therefore believe it can be used, with minimal
modifications, in a wide variety of tasks, including multi-instrument audio generation, multi-human
motion trajectory generation, etc.

Broader Impact

DeepSVG can be used as animation tool by performing interpolations and other latent space operations
on user-drawn SVGs. Similarly to recent advances in rasterized content creation, we believe this
work will serve as a potential way for creators and digital artists to enhance their creativity and
productivity.
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