
Supplement to Node Classification on Graphs with
Few-Shot Novel Labels via Meta Transformed

Network Embedding

1 Additional Algorithm Details

1.1 Details of the Transformation Function

Self-attention

Support nodes

Query node

Layer Normalization

Add

Feed-Forward Network

Add

Block 1

Block 2

Block N

Adapted support nodes

Layer Normalization

Adapted query node

Figure 1: Illustration of the transformation function.
The support nodes are either positive or negative.

For the transformation function, we stack
multiple computation blocks as shown in
Fig. 1. The stacking mechanism helps
the function capture comprehensive rela-
tionships between nodes such that the per-
formance is boosted. In each computa-
tion block, there are mainly two modules.
The first is a self-attention module used
to capture the relationships between input
nodes, and the second is a node-wise fully-
connected feed-forward network used to
introduce nonlinearity. In addition, follow-
ing [11], we employ a residual connection
around each of the self-attention module
and the feed-forward network and then per-
form layer normalization, in order to make
the optimization faster and more stable.

The detailed architecture of the self-attention module is illustrated in Fig. 2. Following [11], we extend
the self-attention with multiple parallel attention heads using multiple sets of trainable matrices (i.e.,
Wh

Q,W
h
K ,W

h
V ∈ R d′

H×d where h = 1, . . . ,H). In each attention head (i.e., each scaled dot-product
attention), for any two nodes vi, vj ∈ {vq} ∪ VSm

i
(vi and vj could be the same and m ∈ {+,−})

within task Ti, we first calculate the attention ωij that vi pays to vj as follows:

ωh
ij =

exp((Wh
Qui) · (Wh

Kuj)/
√
d′/H)∑

vk∈{vq}∪VSm
i

exp((Wh
Qui) · (Wh

Kuk)/
√
d′/H)

, (1)

where “·” denotes the dot product operator. Then, we compute the output vector of the query node vq
as

ũi,h
q,m = ωh

qqW
h
V uq +

∑
vk∈VSm

i

ωh
qkW

h
V uk, (2)

and compute the output vector of each support node vk ∈ VSm
i

tailored for the query node vq as

ũi,h
k,q = ωh

kkW
h
V uk +

∑
vj∈
(
VSm

i
\{vk}

)
∪{vq}

ωh
kjW

h
V uj . (3)

Finally, we concatenate the output vectors of all attention heads and use a trainable matrix WO ∈
Rd×d′ to project the concatenated vectors into the original space with the input dimension:

ũ(i)
q,m = WO(ũi,1

q,m ⊕ · · · ⊕ ũi,H
q,m), and ũ

(i)
k,q = WO(ũi,1

k,q ⊕ · · · ⊕ ũi,H
k,q),∀vk ∈ VSm

i
. (4)

Adapted
query node

Outputs

Concat

Linear mapping

Support nodes

Query node

Scaled Dot-Product

Attention 1

Scaled Dot-Product

Attention H

Scaled Dot-Product

Attention h

Adapted
support nodes

Figure 2: Illustration of the self-attention module. The support nodes are either positive or negative.

The multiple parallel attention heads allow the function to jointly attend to information from different
input nodes for each input node, and thus help the function better exploit the relationships between
input nodes.

1.2 Pseudo Codes

The optimization procedure is outlined in Algorithm 1. The procedure of using the learned model for
few-shot novel labels is presented in Algorithm 2.

1.3 Time Complexity Analysis

For the structural module, we optimize the objective function in a way similar to [9] and the time
complexity is O(kd|E|) where k is the number of negative nodes at each iteration, d is the dimension
of node embeddings, and |E| is the number of edges. For the meta-learning module, the time
cost mainly comes from the embedding transformation through the self-attention architecture [11].
Specifically, let m be the number of query nodes and n be the number of positive or negative support
nodes. Calculating the query, key, and value vectors takes O(mndd′), where d′ is the dimension of
the query, key, and value vectors. Calculating the attention weights and the weighted sum of value
vectors takes O(mn2d′). Calculating the final output vectors takes O(mndd′). Overall, the time
complexity of MetaTNE is O(kd|E|+mndd′ +mn2d′). Note that we can take advantage of GPU
acceleration for optimization in practice.

