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Abstract

This paper introduces novel results for the score function gradient estimator of the
importance weighted variational bound (IWAE). We prove that in the limit of large
K (number of importance samples) one can choose the control variate such that the
Signal-to-Noise ratio (SNR) of the estimator grows as

p
K. This is in contrast to the

standard pathwise gradient estimator where the SNR decreases as 1/
p
K. Based on

our theoretical findings we develop a novel control variate that extends on VIMCO.
Empirically, for the training of both continuous and discrete generative models,
the proposed method yields superior variance reduction, resulting in an SNR
for IWAE that increases with K without relying on the reparameterization trick.
The novel estimator is competitive with state-of-the-art reparameterization-free
gradient estimators such as Reweighted Wake-Sleep (RWS) and the thermodynamic
variational objective (TVO) when training generative models.

1 Introduction

Gradient-based learning is now widespread in the field of machine learning, in which recent advances
have mostly relied on the backpropagation algorithm, the workhorse of modern deep learning. In
many instances, for example in the context of unsupervised learning, it is desirable to make models
more expressive by introducing stochastic latent variables. Backpropagation thus has to be augmented
with methodologies for marginalization over latent variables.

Variational inference using an inference model (amortized inference) has emerged as a key method
for training and inference in latent variable models [1–7]. The pathwise gradient estimator, based on
the reparameterization trick [2, 3], often gives low-variance estimates of the gradient for continuous
distributions. However, since discrete distributions cannot be reparameterized, these methods are not
applicable to inference in complex simulators with discrete variables, such as reinforcement learning
or advanced generative processes [8–11]. While the score function (or Reinforce) estimator [12] is
more generally applicable, it is well known to suffer from large variance. Consequently, most of
the recent developments focus on reducing the variance using control variates [13–18] and using
alternative variational objectives [9, 19–21].

Recently, variational objectives tighter than the traditional evidence lower bound (ELBO) have been
proposed [21, 22]. In importance weighted autoencoders (IWAE) [22] the tighter bound comes with
the price of a K-fold increase in the required number of samples from the inference network. Despite
yielding a tighter bound, using more samples can be detrimental to the learning of the inference
model [23]. In fact, the Signal-to-Noise ratio (the ratio of the expected gradient to its standard
deviation) of the pathwise estimator has been shown to decrease at a rate O(K�1/2

) [23]. Although
this can be improved to O(K1/2

) by exploiting properties of the gradient to cancel high-variance
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terms [24], the variational distributions are still required to be reparameterizable. In this work we
introduce OVIS (Optimal Variance – Importance Sampling), a novel score function-based estimator
for importance weighted objectives with improved SNR.

The main contributions of this paper are: 1) A proof that, with an appropriate choice of control
variate, the score function estimator for the IWAE objective can achieve a Signal-to-Noise Ratio
SNR = O(K1/2

) as the number of importance samples K ! 1. 2) A derivation of OVIS, a class
of practical low-variance score function estimators following the principles of our theoretical analysis.
3) State-of-the-art results on a number of non-trivial benchmarks for both discrete and continuous
stochastic variables, with comparison to a range of recently proposed score function methods.

2 Optimizing the Importance Weighted Bound

Importance weighted bound (IWAE) Amortized variational inference allows fitting a latent
variable model p✓(x, z) to the data using an approximate posterior q�(z|x) [2]. By using multiple
importance weighted samples, we can derive a lower bound to the log marginal likelihood that is
uniformly tighter as the number of samples, K, increases [22]. The importance weighted bound
(IWAE) for one data point x is:

LK(x) := E
h
log Ẑ

i
Ẑ :=

1

K

KX

k=1

wk wk :=
p✓(x, zk)

q�(zk|x)
, (1)

where E denotes an expectation over the K-copy variational posterior q�(z1:K |x) :=
QK

k=1 q�(zk|x).
This bound coincides with the traditional evidence lower bound (ELBO) for K = 1. The log
likelihood lower bound for the entire data set is LK(x1:n) =

Pn
i=1 LK(xi). In the following we will

derive results for one term LK = LK(x).

