
A Weighted Products of Gaussians

A well-known result is that a product of Gaussian PDFs collapses to a scaled Gaussian PDF (e.g. [24]).
In particular, if we define

σ2
POG :=

[
m∑
i=1

1

σ2
i

]−1
and µPOG := σ2

POG

[
m∑
i=1

µi
σ2
i

]
, (12)

and let fPOG(·) denote the associated PDF of N (µPOG, σPOG), then we have that fPOG(y) ∝∏m
i=1 fi(y). In the case where w = ~1, this implies that POG~1(y ; . . .) = fPOG(y) as the con-

stant of proportionality (not a function of y) is cancelled out by the division by Z in Equation 2, and
we are left with an integral of a PDF in the denominator. Now consider a Gaussian PDF f raised to a
power p ∈ R+, i.e.

fp(y) =

[
1

σ
√

2π
exp

{
−1

2

(
y − µ
σ

)2
}]p

∝ exp

{
−1

2

(y − µ)
2

σ2 p−1

}
,

which corresponds to an unnormalized Gaussian PDF with mean µ and variance σ2 p−1. Thus we
can replace each fi(y)wi term in Equation 2 with the PDF associated withN (µ, σ2 p−1). Combining
the above techniques for products and powers allows us to exactly interpret the weighted product of
experts as another Gaussian expert N

(
µPOG(w), σ2

POG(w)
)

where

σ2
POG(w) :=

[
m∑
i=1

wi
σ2
i

]−1
and µPOG(w) := σ2

POG(w)

[
m∑
i=1

wi µi
σ2
i

]
. (13)

B Properties of the G-GLN Loss

Gradient. First define ωi := wi/σ
2
i , ω = (ω1, . . . , ωm) and µ = (µ1, . . . , µm), which due to the

non-negativity of wi implies ‖ω‖1 =
∑
i ωi. Hence σ2

POG = ‖ω‖−11 and µPOG = ωTµ / ‖ω‖1. Using
this notation, we can reformulate Equation 6 as

`(y;ω)=− log ‖ω‖1 +
(
x− ωTµ/ ‖ω‖1

)2‖ω‖1 . (14)
The first partial derivative can be obtained by direct calculation, and is

∂`(y; ·)
∂ωi

= −‖ω‖−11 +
(
y − ωTµ/ ‖ω‖1

) (
y − 2µi + ωTµ/ ‖ω‖1

)
.

Hence, using the above and ∂`(y;w)
∂wi

= ∂`(y;ω)
∂ωi

∂ωi

∂wi
= ∂`(y;ω)

∂ωi

1
σ2
i

, we have

∇w `(y;w) = diag
(

1
σ2

) [
(y − µPOG) (1m,1(y + µPOG)− 2µ)− 1m,1 σ2

POG

]
.

Convexity. Here we prove that `(y;w) is a convex function of w by showing that the Hessian
of Equation 14 is positive semi-definite (PSD). Let g(ω) := ωTµ / ‖ω‖1 and g′(ω) := ∂g

∂ωj
=

µj ‖ω‖−11 − ωTµ ‖ω‖
−2
1 , which allows us to compute the second partial derivative as

∂2`(y; ·)
∂ωi∂ωj

= ‖ω‖−21 − g
′(ω)y + 2g′(ω)µi + g′(ω)y − 2g(ω)g′(ω)

= ‖ω‖−21 + 2g′(ω)(µi − g(ω))

= ‖ω‖−21 + 2(µj ‖ω‖−11 − ω
Tµ ‖ω‖−21)(µi − ωTµ/ ‖ω‖1)

= ‖ω‖−21 + 2 ‖ω‖−11 (µj − ωTµ/ ‖ω‖1)(µi − ωTµ/ ‖ω‖1) .

Thus the Hessian of Equation 14 is

∇2`(y;ω) = ‖ω‖−21 1m,m + 2 ‖ω‖−11 (µ− ωTµ/ ‖ω‖1 1m,1)(µ− ωTµ/ ‖ω‖1 1m,1)T , (15)

where 1m,n denotes the m× n matrix whose entries are all 1. As 1m,m is PSD and ‖ω‖−21 > 0, the
first additive term is PSD. The second term is also PSD, since 2 ‖ω‖−11 > 0 and the outer product
(µ− ωTµ/ ‖ω‖1 1m,1)(µ− ωTµ/ ‖ω‖1 1m,1)T is PSD by letting a = (µ− ωTµ/ ‖ω‖1 1m,1) and
observing that u>aa>u = (u>a)(u>a)> = (u · a)2 ≥ 0 for all u ∈ Rm. Hence since the Hessian is
the sum of two PSD matrices, it is PSD which implies that `(y;ω) and therefore `(y;w) is a convex
function of w.