2 Details of the Experimental Settings

2.1 Datasets

Four datasets are used in our experiments.

BlogCatalog [10]: This dataset is the friendship network crawled from the BlogCatalog website. The
friendships and group memberships are encoded in the edges and labels, respectively.1

Flickr [10]: This dataset is the friendship network among the bloggers crawled from the Flickr web-
site. The friendships and group memberships are encoded in the edges and the labels, respectively.2

PPI [2]: This dataset is a protein-protein interaction network for Homo Sapiens. Different labels
represent different function annotations of proteins.3

Mashup [13]: This dataset is a protein-protein interaction network for human. Different labels
represent different function annotations of proteins.4

1http://socialcomputing.asu.edu/datasets/BlogCatalog3
2http://socialcomputing.asu.edu/datasets/Flickr
3https://snap.stanford.edu/node2vec/
4https://github.com/xiangyue9607/BioNEV

2

http://socialcomputing.asu.edu/datasets/BlogCatalog3
http://socialcomputing.asu.edu/datasets/Flickr
https://snap.stanford.edu/node2vec/
https://github.com/xiangyue9607/BioNEV

Algorithm 1 The Optimization Procedure of MetaTNE

Input: Graph G, total number of steps N , decay rate γ, decay period Ndecay

Output: The embedding matrix U ∈ R|V |×M , the function Tr(·)
1: Randomly initialize U and the parameters Θ of Tr(·)
2: for step = 0 to N do
3: Calculate the threshold τ = 1/(1 + γ

⌊
step
Ndecay

⌋
)

4: Draw a random number r ∼ Uniform(0, 1)
5: if r < τ then . Optimize the structural module
6: Sample a batch of pairs {(vi, vj)|vi ∈ V, vj ∈ N (vi)}
7: Update U to optimize the objective function:

min
∑
vi∈V

∑
vj∈N (vi)

logP(vj |vi) (5)

8: else . Optimize the meta-learning module
9: Sample a batch of tasks Ti from Yknown

10: for all Ti = (Si,Qi, yi) do
11: for all vq ∈ Qi do
12: Calculate the adapted embeddings {ũ(i)

k,q|vk ∈ VSm
i
} and ũ

(i)
q,m, where m ∈ {+,−},

via Eqn. (4)
13: Calculate the prototypes c̃(i)

+,q and c̃
(i)
−,q:

c̃(i)
m,q =

1

|Smi |
∑

vk∈VSm
i

ũ
(i)
k,q, m ∈ {+,−} (6)

14: Calculate the predicted probability that vq holds yi:

ˆ̀
vq,yi

=
exp(−dist(ũ

(i)
q,+, c̃

(i)
+,q))∑

m∈{+,−} exp(−dist(ũ
(i)
q,m, c̃

(i)
m,q))

(7)

15: end for
16: end for
17: Update U and Θ to optimize the objective function:

min
U,Θ

∑
Ti

∑
(vq,`vq,yi

)∈Qi

L(ˆ̀
vq,yi , `vq,yi) + λ

∑
‖Θ‖22, (8)

18: end if
19: end for

Algorithm 2 Applying MetaTNE to Few-Shot Novel Labels

Input: The embedding matrix U, the function Tr(·), a novel label y ∈ Ynovel, associated positive
support nodes VS+ and negative support nodes VS− , query nodes VQ

Output: The predicted probability ˆ̀
vq,y for each query node vq

1: Look up in U to get the support and query embeddings uk,uq .
2: for vq in VQ do
3: Adapt vq together with VS+ according to Eqn. (4) and obtain adapted embeddings {ũq,+} ∪

{ũk,q|vk ∈ VS+}.
4: Adapt vq together with VS− according to Eqn. (4) and obtain adapted embeddings {ũq,−} ∪

{ũk,q|vk ∈ VS−}.
5: Calculate the positive and negative prototypes c̃m,q,m ∈ {+,−} for classification according

to Eqn. (6).
6: Calculate the predicted probability with c̃m,q and ũq,m according to Eqn. (7).
7: end for

3

2.2 Baselines

The following baselines are considered:

Label Propagation (LP) [15]: This method is a semi-supervised learning algorithm that estimates
labels by propagating label information through a graph. It assigns a node the label which most of its
neighborhoods have and propagates until no label is changing.

