A EM-algorithm to fit LDFA-H (Section 2)

Initialization Letd© = {0 .. £ &4 3% 1O 2 Fr.O) 320 71.0) 5200}

be the initial parameter value. Slnce the MPLE ObJeCtIVC functlon for LDFA H glven 1n Eq @) is
not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of the
initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest an
initialization by a canonical correlation analysis (CCA).

Let {X'[n], X%[n]}n=1... ~ be N simultaneously recorded pairs of neural time series. We can view
them as N'T" recorded pairs of multivariate random vectors { X!, [n], X2,[n]} n,¢)e[nv]x[r]- We obtain
Bi’(o) and Bf’(o) by CCA as follows:
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According to the equivalence between CCA and probablistic CCA shown by A. Anonymous, it gives
an estimate of the first latent factors

20w = B X* ) (A3)

forn =1,.. N and k = 1,2. The initial second latent factors 22 (0)

factor loading 62 ) is similarly set by the second pair of canonical variables, and so on. Then we

and the corresponding

assign the empirical covariance matrix of {Z ’(O)[ 1, ZJZC’(O) [7] }ne[n) to the initial latent covariance
matrix Egco) for f =1,...,q and the matrix-variate normal estimate (Zhou, [2014) on {?’“’(0) [n] :=
XF[n] — Bk:(0) Zk,(0) (7]} neny to (/I\”;—’(O) and 52’(0) for k = 1,2. Along fi*©® := & 27]:/:1 XF[n),
the above parameters comprises the initial parameter set 910,

However, we cannot run an E-step on the above parameter set because ®*:(9) i not invertible. We

instead pick one of its unidentifiable parameter sets @\(0)7{‘“1”2}, defined in Eq. , with all #+(0)’g
and E;O) ’s invertible. Specifically, we take
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for f =1,...,qand k = 1,2 where A\yn(A) is the smallest eigenvalue of symmetric matrix A.
Henceforth, we notate g(0){a’ .0} by 9. Fort = 1,2,..., we iterate the following E-step and

M-step until convergence.

Another promising initialization is by ﬁnding time (¢, s) on which the canonical correlation between

1,(0) 52(0) by

X! ¢ and X7, 2 maximizes. i.e., we initialize B and
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such that |t — s| < hcross.  (A.3)
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for (t,s) € [T] x [T]. Then the other parameters are initialized as above. We can even take an
ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate with
the minimum cost function (Eq. (E)).

Now, forr = 1,2, ..., we alternate an E-step and an M-step until the target parameter II; conver-
gences.

E-step Given 6 := 6= from the previous iteration, the conditional distribution of latent factors

Z'[n] and Z?[n] with respect to observed data X '[n] and X?[n] on trial n = 1,..., N follows
(2,00l 22l 22 [0]) | X' o], X2[0] ~ MYN (m3) L V). (A7)
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(r) (r) (r) (r) !
Zozmlx o Vaiz,x Wy zgx - Wzl,qu(
(r)y _ . . . _ . . .
o " e o R ~
T T T T
Vepzix - Vz,z,x Wagozix - Wz z,x
and
() _ (GO () R (r)
leX[n] = (mzllp(’mzlp(7 x m22|x) A9)
o (BTTSX WDy 5 BETAX WITS ;..o BETTEX T )
given
WZf,Zg|X = < 0 (B?TFQ 52) 'Hl{f:g} Qy, ]I{f:y} = 0, ow (A.10)

for f,g=1,...,q.

M-step We find ™) which maximize the conditional expectation of the penalized likelihood under
the same constraints in Eq. @) i.e.

") = argmin — ZE )| X [n], 8= [logp(X [n ]7X2[n],Z1[n],ZQ[n];a(T_l))}
(A.11)
+ Z Z HAkl H Hl s.t. FT is (2h* + 1)-diagonal
f=1kl=1

where p is the probability density function of our model in Egs. (I)), @) and (3) and the expectation
E 011X n), 60— follows the conditional distribution in Eq. . Taking a block coordinate descent

approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices €2 ¢, Eq. @) reduces to a graphical Lasso problem,

2
Q(T) = argmm —log det(Qy) + tr (Qf (VZ(:)IX + E[m(Zr)le(Z?l—; )) + Z | Akl @H H1
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for each f = 1,...,q where E[mgf)‘xm(zrf)&] =LV, m(er)‘X[n] m(ZTf)‘TX[n] The graphical

Lasso problem is solved by the P-GLASSO algorithm by Mazumder et al.|(2010).

M2: With respect to I'*, Eq. (A.11) reduces to an estimation of matrix-variate normal model (Zhoul,
2014])). The estimation problem can be formulated as

q
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s.t. f’% is (2h* + 1)-diagonal

for each k = 1, 2 where m£:)| v =XF— Bkm(ZT,Z x = 1% and E[A] is the empirical mean of a random

matrix A. The estimation of F’% under the bandedness constraint is tractable with modified Cholesky
factor decomposition approach with bandwidth h* using the procedure by Bickel and Levina|(2008).