Score function estimator Without making assumptions about the variational distribution, the
gradient of the importance weighted bound (1) with respect to the parameters of the approximate
posterior factorizes as (see Appendix A):

r�LK = E
hX

k
dkhk

i
dk := log Ẑ � vk vk :=

wkPK
l=1 wl

, (2)

where hk := r� log q�(zk|x) is the score function. A Monte Carlo estimate of the expectation in (2)
yields the score function (or Reinforce) estimator.

Control variates The vanilla score function estimator of (2) is often not useful in practice due
to its large sample-to-sample variance. By introducing control variates that aim to cancel out zero
expectation terms, this variance can be reduced while keeping the estimator unbiased.

Given posterior samples z1, . . . , zK ⇠ q�(z1:K |x), let z�k denote [z1, . . . , zk�1, zk+1, . . . , zK ], let
Ek[. . .] and E�k[. . .] be the expectations over the variational distributions of zk and z�k, respectively,
and let {ck}Kk=1 be scalar control variates, with each ck = ck(z�k) independent of zk. Using the
independence of ck and hk for each k, and the fact that the score function has zero expectation, we
have E[ckhk] = E�k[ck]Ek[hk] = 0. Thus, we can define an unbiased estimator of (2) as:

g :=

X
k
(dk � ck)hk (3)

E[g] = E
hX

k
(dk � ck)hk

i
= E

hX
k
dkhk

i
= r�LK . (4)

In the remainder of this paper, we will use the decomposition dk = fk+f�k, where fk = fk(zk, z�k)

and f�k = f�k(z�k) denote terms that depend and do not depend on zk, respectively. This will
allow us to exploit the mutual independence of {zk}Kk=1 to derive optimal control variates.

Signal-to-Noise Ratio (SNR) We will compare the different estimators on the basis of their Signal-
to-noise ratio. Following [23], we define the SNR for each component of the gradient vector as

SNRi :=
|E[gi]|p
Var[gi]

, (5)
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where gi denotes the ith component of the gradient vector.

In Section 3 we derive the theoretical SNR for the optimal choice of control variates in the limit
K ! 1. In Section 4 we derive the optimal scalar control variates {ck}Kk=1 by optimizing the
trace of the covariance of the gradient estimator g, and in Section 6 we experimentally compare our
approach with state-of-the-art gradient estimators in terms of SNR.

3 Asymptotic Analysis of the Signal-to-Noise Ratio

Assuming the importance weights have finite variance, i.e. Var[wk] < 1, we can derive the
asymptotic behavior of the SNR as K ! 1 by expanding log Ẑ as a Taylor series around
Z := p✓(x) =

R
p✓(x, z)dz [23]. A direct application of the pathwise gradient estimator (reparame-

terization trick) to the importance weighted bound results in an SNR that scales as O(K�1/2
) [23],

which can be improved to O(K1/2
) by exploiting properties of the gradient [24]. In the following we

will show that, for a specific choice of control variate, the SNR of the score function estimator scales
as O(K1/2

). Thus, a score function estimator exists for which increasing the number of importance
samples benefits the gradient estimate of the parameters of the variational distribution.

For the asymptotic analysis we rewrite the estimator as g =
P

k

�
�

@ log Ẑ
@wk

wk + log Ẑ � ck
�
hk and

apply a second-order Taylor expansion to log Ẑ. The resulting expression g =
P

k(fk+f�k�ck)hk

separates terms fk that contribute to the expected gradient from terms f�k that have zero expectation
and thus only contribute to the variance (cf. Appendix B):

fk ⇡
w2

k

2K2Z2
(6)

f�k ⇡ logZ �
3

2
+

2

KZ

X
l 6=k

wl �
1

2K2Z2

⇣X
l 6=k

wl

⌘2
. (7)

Since f�k and ck are independent of hk, the expected gradient is (cf. Appendix C.1):

E[g] =
X

k
E[fkhk] ⇡

1

2Z2K
E1

⇥
w2

1h1

⇤
= O(K�1

) , (8)

where E1 denotes an expectation over the first latent distribution q�(z1|x). Since the choice of control
variates ck = ck(z�k) is free, we can choose ck = f�k to cancel out all zero expectation terms. The
resulting covariance, derived in Appendix C.2, is:

Cov[g] = Cov

hX
k
fkhk

i
⇡

1

4K3Z4
Cov1

⇥
w2

1h1

⇤
= O(K�3

) (9)

with Cov1 indicating the covariance over q�(z1|x). Although as we discuss in Section 4 this is not
the minimal variance choice of control variates, it is sufficient to achieve an SNR of O(K1/2

).