LINE [9]: This method first separately learns node embeddings by preserving 1- and 2-step neigh-
borhood information between nodes and then concatenates them as the final node embeddings.

Node2Vec [2]: This method converts graph structure to node sequences by mixing breadth- and
depth-first random walk strategies and learns node embeddings with the skip-gram model [8].

GCN [4]: This method is a semi-supervised method that uses a localized first-order approximation
of spectral graph convolutions to exploit the graph structure. Here we use the learned Node2Vec
embeddings as the input feature matrix of GCN.

Planetoid [12]: This is a semi-supervised method that learns node embeddings by using them to
jointly predict node labels and node neighborhoods in the graph.

Meta-GNN [14]: This method directly applies MAML [1] to train GCN [4] in a meta-learning
manner. Similarly, we use the learned Node2Vec embeddings as the input feature matrix of GCN.

Baseline Evaluation Procedure. We assess the performance of the baselines on the node classifica-
tion tasks sampled from the test labels as follows: (1) For LP, we propagate the labels of the support
nodes over the entire graph and inspect the predicted labels of the query nodes for each test tasks; (2)
For each unsupervised network embedding method, we take the learned node embeddings as features
to train a logistic regression classifier with L2 regularization for each test task. We use the support set
to train the classifier and then predict the labels of the query nodes; (3) For each semi-supervised
network embedding method, we first use the training labels to train the model for multi-label node
classification. Then, for each test task, we fine-tune the model by substituting the final classification
layer with a binary classification layer. Analogous to (2), we use the support set to train the new layer
and then predict the labels of the query nodes; (4) For Meta-GNN, we first employ MAML [1] to
learn a good initialization of GCN on the training tasks (binary node classification tasks). Then, for
each test task, we use the support set to update the GCN from the learned initialization and apply the
adapted GCN to the query nodes.

2.3 Parameter Settings

For LP, we use an open-source implementation5 and set the maximum iteration number to 30. For
fair comparisons, we set the dimension of node representations to 128 for LINE, Node2vec, and
Planetoid. For LINE, we set the initial learning rate to 0.025 and the number of negative samples
to 5. For Node2vec, we set the window size to 10, the length of each walk to 40, and the number
of walks per node to 80. The best in-out and return hyperparameters are tuned on the validation
tasks with a grid search over p, q ∈ {0.25, 0.5, 1, 2, 4}. For Planetoid, we use the variant Planetoid-G
since there are no input node features in our datasets. We tune the respective batch sizes and learning
rates used for optimizing the supervised and the structural objectives based on the performance
on the validation tasks. For GCN, we use a two-layer GCN with the number of hidden units as
128 and ReLU nonlinearity, and tune the dropout rate, learning rate, and weight decay based on
the performance on the validation tasks. and set other hyperparameters as the original paper. For
Meta-GNN6, we also use a two-layer GCN with 128 hidden units and ReLU nonlinearity. We set
the number of inner updates to 2 due to the limitation of GPU memory and tune the fast and meta
learning rates based on the performance on the validation tasks. For Planetoid, GCN, and Meta-GNN,
we apply the best performing models on the validation tasks to the test tasks.

