Bayesian Attention Modules: Appendix

A Algorithm

Algorithm 1: Bayesian Attention Modules

0,m, ¢ < Initialze parameters, t <— 0, p < anneal rate

repeat
{x:,y,;}2, + Random minibatch of M datapoints (drawn from full dataset)
{ez}ﬁ 1 < Random samples
A = sigmoid(t * p)
Compute gradients 57 Ve,n.¢ > ; L(xi, Y, €) according to Eq. ()
Update 6, 1, ¢ with gradients, t < ¢ + 1

until convergence

return: 6,7, ¢

B Experiment details

B.1 Graph neural networks
B.1.1 Model descriptions

As in Veli¢kovi€ et al. [7]], we apply a two-layer GAT model. We summarize the graph attention layer
here. Denote the input node features as h = {h, ..., Ay }, where N is the number of nodes. Then,
the self-attention weights is defined as:

h exp(LeakyReLU(a"[W"h;|[W"h;]))
o =
Y Y ken, exp(LeakyReLU(a [Whh;|[Whhy]))’
where a”, W" are neural network weights for head h, and j is the set of neighbor nodes for node 1.
|| denotes concatenation.

The output A’ = {h], ..., A’y } is computed as:
I H hxwh
h; = ||}_10 (ZjeM ;W th) .

B.1.2 Detailed experimental settings

We follow the same architectural hyperparameters as in Velickovi¢ et al. [[7]]. The first layer consists
of H = § attention heads computing 8 features each, and the second layer has a single head attention
following an exponential linear unit (ELU) [67] nonlinearity. Then softmax is applied to obtain
probabilities. During training, we apply L2 regularization with A = 0.0005. Furthermore, dropout
[41] with p = 0.6 is applied to both layers’ inputs, as well as to the normalized attention coefficients.
Pubmed requires slight changes for hyperparameter: the second layer has H = 8 attention heads, and
the L2 regularization weight is A = 0.001. Models are initialized using Glorot initialization [68] and
trained with cross-entropy loss using the Adam SGD optimizer [69] with an initial learning rate of
0.01 for Pubmed, and 0.005 for all other datasets. In both cases we use an early stopping strategy
on both the cross-entropy loss and accuracy on the validation nodes, with a patience of 100 epochs.
Here, we summarize the hyperparameters for BAM, including anneal rate p (as in Algorithm[I]), oy
and o for prior Lognormal and posterior Lognormal respectively, k& for Weibull distribution, «, 3 for
Gamma distribution, hidden dimension for contextual prior dy,;,q. On Pubmed, we use anneal rate
p = 0.2 for all methods. For BAM-LF, o1 = 1E6, 052 = 1E-2. For BAM-LC, 01 = 1E5, 05 = 1E-2,
and dy,g = 5. For BAM-WEF, k = 10, § = 1E-8, o = 1E-4. For BAM-WC, k = 10, $ = 1E-4, and
dmig = 5. On Cora, for BAM-LF, 01 = 1E15, 05 = 1E-6, and p = 0.2. For BAM-LC, ¢; = 1E15,
oy = 1E-15, p = 0.1, and dpig = 1. For BAM-WE, k =1, 8 = 1E-10, « = 1E-15, and p = 0.2.
For BAM-WC, k =1, 8 = 1E-10, p = 0.1, and dp;g = 1. On Citeseer, we use anneal rate 0.1 for
all methods. for BAM-LF, o1 = 1E15 and 05 = 1E-6. For BAM-LC, 0y = 1E15, 05 = 1E-5, and
dmia = 1. For BAM-WE, k = 100, 8 = 1E-15, and o = 1E-7. For BAM-WC, k = 100, § = 1E-15,
and dmid =1.

16

Table 6: Basic statistics on datasets for node classification on graphs.
CorA CITESEER PUBMED

#NODES 2708 3327 19717
#EDGES 5429 4732 44338
#FEATURES/NODE 1433 3703 500
#CLASSES 7 6 3
#TRAINING NODES 140 120 60
#VALIDATION NODES 500 500 500
#TEST NODES 1000 1000 1000

B.2 Visual question answering
B.2.1 Uncertainty evaluation via PAvPU

We adopt hypothesis testing to quantify the uncertainty of a model’s prediction. Consider M posterior
samples of predictive probabilities {p,, }}/_,, where p,, is a vector with the same dimension as the
number of classes. To quantify how confident our model is about its prediction, we evaluate whether
the difference between the probabilities of the first and second highest classes (in terms of posterior
means) is statistically significant with two-sample ¢-test.

