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Abstract

This work proposes a novel analysis of stochastic gradient descent (SGD) for
non-convex and smooth optimization. Our analysis sheds light on the impact of the
probability distribution of the gradient noise on the convergence rate of the norm
of the gradient. In the case of sub-Gaussian and centered noise, we prove that, with
probability 1 — J, the number of iterations to reach a precision ¢ for the squared
gradient norm is O(¢~21n(1/4)). In the case of centered and integrable heavy-
tailed noise, we show that, while the expectation of the iterates may be infinite,
the squared gradient norm still converges with probability 1 — § in O(P§~9)
iterations, where p, ¢ > 2. This result shows that heavy-tailed noise on the gradient
slows down the convergence of SGD without preventing it, proving that SGD is
robust to gradient noise with unbounded variance, a setting of interest for Deep
Learning. In addition, it indicates that choosing a step size proportional to 7~/
where b is the tail-parameter of the noise and 7" is the number of iterations leads to
the best convergence rates. Both results are simple corollaries of a unified analysis
using the novel concept of biased expectations, a simple and intuitive mathematical
tool to obtain concentration inequalities. Using this concept, we propose a new
quantity to measure the amount of noise added to the gradient, and discuss its value
in multiple scenarios.

1 Introduction

Stochastic Gradient Descent (SGD) and its variants (Adam [[L], RMSProp [2], or Nesterov’s accel-
erated gradient descent [3]]) are used in a wide variety of tasks to train Machine Learning models.
Indeed, the scalability of many learning algorithms, such as support vector machines [4], logistic
regression [3]], Lasso [6]] and more recently deep neural networks [[7] essentially rely on the efficiency
(and robustness) of stochastic optimization methods. However, one specificity of SGD is its inherent
noise which originates either from the sampling of training points, the presence of noise in the
gradients computation, or the shape of the target function [8}[9,[10]. While SGD is known to be robust
in practice and its convergence behavior is well-understood in the convex setting [[11} 12} 3} [13]], many
of its properties are not yet fully understood, and particularly in settings related to Deep Learning
practice where gradients can be extremely noisy and the target function presents many local optima.
In particular, settings with unbounded variance noise were recently shown to appear [14} [15] when
training NLP models such as BERT [[16] over large corpora, and vision models such as AlexNet
[L7] on Cifarl0. As a result, SGD may present instabilities that are often solved by running the
optimization multiple times, a technique refered to as multi-start. Recently, several authors explored
these frameworks by adapting the tools developed in convex analysis to the non-convex setting in
order to explain these phenomena [[15} 18, {19} 120} 21} 22| 23] |24} 25]]. However, none of these works
proposed a unified framework able to handle both bounded and heavy-tailed noises.

This paper aims at filling this gap by providing a novel unified analysis of the convergence of SGD
in a non-convex and noisy setting. With regards to the above mentioned works, our contribution is
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threefold. First, we introduce a novel mathematical tool: biased expectation which allows to derive
many results in stochastic analysis. Second, we show how to use this tool in the context of stochastic
non-convex optimization to handle a large panel of noise assumptions. Third, the probabilistic bounds
we obtain for SGD (i.e., on quantiles) provide novel insights over the previously known in-expectation
bounds as they allow to consider heavy-tailed noise distributions with infinite variance, explaining
why multi-start methods work by showing that a small number of runs of SGD will exhibit good
convergence and not be disrupted by extreme noise.

The rest of the paper is organized as follows. In Section 2, we introduce the biased expectation and its
main properties. In Section 3, we introduce the optimization framework of the analysis and present
our main result. In Section 4, we explicit the convergence rates for various noise assumptions. Finally,
the results obtained in the paper are illustrated in an empirical assessment in Section 5. All proofs
can be found in the Supplementary Material provided as a separate document.