For our proposed MetaTNE, there are three parts of hyperparameters. In the structural module, we
need to set the size d of node representations and sample N1 node pairs at each training step. We
also sample Nneg negative nodes per pair to speed up the calculation as in [9]. In the meta-learning
module, we sample N2 training tasks at each training step. The hyperparameters involved in the

5https://github.com/yamaguchiyuto/label_propagation
6Since the authors do not provide the implementation that uses GCN as the learner, we implement it on the

basis of the released code at https://github.com/ChengtaiCao/Meta-GNN to perform experiments.

4

https://github.com/yamaguchiyuto/label_propagation
https://github.com/ChengtaiCao/Meta-GNN

Table 1: The hyperparameter search space.
Hyperparameter Values Hyperparameter Values

N1 {512, 1024, 2048} L {1, 2, 3}
N2 {32, 64, 128} λ {0.001, 0.01, 0.1}
H {1, 2, 4} α1 {0.0001, 0.001}
d′ {128, 256} α2 {0.0001, 0.001}
dff {256, 512} Ndecay {500, 1000, 1500, 2000}

transformation function include the number H of parallel attention heads, the size d′/H of the query,
key, and value vectors, the size dff of the hidden layer in the two-layer feed-forward network, the
number L of stacked computation blocks. Besides, we apply dropout to the output of each of the
self-attention modules and the feed-forward networks before it is added to the corresponding input
and normalized, and the dropout rate is denoted by Pdrop. Another hyperparameter is the weight
decay coefficient λ. In the optimization module, we use the Adam optimizer [3] to optimize the
structural and the meta-learning modules with learning rates of α1 and α2, respectively. In addition,
we have the decay rate γ and the decay period Ndecay to control the optimization of the structural and
meta-learning modules.

For all four datasets, we set d = 128, Nneg = 5, Pdrop = 0.1, and γ = 0.1. We tune other
hyperparameters on the validation tasks over the search space shown in Table 1. We utilize the Ray
Tune library [6] with asynchronous HyperBand scheduler [5] to accelerate the searching process.
Note that, for each dataset, we only search the best hyperparameters with K∗,+ = 10 and K∗,− = 20
for both training and test tasks, and directly apply these hyperparameters to other experimental
scenarios. The resulting hyperparameters are available in our attached code.

3 Additional Experiments

3.1 Full Results of Overall Comparisons

The full results of overall comparisons in our original paper are presented in Table 2 in the form of
mean± std. Overall, we observe that our proposed MetaTNE achieves comparable or even lower
standard deviation, which demonstrates the statistical significance of the superiority of MetaTNE.

3.2 The Performance w.r.t. the Numbers of Positive and Negative Nodes

To further investigate the performance under different combinations of K∗,+ and K∗,−, we conduct
experiments with K∗,+ fixed at either 10 or 20 while varying K∗,− from 10 to 50 for both training
and test tasks. Figure 3 gives the performance comparisons of MetaTNE and the best performing
baseline (i.e., Planetoid) in terms of F1 on BlogCatalog dataset. We observe that Planetoid and
MetaTNE achieve comparable performance when K∗,+ is the same as or larger than K∗,−, while the
performance gap between MetaTNE and Planetoid gradually increases as the ratio of K∗,+ to K∗,−
decreases, which demonstrates the practicability of our method since the positive nodes are relatively
scarce compared with the negative ones in many realistic applications.

10 20 30 40 50
K ,

0.0

0.2

0.4

0.6

F 1

MetaTNE
Planetoid

(a) K∗,+ = 10.

10 20 30 40 50
K ,

0.0

0.2

0.4

0.6

0.8

F 1

MetaTNE
Planetoid

(b) K∗,+ = 20.

Figure 3: The performance w.r.t. the numbers of positive and negative nodes on BlogCatalog dataset.

5

Table 2: Results with standard deviation on few-shot node classification tasks with novel labels.
OOM means out of memory (16 GB GPU memory).

(a) K∗,+ = 10 and K∗,− = 20.