With the output p-values and a given threshold, we can determine whether a model is certain about its
prediction. Then, we evaluate the uncertain using the Patch Accuracy vs Patch Uncertainty metric
[46] which is defined as PAVPU = (ngc + niw)/(Rac + Nau + Mic + Miwn), Where nge, Mg, Nic, Niu
are the numbers of accurate and certain, accurate and uncertain, inaccurate and certain, inaccurate
and uncertain samples, respectively. Since for VQA, each sample has multiple annotations, the
accuracy for each answer can be a number between 0 and 1 and it is defined as Acc(ans) =
min{(#human that said ans)/3,1}. Then we generalize the PAvPU for VQA task accordingly:

Nge = ZAcciCeri, Niy = Z(l — Acc;)(1 — Cer;),

Ny = ZAcci(l — Cer;), N = Z(l — Acc;)(Cer;),

3

where for the ith prediction Acc; is the accuracy and Cer; € {0, 1} is the certainty indicator.

B.2.2 Model descriptions

We use the state-of-the-art VQA model, MCAN [[11]], to conduct experiments. The basic component
of MCAN is Modular Co-Attention (MCA) layer. The MCA layer is a modular composition of two
basic attention units: the self-attention (SA) unit and the guided-attention (GA) unit, where the SA
unit focuses on intra-modal interactions and GA unit focuses on inter-modal interactions. Both units
follow the multi-head structure as in Vaswani et al. [2], including the residual and layer normalization
components. The only difference is that in GA, the queries come from a different modality (images)
than the keys and values (questions). By stacking MCA layers, MCAN enables deep interactions
between the question and image features. We adopt the encoder-decoder structure in MCAN [[11]
with six co-attention layers.

B.2.3 Detailed experimental settings

We conduct experiments on the VQA-v2 dataset, which is split into the training (80k images and
444k QA pairs), validation (40k images and 214k QA pairs), and testing (80k images and 448k QA
pairs) sets. The evaluation is conducted on the validation set as the true labels for the test set are
not publicly available [29], which we need for uncertainty evaluation. For the noisy dataset, we add
Gaussian noise (mean 0, variance 5) to image features. We follow the hyperparameters and other
settings from Yu et al. [11]]: the dimensionality of input image features, input question features, and
fused multi-modal features are set to be 2048, 512, and 1024, respectively. The latent dimensionality
in the multi-head attention is 512, the number of heads is set to 8, and the latent dimensionality for
each head is 64. The dropout rate is 0.1. The size of the answer vocabulary is set to N = 3129 using
the strategy in Teney et al. [70]]. To train the MCAN model, we use the Adam optimizer [69] with
B1 = 0.9 and B2 = 0.98. The learning rate is set to min(2.5¢tE-5, 1E-4), where ¢ is the current epoch

17

number starting from 1. After 10 epochs, the learning rate is decayed by 1/5 every 2 epochs. All
the models are trained up to 13 epochs with the same batch size of 64. To tune the hyperparameters
in BAM, we randomly hold out 20% of the training set for validation. After tuning, we train on
the whole training set and evaluate on the validation set. For BAM-LF, o; = 1E9, 05 = 1E-9, and
p = 0.2. For BAM-LC, o1 = 1E9, 05 = 1E-9, p = 0.2, and dp,q = 20. For BAM-WF, k£ = 1000,
8 =1E-2, a = 1E-3, and p = 0.2. For BAM-WC, k = 1000, 8 = 1E-6, p = 0.1, and dpq = 20.

B.2.4 More results

—=>
Question: What animal is next to the giraffe? Question: I_/Vhat number is on the
Annotation set: {‘wildebeest' ‘horse’, 'cow’, batter’s shirt?

Question: Is there mustard on
the hot dog?
Annotation set: {'yes’, 'yes’, 'yes’,

‘antelope’, ‘gazelle’, ‘tapir', ‘antelope’, Annotation set: {25, '25', '25, ‘25, ves', 'yes', 'yes’ yes' ‘yes' 'ves’
‘mountain lion’, ‘antelope’, ‘horse’} '25', '25', 2525 ‘25, '25’} .yes.’} !

