Supplementary Material

This document contains the proofs of the results presented in the paper: Robustness Analysis of
Non-Convex Stochastic Gradient Descent using Biased Expectations.

Proof of Proposition If s = 0, the result is trivial. Otherwise, we have us(X +Y) =
IME [eX )] = LIn(E [eX] E [e*Y]) = ps(X) + ps(Y), where the second equality fol-
lows from the independence of e*¥ and e*¥’

Proof of Proposition First, note that ps(X) = —p_s(—X), and thus 2 implies 1 (as
—esssup(—X) = essinf X). Moreover, L,-norms of probability spaces are both non-decreasing and
tend to the essential supremum (i.e., p — ||Y||, is non-decreasing and lim,, , ; » |Y||, = esssup Y).
Hence, using the alternative formulation us(X) = In|leX|;, we get that s — u4(X) is non-
decreasing, and lim,_, y o pts(X) = In(esssup(e™)) = esssup X. Finally, note that the function
(s,2) = ¢s(x) = esms’l is continuous. Let sg,s1 € Ix, and 59 < s < s;. By definition
of Ix, ¢s,(X) and ¢, (X) are integrable. Moreover, |¢ps(X)| = max{—¢s(X), ¢s(X)} <
A { g (X), G (X)) €~y (X) + 0y (X) < |ohsy (X)| + 65, (X)] by monotonicity of
s = @s(x). As |ds, (X)| + |¢s, (X)| is integrable and independent of s, dominated convergence
implies continuity of E [¢s(X)], and thus of u4(X), in (s1, s2).

Proof of Proposition 4 A simple rewriting of s(ps(X|F)) leads to the desired re-
sult: s (1s(X]F)) = o7 (E[gs 00 (E[s(X)|TN)]) = o7 EE[G(X)T]]) =
¢35t (B [¢s(X)]) = ps(X).

Proof of Proposition Eq. (3) follows from the Chernoff bound P (X > a) < E [e*X] e~** for
a = us(X) + 2. Moreover, if X > 0 a.s., using Markov’s inequality on ¢4(X) > 0 a.s. gives,
Va >0, (i
bs (ps(X))
P(X>g)< 222277 (15)

When s < 0 we can further simplify Eq. (L5) by using ¢ (ps(X)) < ps(X) (as ¢, is concave), and
¢s(x) > 77, which concludes the proof.

Proof of Theorem [8| The result follows from standard analysis of non-convex gradient descent.
More specifically, using the 3-smoothness of f, we have
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Rearranging Eq. (16) and summing over all times ¢ € {0,7 — 1} leads to
0(1- %) SIVH @I < A=t o) ¥ X, V(w0 O S ixgE. an

t<T t<T t<T
where A = f(2¢) — mingega f(z). Finally, using the assumption n € (0,1/5] we obtain 4 <
n ( ﬁ") and thus dividing by nT'/2 gives that
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To conclude, we apply biased expectation to both sides of Eq. (18). As (X¢, V f(z¢)) and || X;||? are
not independent, Proposition 2] does not apply. We thus use the following Lemma to decompose the
error.



Lemma 18. Let X,Y be two (possibly dependent) random variables and s € R. If s > 0, then

sX
s(X +Y) < pog(X) + pes(Y). Otherwise, us(X +Y) < ps(X) + %, whenever the

right-hand sides are well-defined.

Proof. For s > 0, applying the Cauchy-Schwartz inequality to e5X and e*Y gives us(X +Y) =
1 (E[eXeY]) < o= In (E [e2X] E [€2Y]) = pos(X) + p2s(Y). For s < 0, we obtain that

ws(X +Y) = ps(X) + %ln]E {esyﬁ%j;]] by a direct rewriting. Now, introducing the random

variable Y’ with density % w.r.t. the probability measure of (X, Y") and using Jensen’s inequality
on the function z > 1 In(z), we obtain that £ InE {eSY]E[%SXXJ =1mE [esyl} <E [% In esyl} -
E[Y'|=E {Yﬁi]} which proves the result.

O

Moreover, note that, for any a € R, ps(aX) = afiqes(X). Then, using Propositionto remove the
deterministic error, we have

o (b Lomra IVF@DID) < e (3 = 20222 8, (X0, Y (0) + B Doer 1017

% + Hs (Et<T At) )
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where A; = fM(Xt,Vf(xt» + 22 X4||. Using Lemma [18| with X = 22| X;||> and

Y = —M(Xt, Vf(xt)), we have ps(A: | Fr) < Mmu + %og, where u, v are defined
as in Theorem and myg, 02 as in Assumption|§| and Assumption (7} Finally, we use Proposition to

bound the sums over iterations:

s (XCier At) = ps Eus (Xier At | Fr-1))

IN N

= s (X per_1 At + ps (Ar—1 | Fr_1))

S K (Zt<T—1 A+ 2(1;ﬂn)mu + %0’2}) (20)
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< 2(1—Bn)my+ Bnol,

which concludes the proof.

In order to simplify our convergence rates, we will use the following lemma.

_1
Lemma 19. Let a,b,c,p > 0 and f(x) = azP + b/x. Then, with x* = min { (%) e 70}, we

have
fz*) <A 4+p bt + (1 +p)pFraT™ b+ . (1)

1
Proof. When b < pac'*?, we have z* = (p%) " and f(z*) = (p%) "7 Otherwise, we have

x* = cand f(2*) = ac? +b/c < (1 + p~1)b/c. Hence, f(z*) is inferior to the sum of both
terms. O

Proof of Theorem [T1} First, note that all the r.v. are integrable since the variance of the noise is
bounded. Hence, for all the considered r.v. X, we have o(X) = E[X] (see Proposition [3), and

Theoremgives us that E [(1/T) . Zthl IV Ff(x))?] < % + Bno? when s = 0. Minimizing the

right-hand side term over 1 € (0, 1/] using Lemma|19|leads to the desired result.