Method BlogCatalog Flickr

AUC F1 Recall AUC F1 Recall

LP 0.6422±0.0289 0.1798±0.0198 0.2630±0.0309 0.8196±0.0175 0.4321±0.0392 0.4989±0.0492

LINE 0.6690±0.0323 0.2334±0.0499 0.1595±0.0403 0.8593±0.0145 0.6194±0.0334 0.5418±0.0382

Node2vec 0.6697±0.0325 0.3750±0.0478 0.2940±0.0432 0.8504±0.0151 0.6664±0.0284 0.6147±0.0332

Planetoid 0.6850±0.0320 0.4657±0.0437 0.4301±0.0451 0.8601±0.0360 0.6638±0.0796 0.6331±0.0821

GCN 0.6643±0.0288 0.3892±0.0423 0.3379±0.0401 OOM OOM OOM
Meta-GNN 0.6533±0.0362 0.3567±0.0364 0.2962±0.0398 OOM OOM OOM

MetaTNE 0.6986±0.0305 0.5380±0.0342 0.6203±0.0375 0.8462±0.0164 0.7118±0.0223 0.7700±0.0227

%Improv. 1.99 15.53 44.22 -1.62 6.81 21.62

Method PPI Mashup

AUC F1 Recall AUC F1 Recall

LP 0.6285±0.0221 0.2147±0.0384 0.2769±0.0630 0.6488±0.0258 0.3103±0.0414 0.4535±0.0991

LINE 0.6372±0.0270 0.2147±0.0373 0.1456±0.0280 0.6926±0.0354 0.2970±0.0602 0.2142±0.0537

Node2vec 0.6273±0.0258 0.3545±0.0350 0.2860±0.0326 0.6575±0.0303 0.3835±0.0413 0.3147±0.0396

Planetoid 0.6791±0.0251 0.4672±0.0314 0.4411±0.0328 0.7056±0.0223 0.4825±0.0287 0.4218±0.0334

GCN 0.6596±0.0223 0.4176±0.0335 0.3729±0.0327 0.6910±0.0248 0.4065±0.0417 0.3607±0.0396

Meta-GNN 0.6537±0.0307 0.3964±0.0343 0.3373±0.0405 0.7093±0.0317 0.4689±0.0389 0.4202±0.0384

MetaTNE 0.6865±0.0205 0.5188±0.0209 0.5621±0.0311 0.7645±0.0251 0.5764±0.0291 0.5566±0.0337

%Improv. 1.09 11.04 27.43 7.78 19.46 22.73

(b) K∗,+ = 10 and K∗,− = 40.

Method BlogCatalog Flickr

AUC F1 Recall AUC F1 Recall

LP 0.6421±0.0288 0.0554 ±0.0118 0.0727±0.0158 0.8253±0.0156 0.3055±0.0413 0.3040±0.0485

LINE 0.6793±0.0320 0.0529±0.0316 0.0328±0.0216 0.8644±0.0139 0.4154±0.0471 0.3485±0.0471

Node2vec 0.6792±0.0314 0.1982±0.0516 0.1340±0.0398 0.8558±0.0150 0.5295±0.0381 0.4602±0.0420

Planetoid 0.6981±0.0315 0.2980±0.0550 0.2319±0.0507 0.8728±0.0382 0.5040±0.0790 0.4461±0.0741

GCN 0.6794±0.0302 0.2104±0.0347 0.1583±0.0268 OOM OOM OOM
Meta-GNN 0.6724±0.0396 0.2152±0.0578 0.1618±0.0546 OOM OOM OOM

MetaTNE 0.7139±0.0309 0.4398±0.0401 0.5819±0.0451 0.8505±0.0154 0.6220±0.0245 0.7460±0.0523

%Improv. 2.26 47.58 150.93 -2.55 17.47 62.10

Method PPI Mashup

AUC F1 Recall AUC F1 Recall

LP 0.6298±0.0228 0.0773±0.0231 0.0748±0.0277 0.6534±0.0259 0.1156±0.0276 0.1284±0.0509

LINE 0.6423±0.0268 0.0496±0.0193 0.0300±0.0122 0.7009±0.0345 0.0956±0.0489 0.0617±0.0348

Node2vec 0.6309±0.0264 0.1894±0.0373 0.1306±0.0286 0.6643±0.0311 0.2070±0.0417 0.1447±0.0333