Related work. Lower and upper bounds for first-order optimization in convex settings have been
well-studied and understood in the literature (see, e.g., [11 1213 [13]). Here, we focus on the results
related to non-convex settings, and more specifically on the complexity of finding an e-stationnary
point (i.e. a point z; such that E[||V f(x;)||?] < €). First, several universal lower bounds have been
provided for the convergence of any first-order algorithm [26} 27]. For smooth and noiseless setting,
[26] established that (s 1) gradient evaluations are necessary for finding e-stationary points; and
showed that this rate is achieved by gradient descent. For smooth and bounded variance noise, [27]]
went on showing that £2(¢~2) noisy gradient evaluations are required to reach an e-stationnary point,
proving as a byproduct that the SGD is optimal with this worst case metric. With regards to the
performance of SGD, [23] established an O(e~2) upper bound for the smooth, bounded variance
and light-tail noise setting. Moreover, [28] went on showing that SGD itself cannot obtain a rate
better than Q(¢~2) in this noise setting, even for convex functions. For the smooth and heavy-tailed
noise setting, [22]] reports a complexity of O(e~%/(*=1)) where b > 1 denotes the tail-index for SGD
using a slightly different Holder-smoothness assumption. With regards to these works, our analysis
allows to recover the standard results of SGD (Theorems [IT|and[T4) while extending the convergence
rates to heavy-tailed noise (Theorem [I7)) using a single and unified analysis. In addition, we obtain
novel results for biased noise (Theorem [I2) as well as more generic bounds on quantiles instead
of in-expectations (Theorems [I4] and [T2)), explaining the convergence of multi-start strategies as
well as the case of infinite variance noise. Finally, it is also worth mentioning that a recent line of
works have been devoted to the design of algorithms that improve the convergence rate of SGD for
non-convex problems using additional assumptions (we refer to [18]] for a review). For instance, [29]]
used variance reduction techniques for the finite-sum problem allowing them to derive a convergence
rate of order O(¢~!) when all the component of the sum have bounded gradient and subsequent
algorithms [30} 31}, 132]] have been provided to achieve a rate of order 0(5_3/ 2).

Notations. Forall z = (1, ...,24) € R, we denote by ||z|2 = 32, 22 the standard squared

£o-norm. A real-valued random variable X is said to have a right (resp. left) heavy-tailed distribution
if its moment generating function E [eSX ] is infinite for any s > 0 (resp. s < 0). We will denote as
heavy-tailed distribution a distribution that is either right or left heavy-tailed. More precisely, we
will say that X follows a far-tailed distribution of tail-index « > 0if P (| X| > x) = O(z~%). We
will denote as sub-exponential a distribution that is not heavy-tailed (i.e., whose tail distribution is at
most exponential), and will use the following standard definition: a real-valued random variable X is
(02, b)-sub-exponential if, for all |s| < 1/b,InE [e*(X~#)] < @, where p = E [X] and we recall
that a (02, 0)-sub-exponential random variable is also called o2-sub-Gaussian. Last, the notation

a.s. stands for almost surely, r.v. for random variable and we respectively denote by U, N, B and &
the standard uniform, normal, Bernoulli and exponential distributions.

2 Biased expectations: a simple operator to derive concentration inequalities

In this section, we introduce a simple yet effective mathematical tool to obtain concentration inequali-
ties: biased expectations. This concept is an extension of the expectation of a random variable that
allows for sharp concentration inequalities while retaining most of its mathematical properties. Its
definition relies on distortion functions to bias the expectation: Vs,xz € R, let ¢ (x) = % if
s # 0,and ¢o(z) = z (see Figure[l). All distortion functions are non-decreasing, and (s, z) — ¢,(z)
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Figure 1: Distortion ¢, for different parameters. Figure 2: Biased exp. for standard distributions.

is continuous. Moreover, ¢, matches the identity function for s = 0, and gradually bends to give
more weight to higher (resp. lower) values for s > 0 (resp. s < 0). The intuition behind biased
expectations is to distort the random variable X using ¢ before taking its expectation.

Definition 1 (Biased expectation). Let X be a real-valued random variable, and Ix = {s €
R | ¢5(X) is integrable}. Then, for any s € Ix, we denote as biased expectation of X the quantity

MS(X):(bs_l (E[¢S(X)]) : (1

First, note that the domain of definition Ix is necessarily an interval, by application of dominated
convergence, and [ x contains 0 if and only if X is integrable. Moreover, a simple rewriting indicates
that 15(X) = 1InE [e**]. Hence, this quantity is tightly connected to the moment generating
function M,(X) = E [¢**] and the cumulant generating function r,(X) = InE [e*¥]. It is thus
very natural for this quantity to allow for sharp concentration results on the underlying random
variable X. Moreover, when X is integrable, one can recover the expectation using po(X) = E [X].
While other distortion types would be possible, we underline that the choice of the exponential for ¢
allows an important characteristic of the expectation to be preserved, as shown in the next results.