4 Optimal Control Variate

The analysis above shows that in theory it is possible to attain a good SNR with the score function
estimator. In this section we derive the optimal (in terms of variance of the resulting estimator)
control variates {ck}Kk=1 by decomposing g =

P
k(fk + f�k � ck)hk as above, and minimizing the

trace of the covariance matrix, i.e. E[||g||2]� ||E[g]||2. Since E[f�khk] and E[ckhk] are both zero,
E[g] = r�LK does not depend on ck. Thus, the minimization only involves the first term:

1

2

@

@ck
E
⇥
||g||2

⇤
= E

h
hT
k

X
l
(fl + f�l � cl)hl

i

= E�k

hX
l
Ek

⇥
flh

T
k hl

⇤
+ (f�k � ck)Ek

⇥
khkk

2
⇤i

.

where Ek and E�k indicate expectations over q�(zk|x) and q�(z�k|x), respectively. Setting the
argument of E�k to zero, we get the optimal control variates ck = ck(z�k) and gradient estimator g:

ck = f�k +

X
l

Ek

⇥
flhT

k hl

⇤

Ek [khkk
2]

(10)

g =

X
k

 
fk �

X
l

Ek

⇥
flhT

k hl

⇤

Ek [khkk
2]

!
hk . (11)
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Applying (11) in practice requires marginalizing over one latent variable and decoupling terms that
do not depend on zk from those that do. In the remainder of this section we will 1) make a series of
approximations to keep computation tractable, and 2) consider two limiting cases for the effective
sample size (ESS) [25] in which we can decouple terms.

Simplifying approximations to Equation (11) First, we consider a term with l 6= k, define
�fl := fl � Ek[fl], and subtract and add Ek[fl] from inside the expectation:

Ek

⇥
flh

T
k

⇤
hl = Ek

⇥
�flh

T
k

⇤
hl + Ek[fl]Ek

⇥
hT
k

⇤
hl = Ek

⇥
�flh

T
k

⇤
hl

where we used the fact that Ek [hk] = 0. The l 6= k terms thus only contribute to fluctuations relative
to a mean value, and we assume they can be neglected.

Second, we assume that |�|, the number of parameters of q�, is large, and the terms of the sum
khkk

2
=
P|�|

i=1 h
2
ki are approximately independent with finite variances �2

i . By the Central Limit
Theorem we approximate the distribution of �khkk

2 := khkk
2
� Ek

⇥
khkk

2
⇤

with a zero-mean
Gaussian with standard deviation

�P|�|
i=1 �

2
i )

1/2. Seeing that Ek

⇥
khkk

2
⇤

is O(|�|), we have

Ek

⇥
fkkhkk

2
⇤

Ek [khkk
2]

= Ek [fk] +
Ek

⇥
fk�khkk

2
⇤

Ek [khkk
2]

= Ek [fk] +O(|�|�1/2
) ,

where we used that the argument in the numerator scales as
�P|�|

i=1 �
2
i

�1/2
= O(|�|1/2).

Finally, the expectation can be approximated with a sample average. Writing fk = fk(zk, z�k) and
drawing S new samples z(1), . . . , z(S)

⇠ q�(z|x):

Ek [fk] ⇡
1

S

SX

s=1

fk(z
(s), z�k) .

This will introduce additional fluctuations with scale S�1/2.

Putting these three approximations together and using dk(zk, z�k) = fk(zk, z�k) + f�k(z�k), we
obtain the sample-based expression of the OVIS estimator, called OVISMC in the following:

OVISMC : g ⇡

X

k

 
dk(zk, z�k)�

1

S

SX

s=1

dk(z
(s), z�k)

!
hk . (12)

Naively, this will produce a large computational overhead because we now have in total KS terms.
However, we can reduce this to O(K+S) because the bulk of the computation comes from evaluating
the importance weights and because the S auxiliary samples can be reused for all K terms.