Planetoid 0.6879±0.0250 0.3100±0.0368 0.2523±0.0323 0.7095±0.0223 0.3279±0.0298 0.2551±0.0278

GCN 0.6608±0.0225 0.2531±0.0353 0.1974±0.0268 0.7007±0.0245 0.2558±0.0237 0.2098±0.0169

Meta-GNN 0.6617±0.0309 0.2575±0.0332 0.2088±0.0396 0.7140±0.0339 0.3412±0.0554 0.2864±0.0635

MetaTNE 0.7039±0.0218 0.4298±0.0242 0.5327±0.0420 0.7684±0.0244 0.4814±0.0318 0.4816±0.0393

%Improv. 2.33 38.65 111.14 7.62 41.09 68.16

3.3 The Performance w.r.t. the Number of Query Nodes

In the above experiments, we presume that, for each few-shot node classification task, the support
and the query sets have the same numbers of positive and negative nodes following the standard
protocol of meta-learning (called the standard-setting). However, in practice, the query set could have
different numbers of positive and negative nodes as well as a different ratio of the number of positive
nodes to the number of negative nodes compared to the support set. Thus, we further examine how
the number of query nodes influences the performance. Towards this end, we sample additional test

6

10 20 30 40 50
K test
Q,−

0.0

0.2

0.4

0.6

F 1

MetaTNE Planetoid

(a) Ktest
Q,+ = 10.

10 20 30 40 50
K test
Q,−

0.0

0.2

0.4

0.6

0.8

F 1

MetaTNE Planetoid

(b) Ktest
Q,+ = 20.

Figure 4: The performance w.r.t. the number of query nodes on PPI dataset.

tasks by varying the numbers of positive and negative nodes in the query set (i.e., K test
Q,+ and K test

Q,−),
with the numbers of positive and negative nodes in the support set fixed at 10 and 30, respectively
(i.e., K test

S,+ = 10 and K test
S,− = 30), and then compare the performance on these tasks. This setting is

called the generalized-setting. Note that here we only alter the sampling of test tasks as described
above and the training tasks are always sampled under the condition that both the support and query
sets contain 10 positive and 30 negative nodes (i.e., K train

∗,+ = 10 and K train
∗,− = 30). Figure 4 shows the

experimental results on PPI dataset.

We observe that MetaTNE consistently yields better performance than Planetoid under different
combinations of K test

Q,+ and K test
Q,−. In particular, jointly analyzing Table 2 and Fig. 4a, MetaTNE

achieves almost the same performance in both the standard- and generalized-settings when the query
set contains 10 positive nodes as well as 20 or 40 negative nodes, which indicates that to some extent
MetaTNE is not sensitive to the choice of K∗,+ and K∗,− for sampling training tasks as well as K test

S,+
and K test

S,+ and demonstrates the robustness of MetaTNE. On the other hand, it essentially becomes
easier to classify the query nodes as the ratio of K test

Q,+ to K test
Q,− increases, whereas the performance

of Planetoid does not change markedly as K test
Q,− decreases in Fig. 4, which evidences that Planetoid

tends to overfit the training tasks (e.g., the ratio of the number of positive nodes to the number of
negative nodes).

3.4 The Performance with Fewer Positive Nodes

We further examine the performance of different methods by using fewer positive nodes and conduct
experiments with K∗,+ set to 5 and K∗,− set to 10 or 20. Table 3 reports the experimental results
on BlogCatalog dataset. From Table 3, we observe similar results to Table 2 and MetaTNE still
significantly outperforms all other methods in the case that there are fewer positive nodes.

Table 3: Results of fewer positive nodes on BlogCatalog dataset.