Soft answer: deer, p-value: 0.01 Soft answer: 15, p-value: 0.0 Soft answer: yes, p-value: 0.48
BAM-WC answer: cow, p-value: 0.35 BAM-WC answer: 25, p-value: 0.0 BAM-WC answer: yes, p-value: 0.0

Figure 2: VQA visualization: we present three image-question pairs along with human annotations. We show
the predictions and uncertainty estimates of different methods. We evaluate methods based on their answers
and p-values and highlight the better answer in bold (most preferred to least preferred: correct certain > correct
uncertain > incorrect uncertain > incorrect certain).

Table 7: Performance comparison of different attention modules on visual question answering.

Accuracy

Attention Original Data Noisy Data

ALL Y/N/NUM /OTHER ALL Y/N/NUM /OTHER
Soft 66.95 84.55/48.92/58.33 61.25 80.58/40.80/51.97
BAM-LF 66.89 84.46/49.11/58.24 61.43 80.95/41.51/51.85
BAM-LC 6693 84.58/49.05/58.24 61.58 80.70/41.31/52.40
BAM-WF 66.93 84.55/48.84/58.32 61.60 81.02/41.84/52.05
BAM-WC 67.02 84.66/48.88/58.42 62.89 81.94/41.90/53.96

Uncertainty

Attention Original Data Noisy Data

ALL Y/N/NUM/OTHER ALL Y/N/NUM/OTHER
Soft 70.04 83.02/56.81/63.66 65.34 78.84/49.80/59.18
BAM-LF 69.92 82.79/56.87/63.58 6548 79.13/50.19/59.16
BAM-LC 70.14 83.02/57.40/63.71 65.60 78.85/49.87/59.70
BAM-WF 70.09 83.00/56.85/63.78 65.62 79.16/50.22/59.40
BAM-WC 71.21 83.95/58.12/63.82 66.75 80.21/51.38/60.58

B.3 Image captioning
B.3.1 Model descriptions

We conduct experiments on an attention-based model for image captioning, Att2in, in Rennie et al.
[1Q]. This model uses RNN as its decoder, and at each step of decoding, image features are aggregated
using attention weights computed by aligning RNN states with the image features. Formally, suppose
I, ..., Iy are image features, h;_1 is the hidden state of RNN at step ¢t — 1. Then, the attention weights
at step t are computed by: oy = softmax(a;+b,), and ai = Wtanh(W,rI; +Wopnhs_1+b,), where
W, Wear, Wan, ba, b, are all neural network weights. Aggregated image feature I, = Zf\;l atll;

18

would then be injected into the computation of the next hidden state of RNN h; (see details in Rennie
et al. [10]).

B.3.2 Detailed experimental settings

We use the code from https://github.com/ruotianluo/self-critical.pytorch and con-
duct our experiments on the MS COCO dataset [44] that consists of 123,287 images. Each image has
at least five captions. We use the standard data split from Karpathy and Fei-Fei [71], with 113,287
training, 5000 validation, and 5000 testing images. The vocabulary size V' is 9488 and the max
caption length 7" is 16. We replace the ResNet-encoded features in Rennie et al. [[10] with bounding
box features extracted from a pre-trained Faster-RCNN [48] as visual features. Following the original
setting in the code base, we use batch size 10, Adam optimizer with learning rate 5E-4, dropout rate
of 0.5 and train 30 epochs. During training, we use MLE loss only without scheduled sampling or
RL loss. For testing, we use greedy search to generate sequences. For BAM, we use contextual prior
with dpig = 10 and p = 1. For BAM-WC, k = 10, 8 = 1E-6. For BAM-LC, o1 = 1E3,05 = 0.1.

B.4 Neural Machine Translation
B.4.1 Model descriptions

To make comparision with Deng et al. [29], we adopt the LSTM-based machine translation model in
that paper. The model uses a bidirectional LSTM to encode a source sentence to source representations
1, ...,xp. At the step j of decoding, current LSTM state & (a function of previous target words
Y1:5—1) is used as query. The attention weights is computed from an MLP between the query
and encoded source token representations. Then the aggregated feature is used to produce the
distribution over the next target work y; (see details in Deng et al. [29] or see code in https:
//github.com/harvardnlp/var-attn).