Proposition 2 (Sum of independent variables). Let X and Y be two independent real-valued random
variables. Then, for any s € Ix N Iy, we have that ps(X +Y) = ps(X) + ps(Y).

This proposition allows to separate a deterministic error from its random variation, as well as two
independent sources of error. It is thus useful for proving convergence rates (see e.g. the proof of
Theorem 1 in the Supplementary Material). Moreover, for positive values of s > 0, an alternative
formulation of biased expectations using L,-norms (i.e., || Y|, = E [|Y\p]1/ P) provides insights into
the properties of the operator: j1,(X) = In||eX||,. As a consequence, biased expectations interpolate
between the minimum and the maximum of a random variable, as shown in the following result.

Proposition 3. Let X be a random variable and 15(X) its biased expectation. Then, the function
s+ ps(X) is continuous and non-decreasing on Ix, and

1. If Ix is left-unbounded, then lim,_, _, ps(X) = essinf X,
2. If Ix is right-unbounded, then lim,_, o ps(X) = esssup X,
3. If X is integrable, then puo(X) = E[X],

where essinf X = sup{b € R : P(X <b) =0} (resp. esssupX =inf{beR : P(X >b) =
0}) is the essential infimum (resp. essential supremum) of X.

Thus, biased expectations play a role similar to that of quantiles in the sense that they give an overall
understanding of the whole probability distribution. As an example, Figure 2] shows the values
of the biased expectations for four different random variables: Bernoulli (X ~ B(p)), Gaussian
(X ~ N(u,0?)), exponential (X ~ &(\)) and Lévy (X ~ Lévy(0,1)). Interestingly, Bernoulli
r.v. have bounded biased expectations ps(X) € [0, 1], Gaussian r.v. have linear biased expectations
s (X)) = p+ %25, exponential r.v. have positive biased expectations that diverge when s — A~ and



for Lévy r.v., the biased expectations diverge when s — 0~ with rate y,(X) = O(|s|~'/2). Before
presenting our last characteristic, we further argue that conditioning with unbiased expectations is
extremely easy, and the law of total expectation holds true.

Proposition 4 (Law of total expectations). Let X be a random variable and F be a sub-c-algebra of
the probability space of X. Then, denoting by s(X|F) = ¢ InE [¢s(X)|F] the biased expectation
of X conditioned by F, the law of total expectations hold:

/Ls(/LS(Xw:)) :,US(X)' )

Similarly, if Y is a second random variable, then 1is(11s(X|Y)) = ps(X).

Finally, a key characteristic of biased expectations is that they are strongly linked to concentration
inequalities, and upper bounding them will automatically imply bounds with high probability.

Proposition 5 (Concentration inequalities). Let X be a real-valued random variable. Then, for all
z,s > 0and s € Ix, we have that

P(X > ps(X)+x) <e ™. 3)
Moreover, if X > 0 almost surely, then (—c0,0) C Ix and, for all s > 0,

<LEsT L x. @)

P(X > x) .

While Eq. (3) is a rewriting of the Chernoff bound, Eq. #) provides an improvement over the standard
Markov inequality which can be rewritten as P (X > x) < lim,_,o- pus(X)/z. As we will see in the
sequel, this improvement is particularly useful in the case of heavy-tailed distributions for which
E [X] is infinite, but not ps(X) for a negative parameter s < 0 (see, e.g., the Lévy distribution in

Figure [2).
The potential applications of this generic concept of biased expectations extend well beyond our

current topic of interest, and a more detailed analysis of its mathematical properties and applications
will be available in a follow-up paper. We now focus on its applications in stochastic optimization.

3 Theoretical analysis of stochastic gradient descent

In this section, we present the optimization framework considered in the analysis as well as the main
result of the paper presented in its generic form over unbiased expectations.