13

C Learning the Base Model

Every neuron in a G-GLN takes one-or-more Gaussian PDFs as input and produces a Gaussian PDF
as output. This raises the question of what input to provide to neurons in the first layer, i.e. the base
prediction. We consider three solutions: (1) None. The input sufficient statistics to each neuron
are already concatenated with so-called “bias” Gaussians to ensure that the target mean falls within
the convex hull defined by the input means (described in Section 3). (2) A Gaussian PDF for each
component xi of the input vector, with µ = xi and σ = constant. It is perhaps surprising that the
neuron inputs are not required to be a function of the xis, but this is permissible because xi is z-score
normalized and broadcast to every neuron as side information zi.

We present a third option (3) whereby the base prediction is provided by a probabilistic base model
trained to directly predict the target using only a single feature dimensions. The formulation of this
Bayesian Linear-Gaussian Regression (BLR) model is described below. Empirically we find that it
leads to improved data efficiency in the first epoch of training (see examples in Figure 3) with only
an additional O(1) time and space cost per feature dimension.

Consider a dataset D = {xi, yi}Ni=1 of zero-centered univariate features xi ∈ R and corresponding
targets yi ∈ R. We assume a Normal-linear relationship between a feature xi and target yi,

yi ∼ N (θxi + β, τ−1)

where θ and β are some coefficients, and τ is the precision (inverse variance). We assume τ is known,
but it can also be optimized via (type II) maximum likelihood estimation. We also assume an isotropic
Normal prior over θ and β, i.e. θ ∼ N (0, τ−10) and b ∼ N (0, τ−10), where τ0 is the prior precision.

By adapting widely known equations (e.g. Equations 3.53-3.54 in [51]) we can obtain the posterior
for θ as

p(θ | D) = N (θ | µθ, τ−1θ)

µθ = ττ−1θ

∑
xi,yi∈D

xiyi

τθ = τ0 + τ
∑
xi∈D

x2i .

Similarly, we obtain the posterior for β as

p(β | D) = N (β | µβ , τ−1β)

µβ = ττ−1β

∑
yi∈D

yi

τβ = τ0 + τN .

Putting these two together, we can obtain the posterior predictive distribution,

p(y | x,D) = N (y | µθx+ µβ , x
2τ−1θ + τ−1β + τ−1) .

It is apparent that updates and inference can be performed incrementally in constant time and space
by storing and updating the sufficient statistics

∑
i xiyi,

∑
i x

2
i ,
∑
i yi,

∑
i 1.

We can use this BLR formulation to convert the input features into probability densities. Specifically,
for each feature, we independently maintain posterior/sufficient statistics and use the posterior
predictive distributions as inputs to the base layer of the G-GLN.

D Switching Aggregation

Because every neuron in a G-GLN directly models the target distribution, there is no one natural
definition of the network output. One convention is simply to have a final layer consisting of a single
neuron, and take the output of that neuron as the network output. An alternative method of switching
aggregation was used in [2, 52], whereby an incremental online update rule was used to weight the
contributions of individual neurons in the network to an overall estimate of the target density.

14

0.00 0.25 0.50 0.75 1.00
epoch

4

6

8

rm
se

dataset = energy

0.00 0.25 0.50 0.75 1.00
epoch

5.0

7.5

10.0

12.5

15.0

17.5
dataset = power

0.00 0.25 0.50 0.75 1.00
epoch

0.65

0.70

0.75

0.80

0.85

dataset = wine

0.00 0.25 0.50 0.75 1.00
epoch

8

10

12

14

16

dataset = yacht

variant
BLR
constant

Figure 3: Effect of using Bayesian linear regression (BLR) versus a constant base model N (0, 1) on
predictive RMSE for four UCI regression tasks. Results are shown for the first epoch of training.

We extend the switching aggregation procedure from the Bernoulli to Gaussian case by replacing a
Bernoulli target probability value with a Gaussian probability density value evaluated at the target.
The switching algorithm of [52] was originally presented in terms of log-marginal probabilities, which
can cause numerical difficulties at implementation time. Instead we use an equivalent formulation
derived from [2] that incrementally maintains a weight vector that is used to compute a convex
combination of model predictions, i.e. the densities given by each neuron in the network, at each
time step.

