
A EM-algorithm to fit LDFA-H (Section 2)

Initialization Let θ̂(0) = {Σ̂(0)
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be the initial parameter value. Since the MPLE objective function for LDFA-H given in Eq. (9) is
not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of the
initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest an
initialization by a canonical correlation analysis (CCA).

Let {X1[n], X2[n]}n=1,...,N be N simultaneously recorded pairs of neural time series. We can view
them as NT recorded pairs of multivariate random vectors {X1
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According to the equivalence between CCA and probablistic CCA shown by A. Anonymous, it gives
an estimate of the first latent factors

Ẑ
k,(0)
1,: [n] = β̂

k,(0)
1 Xk[n] (A.3)

for n = 1, . . . , N and k = 1, 2. The initial second latent factors Ẑk,(0)
2 and the corresponding

factor loading β̂k,(0)
2 is similarly set by the second pair of canonical variables, and so on. Then we

assign the empirical covariance matrix of {Ẑ1,(0)
f [n], Ẑ

2,(0)
f [n]}n∈[N ] to the initial latent covariance

matrix Σ̂
(0)
f for f = 1, . . . , q and the matrix-variate normal estimate (Zhou, 2014) on {ε̂k,(0)[n] :=
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k[n],
the above parameters comprises the initial parameter set θ̂(0).

However, we cannot run an E-step on the above parameter set because Φ̂k,(0) is not invertible. We
instead pick one of its unidentifiable parameter sets θ̂(0),{α1,α2}, defined in Eq. (8), with all Φ̂k,(0)’s
and Σ̂

(0)
f ’s invertible. Specifically, we take
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for f = 1, . . . , q and k = 1, 2 where λmin(A) is the smallest eigenvalue of symmetric matrix A.
Henceforth, we notate θ̂(0),{α1,α2} by θ̂(0). For t = 1, 2, . . . , we iterate the following E-step and
M-step until convergence.

Another promising initialization is by finding time (t, s) on which the canonical correlation between
X1

:,t and X2
:,s maximizes. i.e., we initialize β̂1,(0)

1 and β̂2,(0)
1 by

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S12

(t,s)β
2
1√

β1>
1 S11

(t,t)β
1
1

√
β2>

1 S22
(s,s)β

2
1

such that |t− s| < hcross. (A.5)
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for (t, s) ∈ [T ] × [T ]. Then the other parameters are initialized as above. We can even take an
ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate with
the minimum cost function (Eq. (9)).

Now, for r = 1, 2, . . . , we alternate an E-step and an M-step until the target parameter Πf conver-
gences.

E-step Given θ̂ := θ̂(r−1) from the previous iteration, the conditional distribution of latent factors
Z1[n] and Z2[n] with respect to observed data X1[n] and X2[n] on trial n = 1, . . . , N follows(

Z1
1,:[n];Z2

1,:[n]; . . . ;Z2
q,:[n]

)
| X1[n], X2[n] ∼ MVN

(
m

(r)
~Z|X

[n], V
(r)
~Z|X

)
, (A.7)
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given

W
(r)
Zf ,Zg|X =

(
(β̂1>
f Γ̂1

S β̂
1
g) Γ̂1

T 0

0 (β̂2>
f Γ̂2

S β̂
2
g) Γ̂2

T

)
+ I{f=g} Ω̂f , I{f=g} =

{
1, f = g

0, o.w.
(A.10)

for f, g = 1, . . . , q.

M-step We find θ̂(r) which maximize the conditional expectation of the penalized likelihood under
the same constraints in Eq. (9), i.e.
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(A.11)

where p is the probability density function of our model in Eqs. (1), (4) and (5) and the expectation
EZ[n]|X[n],θ̂(r−1) follows the conditional distribution in Eq. (A.7). Taking a block coordinate descent
approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices Ωf , Eq. (A.11) reduces to a graphical Lasso problem,
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for each f = 1, . . . , q where Ê[m
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Lasso problem is solved by the P-GLASSO algorithm by Mazumder et al. (2010).

M2: With respect to Γk, Eq. (A.11) reduces to an estimation of matrix-variate normal model (Zhou,
2014). The estimation problem can be formulated as
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for each k = 1, 2 where m(r)

εk|X = Xk −βkm(r)

Zk|X −µ
k and Ê[A] is the empirical mean of a random

matrix A. The estimation of ΓkT under the bandedness constraint is tractable with modified Cholesky
factor decomposition approach with bandwidth hkε using the procedure by Bickel and Levina (2008).