Setup. Let d > 1 be an integer and f : R? — R a real-valued function. We are interested in
analyzing the following optimization problem

min f(z) 5)
where the objective function f is assumed to S-smooth (i.e., its gradient is $-Lipschitz) and bounded
from below, but possibly non-convex. More precisely, we focus on stochastic gradient descent (SGD),
a simple yet efficient optimization algorithm widely used in the Machine Learning community to
minimize the training loss, and more specifically for the training of neural networks. We consider here
the standard noisy framework, where at each iteration, the optimization algorithm can access a noisy
estimation Gy = V f(x;) + X, of the gradient of the objective function, where X; is the noise of the
approximate gradient. The generic structure of the algorithm is displayed in Alg.[I]} For instance,
this optimization structure is of particular interest when the objective function f(x) = E [F(z, )] is
an expectation over a random variable ¢ representing individual samples of the dataset (e.g. images
for object recognition) and an optimization algorithm can access the gradient Gy = VF(z, ;) for
a single data sample §;, or a mini-batch estimation of the whole gradient G; = % Yo VF(z,&)
for some m > 1. In both cases, the partial gradient GG; can be interpreted as an approximation of
the true gradient of the objective V f(z;) and the size of its noise X; = G — f(x¢) will impact the
convergence rate of the algorithm. To derive an analysis of the SGD, we thus need to introduce our
set of assumptions over the noise. Moreover, we will denote as A = f(zg) — min,cgs f(z) the
difference between the initial and minimum function value in the remainder for clarity reasons.

Our main assumption uses biased expectations to bound the distance between the true gradient
V f(z;) and its approximate G used at each iteration of Alg.|l} To account for biased as well as
unbiased noise types, we decompose the error into two terms.



Algorithm 1 Stochastic gradient descent (SGD)

Input: iterations 7', gradient step 7, initial state xq
Output: optimizer x7
1: fort =0to7 — 1do
2:  Compute Gy, the noisy approximation of V f ()
3: Ti4+1 = Tt — nGt
4: end for
5: return z

Assumption 6 (Biased variance). Let (F;):>0 be the filtration associated to the sequence of iterates
(x¢)i>0 of A]g.m For all s € R, there exists o5 € Ry U {400} such that, for any ¢ > 0,

s (12 | 5) < 02 ()

The variance term o2 directly accounts for the size of the noise. The second assumption we introduce
is needed to account for its projection along the gradient, and ensure that most iterations of SGD
move towards the minimum. Due to the added complexity of the heavy-tailed setting, we further
decompose this term in two cases: positive and negative values of the parameter s.

Assumption 7 (Biased mean). Let (F;);> be the filtration associated to the sequence of iterates
(x¢)¢>0 of Alg. 1] For all s > 0, there exists ms € R4 U {400} such that, for any ¢ > 0,

o (= (X0, V(@) | F2) < ms, ™
and for all s < 0, there exists ms € Ry U {400} such that, for any ¢ > 0,

B [ (X, V(e X 0 | 5]
E [esHXtH2 | fft}

< ms - ®)

Both terms in Assumption [/| ensure that approximate gradients are positively aligned with true
gradients. While Eq. (7) biases the expectation towards high values of —(Xy, V f(z)), Eq. (8) biases
the expectation towards low values of || X;||2. Note also that, when the noise is integrable, both terms
tend to E [— (X, Vf(z:)) | Ft] as s — 0, and will thus tend to 0 for centered noise distributions.
Equipped with these assumptions, we are now ready to cast our main result which relates the biased
expectation of the minimum gradient norm to the biased variance and biased mean.

Theorem 8 (Main result). Fix any n € (0,1/8] and consider that Assumption@and Assumption[7]
hold true. Then, the biased expectation of the squared gradient norm averaged over T iterations of
Alg.[1)is upper-bounded as follows:

1= ) 24 )
ts | 7 Z IV f(z)]]” ) < T +2(1 = Bn)my + Bnoy ©)
t=0
where u = % and v = M% ifs>0,andu=v= % otherwise.