Using notation similar to [2], let m ≥ 2 denote the number of neurons, and wit ∈ [0, 1] denote
the weight associated with model i at times t ≥ 1. The density output by the ith neuron at time t,
evaluated on target yt, will be denoted by ρi(yt | y<t). At each time step t, switching aggregation
outputs the density

π(yt | y<t) :=

m∑
i=1

wit ρ(yt | y<t),

with the weights defined, for all 1 ≤ i ≤ m, by wi1 := 1/m and

wit+1 =
αt+1

m− 1
+

(
(1− αt+1)− αt+1

m− 1

)
wit ρi(yt|y<t)
π(yt | y<t)

,

with αt := 1/t. This can be implemented in linear time with respect to the number of neurons. Notice
that mathematically the weights satisfy the invariant

∑m
i=1 w

i
t = 1 for all times t ≥ 1, which should

be explicitly enforced after each update to avoid numerical issues in any practical implementation.

E Weight Projection

Weight projection after an update (Line 11 in Algorithm 1) enforces three sets of constraints: each
weight to be in [0, b], mixed means µPOG to be in [µmin, µmax], and mixed variances σ2

POG to be
in [σ2

min, σ
2
max]. These constraints ensure that the online convex optimization is well-behaved by

forming a convex feasible set and also preventing numerical issues that arise from rounding likelihoods
N (x;µPOG, σPOG) to 0. We outline two ways in which these constraints can be implemented below.

The constraints can be represented in terms of linear inequalities Aw ≤ u, where w = Wijcij(z)

is the weight vector of neuron 〈i, j〉 given side info z. Assume w violates some of the constraints,
therefore we would like to project w onto our feasible set {w′ : Aw′ ≤ u}. Let A′ and u′ be
the matrix/vector composed of rows/elements of A and u respectively that violate our original
inequality, thus A′w > u′. Then we can write down the projection problem as arg minw′ ||w′ −w||2
s.t. A′w′ = u′, the solution of which is w − A†(A′w − u′) where A† = A′T (A′A′T)−1 is the
pseudo-inverse of A′. This pseudo-inverse can be computed efficiently, because all but (at most) two
rows of A′ are “one-hot”.

The exact projection approach relies on dynamically shaped A′ and u′, support for which is limited in
contemporary differentiable programming libraries such as Tensorflow [53] and JAX [46]. Therefore,
we take an alternative approach and enforce the inequalities via using logarthmic barrier functions
(log-barriers) that augment the original loss function by penalizing the weights that are close to the
constraints. Let Ak and uk be the kth row and element of A and u respectively. For the constraint

15

ATkw ≤ uk, we can define a barrier function

φk(w) =

{
− log(uk −ATkw) ATkw < uk
+∞ otherwise

.

Note that we are now dealing with strict inequalities rather than ≤ for convenience. We can then
augment the loss function `(y;w) from Equation 6, incorporating the barriers,

`combined(y;w) = `(y;w) + ξΦ(w) (16)

where Φ(w) =
∑
k φk(w) and ξ > 0 is the barrier constant. Note that `combined(y;w) is convex in w

as each φk(w) is convex.

The weight updates can be carried out via w ← w − η∇`combined(y;w). For sufficiently small η and
sufficiently large ξ, we will not need the projection step in Line 11 of Algorithm 1, as the constraints
are incorporated into the loss function. However, in practice, we need backstops in case weights pass
through the barriers due to large gradient steps. We implement the backstops by first hard-clipping
each weight to be in [0, b] then by enforcing σ−2min > σ−2POG = wTσ−2i > σ−2max, which corresponds to
performing a single linear projection if the inequality is violated.

F Denoising Density Estimation

With p̂ denoting a Gaussian likelihood function (as parameterized by a G-GLN) and pd(x) an
unknown data-generating distribution, suppose we add isotropic Gaussian noise of variance λ to
sampled data points and then denoise them back to the original samples. The expected loss is

Ex∼pd(x)
[
Eξ∼N (0,λ) [ln p̂(x | z, x+ ξ)]

]
= Ex∼pd(x)

[
Eξ∼N (0,λ)

[
ln

exp(−‖x− µ(x+ ξ)‖2/(2σ2))

(2πσ2)(d/2)

]]
= Ex∼pd(x)

[
Eξ∼N (0,λ)

[
−‖x− µ(x+ ξ)‖2/(2σ2(x+ ξ))− (d/2) ln(2πσ2(x+ ξ))

]]
.