Proof of Theorem Using Proposition we have limg_, o0 s (|| X]|? | F¢) = esssup || X, ||?
B2 Theoremwith s — +oo and n = 1/ thus gives esssup ((1/T) 23:1 ||Vf(xt)||2)
22 4+ B2

IN A



Proof of Theorem By definition of sub-exponential r.v., we have, Vs € (0,1/d],
ps(—(Xe, V() | Tt) < ao?s/2 and ps(|| X¢]|? | Ft) < (1 + b/2¢c)o?. Using Proposition

and Theoremwe thus have, Vx, s > 0 such that u = % <1/candv = % <1/e,

2A
( Z V£ (o)) z T 7+ 2(1 = Bmyma + Bno; +w> e, (22)

where m,, = ao?u/2 and 02 = (1 + b/2c)o?. Hence, if n € (0, 1/[], we have, with probability at
least 1 — 9,

2
fz IV £ ()2 < = + 4“; ® F(1+b/20)Bn0% + - 1n(1/5) (23)

Optimizing over 1 and s gives fn = min {, / %, 1} and % = min{ %, 1}.

Using Lemma([T9] Eq. (23)) thus becomes

d 4BA + 8¢In(1/6) \/8(1+b/2o)ﬂA02 aln(1/9)
g'vf I? < T + - o\ 24

Proof of Proposition [16, Using the second concentration inequality of Proposition [5} we have,

Vo > /e,

2412 (| Xel* | F2)
2

P(|Xe]| > 2 | Fp) =P (| Xe]|> > 22 | Fo) < < 2az7". (25)

T

Proof of Theorem|[I7] We first bound the biased mean in both settings. If the noise is symmetric, then
E {—(Xt, Vf(z))esIXel” | ?t} = 0 and, for s > 0, m_, = 0 verifies Assumption Otherwise,
we use the following Lemma.

Lemma 20. If f is L-Lipschitz and Assumption[I3is verified, then, Vs € [0,1/c],

E [*<Xt,vf($t)>efs”xtn2 | rft}

b—1
< b=t
E [~ 1% | ] < kels =, (26)
where kg = (1 — ac™%/?)~1 (c2 + =Gy f)a(% b))
Proof. First, we have
E {e—suxtuz | gt} — s (X | F0)

> 1—sp_(|X:* | F) Q27

> 11— asb/2

> 1- acb/2 .

Then, let Y = —(X;, Vf(z:)). AsE[Y | Fi] = 0, we have

E [ye—sIx? \gt} - E [y+e—s|\xt|\2 |Cﬂ} R [yfe—snxtnz Ifﬂ}
< E[Y: | 5] -E|[ve X" |5, o
— E[y_ (1_efs||xt||2> K2 (28)
< IE[IX) (1—emsIXI7) 7]



as Y_ < |(X;, Vf(zy))| < L||X¢||. Finally, we bound E [HXtH (1 - e*S”Xf”Q) | ”J"t} by using the

function g(z) = x (1 — 6_5952). As g is monotonically increasing, we have

E[IX) (1-e=I%0*) 1 5] = Elg(IXel)]
= 0+°°IP>(9(X) > z)dzx
0 CP(X >g 1 (x)da
fog(f)IP’(X > g () )dx—i—f(\/) (X > g Ya)) do

< gV +2a [ (g7 (@) " da
< 803/2+2af mln{x (x/s) 1/3} dx
< s = f)a(g 5y S
b bfil
= <02 = fﬁs b)) )

(29)
where the second inequality comes from g(z) < sz* and g(z) > min {z, (z/s)'/3}, and the last
inequality from s < 1/c.

b—1 . . . . . .
Hence, we can use m_, = kgLs 2 , with the special case L = 0 if X; is symmetric, in order to

» Bne

<TZIIfot ||2><+5 (5”) T @(@) R

We obtain a concentration inequality using Proposmonl leading to, Vz > 0,
T
1 1+ sz Bns kD an
P 2> — L 31
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Choosing s = min {%, %} gives 1152 < 2 (ﬂ—;l‘s) < (%) (as b > 1) and ( ) <

describe both settings. Using Theoremand Assumption (15| we thus have, for s € {0 L ] ,

b—2

(M> 7 4% Hence, withy = & 5" , we have

Tx
1 & 2 [ 268A
P <T ; IV £ ()] > :c) < {TQ o +aTey® +ac’ Tay+ rely = ] . (32
=5
and optimizing the first two terms over y (and thus 7)) gives y = min { <%) i ,Tlx}
Lemma [[9|then gives
1 Z
P(T;HVf(:rt)HQZa:) <A+B+C+D, (33)
where A24B)BA
A = [ L b
B = (2+0b) (%)™ = (aTz)7 (?@é)z ’
P (34)
C = 2ac 2bT<af£§E2)2 ’
b1
D = ()"

Using A+ B+ C + D < max{4A4,4B,4C, 4D} and bounding the previous term by §, we get, with
probability 1 — 4,

A ks/BA | kLS (BA)T ks /BA
V 2 K/QB + 43 b 2+4+b + b—1 2+b + b—1 2+b 7 35
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where
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