In other words, the distribution of the minimum gradient norm recorded after T iterations is upper-
bounded by the amount of noise on the gradient through its biased variance o2 and biased mean 77,,.
Note that, when s = o(T'), both parameters u and v tend to zero, and only the behavior of the biased
expectations o2 and m, around s = 0 will play a role in the analysis. Moreover, when the noise is
unbiased and integrable, we have m, = 0 and the second term in Eq. (9) will also tend to 0 allowing
for the convergence of the minimum gradient norm. We will now investigate how these assumptions
lead to concentration results for a large panel of noise distributions.

Remark 9 (Varying step-size). Before presenting the next results, we stress that a direct generalization
of the proof of Theorem allows for varying gradient step 7, as well as varying noise terms mz,t
and ait. However, all the results presented below only consider fixed parameters for clarity purpose.
Remark 10 (Bound on the minimum). Last, we point out that the results presented in the next sections
remain valid on the minimum gradient norm, as min; <7 ||V f(x¢)[|? < (1/T) - ZtT:_Ol IV f(x)])%



4 Application to different noise types

In this section, we show how to derive convergence rates from Theorem §]in several noise settings:
unbiased with a bounded variance, deterministic, Gaussian and heavy-tailed.

4.1 Convergence in expectation for centered noise with a bounded variance

As discussed in Section 2| we have that E [X] = po(X) for any integrable random variable X.
Hence, one can directly recover convergence rates for the expectation of the averaged gradient norm
by taking s = 0 in Theorem 8| More precisely, considering unbiased noises (mg = 0) with finite
variance (oo = E [[|X;|? | F.]), we obtain the following result for an optimal choice of the step 7).

Theorem 11. Assume that E [X;|F,] = 0 and var(X;|F;) < o*for all t < T. Then, the expectation

of the squared gradient norm averaged over T iterations of Alg. with 7 = min {, / %, %} is
bounded by

1= | 4pa 8BA02
T;IIW(@H]S =\ (10)

This result shows that the convergence is of order O(1/T") until the upper bound reaches the variance

of the noise (or, more precisely, 452), and then becomes of order o(1/ VT ). In other words, the
number of iterations required to reach a precision € > 0 on the expectation of the gradient norm is
at most O(BAc?/c?). Interestingly, this convergence rate is of the same (optimal) order as the one
reported in the previous works of [23|24] in a similar non-convex setting with bounded variance
noise. Quite surprisingly, we will also see in Section [4.4] that while this upper bound is infinite when
the variance o2 is infinite, the gradient norm can still converge with high probability at the cost of a
decrease in the convergence speed. Moreover, slightly biasing the expectation with s > 0 will also
lead to convergence rates in high probability instead of in expectation, as indicated in Section[4.3]

E

4.2 Almost sure convergence for deterministic or bounded noise

As exhibited in Proposition [3] biased expectations also provide information on the maximum and
minimum values taken by a random variable when s — f-00. As a consequence, analyzing Theorem|]
when s — 400 allows to provide results for bounded or deterministic noises.

Theorem 12. Assume that,Vt < T, ||G;—V f(z)|| < B. Then, the squared gradient norm averaged
over T iterations of Alg. with 1 = 1/8 is almost surely bounded by

T—1

1 28A

7 2 IVF))? < ﬂT + B a.s.. (11)
t=0

Thus, we recover a convergence of order O(1/T) up to the (squared) error on the gradient B2. The
presence of the constant term B2 comes from the fact that since the error can be deterministic (or even
adversarial), the gradient norm cannot decrease further this threshold. Moreover, it is also interesting
to note that as the noise tends to vanish (i.e. when B — 0), then the algorithm is equivalent to a
gradient descent (i.e. G; = V f(«)) and the upper bound provided in Theorem 3 matches the known
convergence rate of order O(1/T) of the gradient descent in non-convex settings (see, e.g., Theorem
1 in [25]).

4.3 Convergence with high probability for centered sub-exponential noise

Here, we investigate the implications of Theorem [§]for positive parameter s > 0. First, recall that an

important aspect of Theoremis that the biased expectations 2 and m,, are considered for u = %

and v = % that tend to zero as the number of iterations 7" increases. As a consequence and keeping

in mind that Proposition [5] provides sharp concentration inequalities when s is positive, we will only
need to analyze the behavior of biased expectations around s = 0 to derive convergence results with
high probability. We thus formulate the following assumption on the noise to derive the next result.