Taking the variational derivative of this expected loss with respect to our G-GLN demonstrates the
relationship between the value of the optimal output µ(x) and the gradient of the log data density:

0 = Eξ
[
pd(x− ξ)(x− ξ − µ(x))

]
= Eξ

[
(pd(x)−∇xpd(x) · ξ +O(‖ξ‖2))(x− ξ − µ(x))

]
=⇒ µ(x) =

pd(x)x+∇xpd(x)λ

pd(x)

= x+ λ∇x ln pd(x), (17)

in the limit ||ξ||2 → 0. Therefore, we can approximate the gradient field as (µ(x)− x)/λ, which we
use in the main text. Hamiltonian Monte Carlo sampling then takes as input this gradient estimate for
∇x ln pd(x). Denoising iteratively applies the G-GLN, trained on denoising, to an arbitrary starting
point x→ µ(x)→ µ(µ(x)), and so on.

G Additional Results

G.1 Contextual Bandits

In [1] the authors present a B-GLN based algorithm, GLCB, that achieves state-of-the-art results
across a suite of contextual bandits tasks with both binary and real-valued rewards. The former uses
the B-GLN formulation directly. For the latter, the authors present an algorithm called CTree for
tree-based discretization, i.e. using b−1 B-GLNS arranged within a binary tree structure to model the
target distribution over b bins. In both cases, GLCB leveraged properties of GLN half-space gating to
derive a UCB-like [38] rule based on “pseudo-counts" (inspired by [54]) to help guide exploration.
At each timestep t, the GLCB policy [1] greedily maximizes a linear combination of the expected

action reward as predicted by a GLN and an exploration bonus
√

log t/N̂(st, a) where N̂(st, a) is
the pseudocount term capturing how similar the current context-action pair 〈st, a〉 is to the previously
seen data. This term is computed at no additional cost by utilizing gating functions of GLN neurons.

16

Table 3: Performance of the GLN-based GLCB algorithms for the contextual bandits tasks and
competitors described in [1, 37]. G-GLCB uses a single G-GLN instead of a CTree of 7 equivalent-
sized B-GLNs (italics), the method described in [1], to model continuous-valued results. Results are
mean and standard error of cumulative rewards over 500 random environment seeds.

Binary targets Continuous targets

Algorithm adult census covertype statlog financial jester wheel

G-GLN - - - - 3018±3 3301±4 4386±11
B-GLN 678±5 2718±3 2715±12 4863±1 3038±3 3298±3 4432±11

BBAlphaDiv 18±2 932±12 1838±9 2731±15 1860±1 3112±4 1776±11
BBB 399±8 2258±12 2983±11 4576±10 2172±18 3199±4 2265±44
BootRMS 676±3 2693±3 3002±7 4583±11 2898±4 3269±4 1933±44
Dropout 652±5 2644±8 2899±7 4403±15 2769±4 3268±4 2383±48
LinFullPost 463±2 1898±2 2821±6 4457±2 3122±1 3193±4 4491±15
NeuralGreedy 598±5 2604±14 2923±8 4392±17 2857±5 3266±8 1863±44
NeuralLinear 391±2 2418±2 2791±6 4762±2 3059±2 3169±4 4285±18
ParamNoise 273±3 2284±5 2493±5 4098±10 2224±2 3084±4 3443±20
constSGD 107±3 1399±22 1991±9 3896±18 1862±1 3136±4 2265±31

Table 3 expands on the results in Section 6.3 to demonstrate the performance of GLNs for both binary
and continuous-valued rewards. It is evident that GLNs achieve state-of-the-art performance in both
regimes. Moreover, using the natural G-GLN formulation described in this paper is able to match
the previous performance of a CTree of B-GLNs with just a single equivalent-sized network (an
order-of-magnitude reduction in memory and computation cost).

G.2 2D Denoising

Figure 4 shows 24 steps of denoising starting from a grid for the Swiss Roll gradient fields. At larger
batch sizes and lower learning rates, and with more denoising steps (lower right panel), the MLP
control begins to approximate the Swiss Roll data manifold.

G.3 MNIST Infilling

Figure 5 shows the result of 3000 steps of denoising of MNIST train and test digits, after training
for 1 epoch at batch size 1. This shows that the network, which has been trained on denoising
small additive Gaussian noise perturbations to train set digits, is able to denoise unseen binary mask
perturbations on unseen test set digits. This occurs over many iterative steps of denoising, much as
the grid in Figure 4 is iteratively denoised to the Swiss Roll data manifold.

H Experimental Details

H.1 UCI regression details

Each G-GLN was trained with batch size 1 for 40 epochs of a randomly selected 90% split of the
dataset (except DO which was trained for 400). The predictive RMSE is evaluated for the remaining
10%, with the mean and standard error reported across 20 different splits (5 for Protein Structure).
Similarly to [31], we normalize the input features and targets to have zero mean and unit variance
during training. Target normalization is removed for evaluation.