Method K∗,+ = 5,K∗,− = 10 K∗,+ = 5,K∗,− = 20

AUC F1 Recall AUC F1 Recall

LP 0.6231±0.0284 0.1753±0.0168 0.2831±0.0279 0.6226±0.0288 0.0567±0.0101 0.0930±0.0159

LINE 0.6355±0.0295 0.1296±0.0379 0.0884±0.0291 0.6432±0.0300 0.0116±0.0141 0.0076±0.0098

Node2vec 0.6384±0.0299 0.2912±0.0440 0.2267±0.0387 0.6451±0.0305 0.1017±0.0372 0.0689±0.0273

Planetoid 0.6473±0.0303 0.4221±0.0408 0.4052±0.0437 0.6583±0.0318 0.2305±0.0509 0.1853±0.0470

GCN 0.6379±0.0308 0.3376±0.0473 0.3015±0.0455 0.6524±0.0312 0.1590±0.0492 0.1239±0.0408

Meta-GNN 0.6392±0.0362 0.3523±0.0375 0.3152±0.0468 0.6552±0.0399 0.1719±0.0612 0.1485±0.0598

MetaTNE 0.6546±0.0286 0.4523±0.0371 0.4842±0.0469 0.6756±0.0295 0.3730±0.0387 0.4539±0.0505

%Improv. 1.13 7.15 19.50 2.63 61.82 144.95

3.5 Visualization

To better demonstrate the effectiveness of the transformation function, we select two typical query
nodes from the test tasks on Flickr dataset and visualize the relevant node embeddings before and
after adaptation with t-SNE [7] in Fig. 5. Note that “Query (+)” and “Query (-)”, respectively, indicate

7

the adapted embeddings of the query node in relation to the positive and negative support nodes in
Eqn. (2). From Fig. 5a where the label of the query node is negative, we see that, before adaptation,
the embedding of the query node is closer to the positive prototype than the negative prototype and
thus misclassification occurs. After adaptation, the distance between “Query (-)” and the negative
prototype is smaller than that between “Query (+)” and the positive prototype and hence the query
node is classified correctly. The similar behavior is observed in Fig. 5b. Moreover, we observe that
the transformation function is capable of either (1) gathering the positive and negative support nodes
into two separate regions as shown in Fig. 5a or (2) adjusting “Query (+)” and “Query (-)” to make
the right prediction when the positive and negative prototypes are close as shown in Fig. 5b. Another
observation is that the transformation function has the tendency of enlarging the distances between
node embeddings to facilitate classification.

100 50 0 50 100

50

0

50

100
Before Adaptation

200 0 200

200

0

200

After Adaptation

(a) The ground-truth of the query node is negative.

100 50 0 50 100100

50

0

50

100

Before Adaptation

200 100 0 100 200
200

100

0

100

After Adaptation

(b) The ground-truth of the query node is positive.

Positive Support Nodes
Negative Support Nodes

Positive Prototype
Negative Prototype

Query
Query (+)

Query (-)

Figure 5: t-SNE visualization of embedding adaptation.

References
[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-

tion of deep networks. In ICML, 2017.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
SIGKDD, 2016.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[5] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin
Recht, and Ameet Talwalkar. Massively parallel hyperparameter tuning. arXiv preprint
arXiv:1810.05934, 2018.

[6] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

[7] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

8

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, 2013.

[9] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In WWW, 2015.

[10] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In KDD, 2009.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[12] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

[13] Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosavinasab, Yungui
Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph embedding on biomedical
networks: Methods, applications, and evaluations. arXiv preprint arXiv:1906.05017, 2019.

[14] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn:
On few-shot node classification in graph meta-learning. In CIKM, 2019.

[15] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, 2003.

9

	Additional Algorithm Details
	Details of the Transformation Function
	Pseudo Codes
	Time Complexity Analysis

	Details of the Experimental Settings
	Datasets
	Baselines
	Parameter Settings

	Additional Experiments
	Full Results of Overall Comparisons
	The Performance w.r.t. the Numbers of Positive and Negative Nodes
	The Performance w.r.t. the Number of Query Nodes
	The Performance with Fewer Positive Nodes
	Visualization