Assumption 13 (sub-exponential noise). Let (3’})@0 be the filtration associated to the sequence of
iterates (;z:t)t>0 of Alg. |1} We assume that the noise is centered (i.e., E [X; | F¢] = 0) and its variance
bounded by o2 (i.e., var(X; | F) < o2). Moreover, there exists a, b, ¢ > 0 such that, conditional to
Fi, (X4, Vf(2)) is (ao?, c)-sub-exponential, and || X4||? is (bo?, c) sub-exponential.

Under Assumption the tail distribution of || X} ||? is at most exponential (since it is sub-exponential),
and || X¢|| thus needs to be sub-Gaussian. Moreover, as the constant « depends linearly on the norm
of the gradient |V f ()|, we usually need the additional assumption that f is L-Lipschitz to verify
Assumption As an example, Table|l|provides some constants a, b, c that satisfy Assumption
for multiple standard distributions for an i.i.d. noise X; under the assumption that f is L-Lipschitz.
Moreover, we point out that, when the noise is centered and bounded by some constant B, a
straightforward application of Hoeffding’s Lemma [33] directly gives the values of the constants,
allowing to cover a wide class of noise assumptions. We can now cast our result.

Theorem 14. Assume that Assumptionis verified, let k1 = 1 + b/2¢ be a constant. Then, with

2A
k10281

with probability at least 1 — 0, by

2 45A 80111(1/5) \/8/—1102BA \/16(102 In(1/0)
TZHVf )2 < T+ — + - a2

7 = min { % }, the squared gradient norm averaged over T iterations of Alg. is bounded,

In other words, the number of iterations necessary to reach a precision € > 0 is at most of order
O (e721n(1/6)) with probability at least 1 — &. With regards to existing work, it is to the best of our
knowledge the first result that considers sub-exponential noise in a non-convex setting. However, it is
also interesting to note that, similarly to Theorem 2, the rate we recover is still of order 0(5*2). This
might nonetheless not be surprising as the result also covers the sub-case of of bounded noise also
covered in Theorem 2.

4.4 Convergence with high probability for centered heavy-tailed noise

Finally, we focus on heavy-tailed distributions with infinite variance which are difficult to handle
using traditional mathematical tools. Fortunately, for any positive random variable X > 0, biased
expectations are never infinite for negative parameter s < 0, since E [eSX } € (0,1]. Moreover,
distributions whose expectation is infinite have biased expectations (X)) that tend to +oco when
s — 07 (see, e.g., the Lévy distribution on Figure . As a consequence, bounding the biased
expectation of the gradient norm when s — 0~ informs us about its heavy-tail behavior, and thus
Theorem [§]can be used with s < 0 to obtain convergence rates with high probability. We may now
introduce the corresponding noise assumption.

Assumption 15. Let (?t)t>0 be the filtration associated to the sequence of iterates (z;);>¢ of Alg. l
We assume that the noise is integrable and centered (i.e., E [X; | F;] = 0), and there exists constants
a,b,c > 0and b € (1,2] such that, forall s € [0,1/¢],

u_s<||XtH2 | :ﬂ) <a 7. (13)

Note that ;1 (X) near s = 0 is then tightly connected to the tail distribution of X . More specifically,
Assumption|15|imposes that || X;|| follows a fat-tailed distribution of tail index at least b.

Proposition 16. IfAssumptionis verified, then Yz > \/c, P (|| X¢|| > = | F4) < 2a2™°

Table 1: Examples of the constants satisfying Assumptlon.(assumlng fis L L1psch1tz) for different
noise assumptions. All distributions were chosen so that var(X; | ;) < o2

Distribution a b c k1 =1+ %
Centered Gaussian of covariance %21 L?/d  8(2In(2) —1)o?/d 40%/d 21n(2)
Uniform on a ball of radius o L?/4 1/4 1/8 2
Uniform on a hypercube [— -, %]d L?/4 o?/2d o?/4d 2
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Figure 3: SGD on a ridge regression problem with heavy-tail (Student’s t) distribution of tail-index
b=1.5.

