
First, we would like to thank all the reviewers for their valuable feedback. We sincerely believe that the document was1

substantially improved by taking their comments into consideration. Due to space limitations, we now address the main2

remarks regarding motivation, context, theoretical results and experimental setup.3

Motivations. In the camera-ready version, we will extend the introduction to include more information on the4

motivations of this work. More precisely, probabilistic bounds (i.e., on quantiles) provide three advantages over in-5

expectation bounds: (1) First, they allow to consider heavy-tailed noise distributions with infinite/undefined expectation.6

This setting was recently shown (Zhang et al., 2020 ; Şimşekli et al., 2020) to appear when training NLP models such as7

BERT over large corpora, and vision models such as AlexNet on Cifar10. (2) As a result, SGD may present instabilities8

that are often solved by running the optimization multiple times (a technique refered to as multi-start). Our analysis9

in probability explains why such a method works by showing that at least 1 out of X runs of SGD will exhibit good10

convergence and not be disrupted by extreme noise. (3) Finally, our work provides a simple and unified analysis under11

a large class of noise assumptions. We believe that its generality and simplicity could be useful for subsequent research.12

Context and previous work. The additional ninth page of the camera-ready version will be used to provide a more13

extensive discussion of previous work and how our analysis differs from these works. More specifically, we will14

provide optimal convergence rates for the gradient norm ‖∇f(xt)‖ ≤ ε for non-convex and smooth optimization15

(O(ε−2), Carmon et al., 2019) and stochastic optimization (Õ(ε−2) up to polylogarithmic factors, Foster et. al, 2019),16

as well as the standard (and suboptimal) rate for SGD (O(ε−4), e.g. [20]) when the variance is bounded. We will17

also provide details on the methods to obtain fast convergence in the stochastic setting: SVRG (Reddi et al., 2016),18

SCSG (Lei et al., 2017), SGD4 (Allen-Zhu, 2018), NEON2 (Allen-Zhu and Li, 2018), along with their convergence19

rates. We will also mention the existence of algorithms with convergence guarantees to a local minimum instead of a20

stationary point (Allen-Zhu and Li, 2018 ; Fang et al., 2019). Our analysis allows to extend SGD convergence rates to21

heavy-tailed distributions, as well as quantiles instead of expectations (the motivation for both is discussed in the above22

paragraph). In particular, we extend the work [20] that also covers the sub-exponential and in-expectation cases, but not23

the heavy-tailed setting (note that Assumption A2 in [20] is equivalent to µ1/σ2(‖Xt‖2) ≤ σ2). We thank the reviewers24

for pointing out this weakness in our submission.25

Bound on the minimum instead of current iterate. As pointed out by Rev. 1, obtaining tight convergence rates for26

the iterates ‖∇f(xt)‖2 is hard, and most non-convex analyses focus on their minimum or average over time. However,27

we do agree that the iterate with minimum gradient norm can be hard to find in practice, and we have thus decided to28

extend all our results to the average 1
t

∑
i≤t ‖∇f(xt)‖2. This extension is direct given our proofs and is a step towards29

bounds on the current iterate. We will also mention in a remark that all results imply convergence of the minimum.30

Experiments. As pointed out by most reviewers, the experiments were not sufficiently conclusive, and potentially31

misleading. We have thus decided to replace them by more extensive experiments on a single ML application: ridge32

regression with a heavy-tail (Student’s t) noise distribution of tail-index b = 1.5. The experiments were run 1000 times33

in order to better approximate expectations, quantiles, and biased expectations. Figure 1 shows several aspects of the34

experiments: (1) The expectation of 1
t

∑
i≤t ‖∇f(xi)‖2 reaches extremely large values (infinite in theory) compared to35

quantiles. (2) The choice of ηt ∝ t−1/b leads to the t(b−1)/b convergence rate of Theorem 5. (3) Standard step-sizes36

ηt ∝ t−1/2 and ηt ∝ 1 (and independent of the desired precision ε) lead to suboptimal convergence rates, indicating37

that the choice ηt ∝ t−1/b may be valuable for practitioners when the noise distribution is particularly fat-tailed. (4)38

Biased expectations µ−s(
1
t

∑
i≤t ‖∇f(xi)‖2) are well aligned with theory (s(b−2)/2 in Eq. 13).39

Additional remarks. (1) s = 0 will be carefully replaced by the notation s→ 0. (2) Far from a stationary point, SGD40

indeed converges in O(1/
√
t) for ‖∇f(xt)‖ (see for example [20, Corollary 2.2] that exhibits the exact same behavior).41
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(a) Mean and 50%-quantiles of 1
t

∑
i≤t ‖∇f(xi)‖2.
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(b) Biased expectation µ−s(
1
t

∑
i≤t ‖∇f(xi)‖2).

Figure 1: SGD on a ridge regression problem with heavy-tail (Student’s t) distribution of tail-index b = 1.5.