M3: With respect to βk, Eq. (A.11) reduces to a quadratic program
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where ΓkT,(t,s) is the (t, s) entry in ΓkT and Ĉov(A,B) is the empirical covariance matrix between
random vectors A and B. The analytic form of the solution is given by

βk =

(∑
t,s

ΓkT ,(t,s)(V
(r)

Zk
:,t,Z

k
:,s|X
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M4: With resepct to µk, it is straight-forward that Eq. (A.11) yields

µ̂k(r) = Ê
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 .
B Simulation details (Section 3)

We simulated realistic data with known cross-region connectivity as follows. Simulating q = 1
pair of latent time-series Zk from Equation (2), we introduced an exact ground-truth for the inverse
cross-correlation matrix Π12

1 by setting:

Π1 =

[
(P11

1,0)−1 0
0 (P22

1,0)−1

]
+

[
D1 Π12

1

Π12>
1 D2

]
(B.1)

where D1 and D2 are diagonal matrices with elements D1
(t,t) =

∑
s Π12

1,(t,s) and D2
(s,s) =∑

t Π12
1,(t,s), which ensures that the matrix on the right hand side is positive definite. The ma-

trix on the left hand side contains the auto-precision matrices of the two latent time series, with
elements simulated from the squared exponential function:

Pkk1,0 =
[
exp

(
−ck(t− s)2

)]
t,s

+ λIT , (B.2)

with c1 = 0.105 and c2 = 0.142, chosen to match the observed LFPs auto-correlations in the
experimental dataset (Section 3.2). We added the regularizer λIT , λ = 1, to render Pkk invertible.
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Figure C.1: Squared Frobenius norms of covariance matrix estimates, Σ̂f , for all factors f =
1, . . . , 10. Notice that the amplitudes of the top four factors dominate the others.

We designed the true inverse cross-correlation matrix Π12 to induce lead-lag relationship between Z1

and Z2 in two epochs as depicted in the right-most panel of Fig. 2a. Specifically, the elements of Π12

were set:

Π12
(t,s) =

{
−r, where Z1

1,t and Z2
1,s partially correlate,

0, elsewhere,
(B.3)

where the association intensity r = 0.6 was chosen to match our cross-correlation estimate in the
experimental data (Section 3.2). Finally, we rescaled P1 = Π−1

1 to have diagonal elements equal to
one. The corresponding factor loading vector βk1 was randomly generated from standard multivariate
normal distribution and then scaled to have ‖βk1‖2 = 1.

We generated the noise εk from the N = 1000 trials of the experimental data analyzed in Sec-
tion 3.2. First, we permuted the trials in one region to remove cross-region correlations. Let
{Y 1[n], Y 2[n]}n=1,...,N be the permuted dataset. Then we contaminated the dataset with white noise
to modulate the strength of noise correlation relative to cross-region correlations. i.e.

εk:,t = Y k:,t − µk:,t + ηk:,t, η
k
:,t

indep∼ MVN
(

0, λεĈov[Y k:,t]
)
, and µk:,t = Ê[Y k:,t] (B.4)

where Ê[Y k:,t] and Ĉov[Y k:,t] wer the empirical mean and covariance matrix of Y k:,t, respectively, for k =
1, 2, t = 1, . . . , T . The noise auto-correlation level was modulated by λε ∈ {2.78, 1.78, 0.44, 0.11}.
We also obtained Σ1 by scaling P1 so that Σkk1,(t,s) = βk>1 Skt β

k
1 . Putting all the pieces together, we

generated observed time series by Eq. (1).

C Experimental data analysis details (Section 3.2)

The strength of each factor, which is characterized by Σf , is shown in Fig. C.1.

We also examined an alternative definition of information flow, using non-stationary regresssion in
the spirit of Granger causality. For the latent factor f in V4 at time t, we use partial R2, effectively
comparing the full regression model using the full history of latent variables in both area,

Z1
f,t ∼ Z1

f,1:t−1 + Z2
f,1:t−1

with the reduced model using history of latent variables in V4 only,

Z1
f,t ∼ Z1

f,1:t−1.

The partial R2 for Z1
f,t on Z2

f,1:t−1 given Z1
f,1:t−1 summarizes the contribution of PFC history to V4,

after taking account of the autocorrelation in V4, and thus can be viewed as information flow from
V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined similarly. The results
shown in Fig. C.2 are consistent with those in Fig. 5d.
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Figure C.2: Information flow by partialR2 for the top three factors. In this figure, we characterize
dynamic information flow in terms of partial R2. We show dynamic information flow from V 4→
PFC (blue) and PFC → V 4 (orange). The results in the first panel are consistent with those in the
first panel of Fig. 5d.
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