Additionally, in the case of symmetric noise (i.e., X; and —X; have the same distribution), the
. . . 2. . .
biased mean of Assumptlonls equal to 0, as (Xy, Vf(z;))esI Xl is antisymmetric w.r.t. X;, and

E[—(X,, Vf(x;))esIXeI” | F,] = 0. The second case in which the biased mean is easy to bound is
that of L-Lipschitz functions. Thus, using Assumption [I3]to bound the biased variance directly leads
to a convergence result in both cases.

Theorem 17. Assume that f is L-Lipschitz or that X (conditional to ) has a symmetric distribution.
Then, if Assumption n 15|is verified, there exists constants (k;);>5 only depending on a,b, ¢ such that,

A
with 7 = min { 7;5 (a{fﬁssz

Alg.[I]is bounded, with probability at least 1 — 8, by

+
2 KofSA K3V BA 4L (B ) K5y BA
TZHW s 08 SPR I ONT | s TE

2+4+b
) , ﬂ} the squared gradient norm averaged over T iterations of

(14)

where ¢ is the right hand side of the above equation and the constants k; are detailed in the proofs.

Note that the last term of Eq. has the worst dependency with regards to T and (5 Hence,
the number of iterations required to reach a precision ¢ is at most of order O (e~ P ) with
probability at least 1 — . This bound is thus of the exact same order as the one reported in the work
of [22] where they consider a slightly different non-convex setting with heavy-tailed noise. Finally, it
also has to be noted as e oc T°5 when T'is large enough, this result requires a step size 17 oc 7~ /?,
where b is the tail-index, instead of the classic 77 oc 7~/ for gradient noises with bounded variance.

S Experiments

In this section, we illustrate the practical implications of the results obtained in the paper.

Protocol. The set of experiments consists in finding the parameters » € R? of a ridge regression that
minimize the empirical penalized loss f(z) = ||Y — &z||? + \||z||? over the Airfoil Self-Noise Data
Set taken from the UCI machine learning repository [34] denoted here by (Y, ¢) € R™ x R%*™ where
n = 1503 and d = 5 and with a regularization parameter set to A\ = 10. To illustrate our theoretical
results (e.g. Theorem , we considered the noisy gradient approximation G; = V f(z;) + X
where X; is a heavy-tail (Student’s t) noise distribution of tail-index b = 1, 5. We considered three
different step-size scenarii: (1) constant step-size 7, = 1074, (2) i, = 10~* - t~1/® provided by
Theorem and (3) the standard 7, = 1074 - t—1/2 traditionally used in SGD. For each step-size,
we ran 1000 times Alg. [1|with a budget of T' = 107 iterations starting from the solution of the non-
penalized problem zo = (£7¢)~1¢TY . We then computed the empirical quantiles (with confidence



parameter set to § = 50%), expectations and biased expectations of the series of the random variables
(1/t) - S0, IV £ (2:)|)? for each iteration t = 1...T.

Results. Results are displayed in Figure [3] These results show several aspects of the experiments:
(1) the averaged expectation + S IV f(2:)]]? reaches extremely large values (infinite in theory)
compared to the values of quantiles. (2) The choice of the step-size 1, o t~!/® does lead to the
convergence rate of order t(*~1)/? exhibited in Theorem (see the comparison with the theoretical
bound displayed in Figure . (3) The standard step-sizes 7; oc t~/2 and 7, o 1 (independent of
the desired precision ¢) lead to suboptimal convergence rates, indicating that the choice 7, oc t~/°
may be valuable for practitioners when the noise distribution is particularly fat-tailed. (4) Biased
expectations 1 (1/t S2¢_, ||V f(;)||?) are well aligned with the results of order s(*~1)/2 stated in
Equation

6 Conclusion

This paper proposed a novel unifying analysis of stochastic gradient descent in the noisy and non-
convex setting. We introduced a novel operator: unbiased expectations that provide powerful tools
for stochastic analysis. Using this tool, we showed that SGD is robust in the non-convex setting over
a large panel of noise assumptions, including infinite variance heavy-tailed noises.

Broader impact

Based of the theoretical nature of the work, the authors do not believe this section is applicable to
the present contribution, as its first goal is to provide some insights on a classical algorithm of the
machine learning community and does not provide novel applications per se.
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