B.4.2 Detailed experimental settings

We use the same dataset, IWSLT [72], as Deng et al. [29]]. We preprocess the data in the same way:
using Byte Pair Encoding over the combined source/target training set to obtain a vocabulary size of
14,000 tokens [73]]. We train on the sequence length up to 125. We use a two-layer bi-dreictional
LSTM with 512 units and 768 units for the encoder and decoder, respectively. In addition, the batch
size is 6, dropout rate is 0.3, learning rate is 3E-4 (Adam optimizer). For testing, we use beam search
with beam size 10 and length penalty 1 [[74]. For BAM-WC, k =5, § = 1E-6, p = 1, and diig = 5.

Table 8: Step time (sec) and number of parameters of variational attention [26] and BAM on NMT.

s/step params

VA-Enum 0.12 64M
VA-Sample 0.15 64M
BAM-WC 0.10 42M

B.5 Pretrained language models
B.5.1 Model descriptions

BERT [3]] is a state-of-the-art deep bidirectional transformer[2l] model pretrained on large corpora
to extract contextual word representations. ALBERT [4]] improves upon BERT in terms of latency
efficiency and performance by using (a) factorized embedding parameterization, (b) cross-layer
parameter sharing, and (c) a sentence-order prediction (SOP) loss. Our experiment is done on
the ALBERT-base model, which includes 12 attention layers, each of hidden dimension 768. The
embedding dimension for factorized embedding is 128. While BERT-base involves 108 M parameters,
ALBERT-base only has 12M parameters.

B.5.2 Detailed experimental settings

Our experiment includes both the General Language Understanding Evaluation (GLUE) and Stanford
Question Answering (SQuAD) Datasets. We evaluate on 8 tasks from GLUE including Corpus

19

https://github.com/ruotianluo/self-critical.pytorch
https://github.com/harvardnlp/var-attn
https://github.com/harvardnlp/var-attn

of Linguistic Acceptability (CoLA; [75]), Stanford Sentiment Treebank (SST; [[76]), Microsoft
Research Paraphrase Corpus (MRPC; [77]), Semantic Textual Similarity Benchmark (STS;[78]),
Quora Question Pairs (QQP; [79]), Multi-Genre NLI (MNLI; [80]]), Question NLI (QNLI; [60])), and
Recognizing Textual Entailment (RTE; [81]). We evaluate on both SQUAD v1.1 and SQuAD v2.0.
Our code is built on Wolf et al. [62]], which can be found at https://github.com/huggingface/
transformers, We follow the training settings as in Lan et al. [4] and summarize them in Table[9]
We also include the hyperparameter setting for BAM-WC. We note, as the model is already pretrained
so we do not anneal KL term. We pick 5 = 1E-2 and dg;,, = 5 for all experiments, as we found the
performance is not sensitive to them. We include the % in Table[9]

Table 9: Experiment setting for pretrained language model (LR: learning rate, BSZ: batch size, DR:
dropout rate, TS: training steps, WS: warmping steps, MSL: maximum sentence length).

LR BSZ ALBERT DR CLASSIFIER DR TS WS MSL k

CoLA 1.00 E-05 16 0 0.1 5336 320 512 10

STS 2.00 E-05 16 0 0.1 3598 214 512 20
SST-2 1.00 E-05 32 0 0.1 20935 1256 512 1000

MNLI 3.00 E-05 128 0 0.1 10000 1000 512 5
QNLI 1.00 E-05 32 0 0.1 33112 1986 512 500
QQpP 5.00 E-05 128 0.1 0.1 14000 1000 512 1000
RTE 3.00 E-05 32 0.1 0.1 800 200 512 1000
MRPC 2.00 E-05 32 0 0.1 800 200 512 100
SQUAD V1.1 5.00 E-05 48 0 0.1 3649 365 384 10
SQUAD v 2.0 3.00E-05 48 0 0.1 8144 814 512 2000

20

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

	Algorithm
	Experiment details
	Graph neural networks
	Model descriptions
	Detailed experimental settings

	Visual question answering
	Uncertainty evaluation via PAvPU
	Model descriptions
	Detailed experimental settings
	More results

	Image captioning
	Model descriptions
	Detailed experimental settings

	Neural Machine Translation
	Model descriptions
	Detailed experimental settings

	Pretrained language models
	Model descriptions
	Detailed experimental settings