M3: With respect to ¥, Eq. (A.11) reduces to a quadratic program

ZPICT,(L,S) tr (B”Ff%ﬂk (Vz(;)t,szle + Cov[m(zr:%t‘X, m(Z?S\XD)
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(A.15)
where I'%, (1,) 18 the (Z, s) entry in I'% and Cov(A, B) is the empirical covariance matrix between
random vectors A and B. The analytic form of the solution is given by

-1
gk = (Z Fs’,(t,s)(vz(gi,zmx + COV[m;%t\Xv m(ZT,SSX])> (Z Fkﬁ(t,s)Cov[m(ZT:,?s‘X, th]>

t,s t,s
(A.16)
M4: With resepct to p1¥, it is straight-forward that Eq. (A.11)) yields

q
W
f=1

B Simulation details (Section 3)

We simulated realistic data with known cross-region connectivity as follows. Simulating ¢ = 1
pair of latent time-series Z* from Equation (2), we introduced an exact ground-truth for the inverse
cross-correlation matrix I1}? by setting:

et o 7,.[p mp
I = 0 (P22)-1 + 2T p (B.1)
where D' and D? are diagonal matrices with elements D(, , = > II}%, , and D, =

Do H}Q(t 5) which ensures that the matrix on the right hand side is positive definite. The ma-

trix on the left hand side contains the auto-precision matrices of the two latent time series, with
elements simulated from the squared exponential function:

P = [exp (=c*(t —9)*)], , + M7, (B.2)
with ¢! = 0.105 and ¢ = 0.142, chosen to match the observed LFPs auto-correlations in the

experimental dataset (Section . We added the regularizer AI1, A = 1, to render PF® invertible.
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Figure C.1: Squared Frobenius norms of covariance matrix estimates, ) 1, for all factors f =
1,...,10. Notice that the amplitudes of the top four factors dominate the others.

We designed the true inverse cross-correlation matrix I1*2 to induce lead-lag relationship between Z*
and Z? in two epochs as depicted in the right-most panel of Fig.[2al Specifically, the elements of IT*2
were set:

— here Z{ , and Z% | partiall lat
2 {0 r, where Zj , and Z7 ; partially correlate, (B.3)

(t,5) = elsewhere,
where the association intensity 7 = 0.6 was chosen to match our cross-correlation estimate in the
experimental data (Section . Finally, we rescaled P; = Hfl to have diagonal elements equal to

one. The corresponding factor loading vector 3 was randomly generated from standard multivariate
normal distribution and then scaled to have ||3f||2 = 1.

We generated the noise €* from the N = 1000 trials of the experimental data analyzed in Sec-
tion [3.2] First, we permuted the trials in one region to remove cross-region correlations. Let
{Y'[n], Y?[n]}n=1,.  ~ be the permuted dataset. Then we contaminated the dataset with white noise
to modulate the strength of noise correlation relative to cross-region correlations. i.e.

k. indep

D T A S VAV (o,AecTch[x{;]) ,and pf, =E[YE] B4

where IE[Y’@] and 60\‘/[th] wer the empirical mean and covariance matrix of Y%, respectively, for k =
1,2,t =1,...,T. The noise auto-correlation level was modulated by \. € {2.78,1.78,0.44,0.11}.
We also obtained 31 by scaling P; so that Zfﬁt’s) = BT SFBE. Putting all the pieces together, we
generated observed time series by Eq. (T).

C Experimental data analysis details (Section 3.2)

The strength of each factor, which is characterized by X ¢, is shown in Fig. @

We also examined an alternative definition of information flow, using non-stationary regresssion in
the spirit of Granger causality. For the latent factor f in V4 at time ¢, we use partial R?, effectively
comparing the full regression model using the full history of latent variables in both area,

Z},t ~ Z},l:t—l + Z]%,l:t—l
with the reduced model using history of latent variables in V4 only,
Z}‘,t ~ Z},l:t—l'

The partial R* for Z} , on Z3 ., , given Z} ., , summarizes the contribution of PFC history to V4,
after taking account of the autocorrelation in V4, and thus can be viewed as information flow from
V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined similarly. The results
shown in Fig. are consistent with those in Fig.[5d|

15



0.010

0.008

0.006 1

Partial R?

0.004 {

0.002 +

0.000

0.2 04 02 04
Time (ms)

Figure C.2: Information flow by partial R for the top three factors. In this figure, we characterize
dynamic information flow in terms of partial R?. We show dynamic information flow from V4 —

PFC (blue) and PFC — V4 (orange). The results in the first panel are consistent with those in the
first panel of Fig.[5d,
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