For each UCI dataset we train a G-GLN with 12 layers of 256 neurons. Context functions are
sampled as described in Section 4 with an additive bias of 0.05. The switching aggregation scheme
was used to generate the output distribution. In [31] the authors specify that 30 configurations of
learning rate, momentum and weight decay parameters are tuned for each task for VI, BP and PBP.
We likewise search 12 configurations of learning rate ∈ {1e−3, 3e−3, 1e−2} and context dimension
∈ {4, 6, 8, 10} for each task and present the best result.

17

Figure 4: G-GLNs (top set of rows) and MLPs (bottom two sets of rows) are trained on 1-step
denoising of added Gaussian noise using data points sampled from a Swiss Roll. Subsequently,
iterative multi-step denoising starting from a grid reconstructs an approximation of the original Swiss
Roll data manifold. BS denotes batch size, LR denotes learning rate. The initial grid followed by 24
steps of denosing are shown left to right and top to bottom.

H.2 SARCOS details

The G-GLN was trained for 2000 epochs using the SARCOS test and train splits defined in [35]. Inputs
were normalized to have zero mean and unit variance during training, with the target component-wise
linearly rescaled to [−1, 1]. Fixed bias Gaussians were placed with means ±7 and variance 5 along
each of the 7 output coordinate axes. The network base model uses Gaussians with standard deviation
1 centered on each component xi of the input vector.

The G-GLN was trained with 4 layers of 50 neurons, context dimension 14, and learning rate 0.01.
Context functions are sampled as described in Section 4 with an additive bias of 0.05. The switching
aggregation scheme was used to generate the output distribution. We enforce weights to be in
[−105, 105] and mixed variances σ2

POG to be in [1, 109] by performing projections when needed.

H.3 Contextual bandits details

We adopt the experimental configuration described in [1], including inputs and target scaling and
method of hyperparameter selection. Performance was evaluated across 500 seeds per dataset. The
G-GLN was trained with shape [1000, 100, 1] with context dimension 1 and a learning rate of 0.003.
A single output layer with a single neuron was used to generate the output distribution. Context
functions are sampled as described in Section 4 with an additive bias of 0.05. For the GLCB algorithm
a UCB exploration bonus of 1 was chosen with mean-based pseudo-count aggregation.

18

Figure 5: Further MNIST infilling examples. G-GLN was trained for 1 epoch at batch size 1 by
denoising a small additive Gaussian noise pattern from each train image. Subsequently, it can remove
unseen binary occulsion masks either from train images (left) or unseen test images (right). Orig:
original image. Mask: masked image: Fill: filled image. Examples were randomly chosen.

19

H.4 Denoising details

The MLP control for Swiss Roll denoising was a ReLU network with hidden layer sizes 64 and 32
and output size 3 (2D µ and 1D σ2). Both were trained with Gaussian log likelihood. The MLP was
evaluated with learning rates of both 0.01 or 0.0005 for comparison. For Hamiltonian Monte Carlo
(HMC) sampling, 15000 HMC steps were performed, with each step consisting of 150 sub-steps and
ε = 0.003. No acceptance criterion was used. Particle mass was 1.

For the MNIST image denoising, the G-GLN was trained with 6 layers of batch size 50 with context
dimension of 10 and a learning rate of 0.05. The network base model uses Gaussians with variance
0.3 centered on each component xi of the input vector. A single output layer with a single neuron
was used to generate the output distribution.

For MNIST denoising, context functions are sampled as described in Section 4 with a normally
distributed additive bias of scale 0.05, while for Swiss Roll denoising in 2D, the additive bias scale
was 0.5 to ensure proper tiling of the low-dimensional input space with hyperplane regions.

The G-GLN was trained in a single pass through all train points with batch size 1, with data represented
as flat 282 = 784 dimensional vectors. The model was trained to remove a single additive Gaussian
noise pattern for each train image during training, and was then tested on MNIST in-filling using an
independent test set of images occluded by unseen randomly positioned binary masks. To estimate a
gradient direction for infilling, a single step of the trained denoising procedure was performed on
each successive image, then a step of length 0.002 was taken interpolating between the image and
the denoised prediction, after which pixels outside the masked region were projected back to their
original values. This was repeated iteratively up to 3000 times.

For both Swiss Roll and MNIST denoising, target data was component-wise linearly scaled to [−1, 1].
For MNIST, we first added Gaussian noise of standard deviation 75 to the first 10k train points to
define an appropriate scaling range for the linear scaler. All weights were kept positive by clipping to
a maximum of 1000. A minimum σ2 was enforced by clipping during inference but not updating.
Log-barriers were not used.

20