Effective sample size (ESS) The ESS [25] is a commonly used yardstick of the efficiency of an
importance sampling estimate, defined as

ESS :=
(
P

k wk)
2

P
k w

2
k

=
1P
k v

2
k

2 [1,K] . (13)

A low ESS occurs when only a few weights dominate, which indicates that the proposal distribution q
poorly matches p. In the opposite limit, the variance of importance weights is finite and the ESS will
scale with K. Therefore the limit ESS � 1 corresponds to the asymptotic limit studied in Section 3.

Optimal control for ESS limits and unified interpolation In the following, we consider the two
extreme limits ESS � 1 and ESS ⇡ 1 to derive sample-free approximations to the optimal control.
We can thus in these limits avoid the sample fluctuations and excess computation of OVISMC.

We first consider ESS � 1 and for each k we introduce the unnormalized leave-wk-out approximation
to Ẑ:

eZ[�k] :=
1

K

X

l 6=k

wl such that Ẑ � eZ[�k] =
wk

K
. (14)
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Assuming Var[wk] < 1, this difference is O(K�1
) as K ! 1, thus we can expand log Ẑ around

Ẑ = eZ[�k]. In this limit, the optimal control variate simplifies to (cf. Appendix D.1):

ESS � 1 : ck ⇡ log
1

K � 1

X

l 6=k

wl + log(1�
1

K
) . (15)

When ESS ⇡ 1, one weight is much larger than the others and the assumption above is no longer valid.
To analyze this frequently occurring scenario, assume that k0 = argmaxl wl and wk0 �

P
l 6=k0 wl.

In this limit log Ẑ ⇡ logwk0/K and vk ⇡ �k,k0 and thus dk = logwk0/K � �k,k0 . In Appendix D.2
we show we can approximate Equation (10) with

ESS ⇡ 1 : ck ⇡ log
1

K � 1

X

l 6=k

wl � vk . (16)

We introduce OVIS⇠ to interpolate between the two limits (Appendix D.3):

c�k := log
1

K � 1

X

l 6=k

wl � �vk + (1� �) log

✓
1�

1

K

◆
� 2 [0, 1] . (17)

In this paper we will only conduct experiments for the two limiting cases � = 0, corresponding to
Equation (15), and � = 1 approximating Equation (16). Tuning the parameter � in the range [0, 1]
will be left for future work. We discuss the implementation in the appendix K.

Higher ESS with looser lower bound Empirically we observe that training may be impaired by a
low ESS and by posterior collapse [4, 26–29]. This motivates trading the tight IWAE objective for
a gradient estimator with higher ESS. To that end, we use the importance weighted Rényi (IWR)
bound:

L
↵
K(x) :=

1

1� ↵
E
h
log Ẑ(↵)

i
Ẑ(↵) :=

1

K

X
k
w1�↵

k (18)

which for ↵ 2 [0, 1] is a lower bound on the Rényi objective logE1

⇥
w1�↵

1

⇤
/(1�↵) [30]. The Rényi

objective in itself coincides with log p(x) for ↵ = 0 and is monotonically non-increasing in ↵, i.e. is an
evidence lower bound [30]. So we have a looser bound but higher ESS(↵) = 1/

P
k v

2
k(↵) � ESS(0)

for ↵ 2 [0, 1] with vk(↵) = w1�↵
k /

P
l w

1�↵
l . Furthermore, for ↵ = 1 the bound corresponds to the

ELBO and the divergence DKL(q�(z|x)||p✓(z|x)) is guaranteed to be minimized. In Appendix E we
derive the score function estimator and control variate expressions for L↵

K . The objective can either
be used in a warm-up scheme by gradually decreasing ↵ ! 0 throughout iterations or can be run
with a constant 0 < ↵ < 1.

5 Related Work

The score function estimator with control variates can be used with all the commonly used variational
families. By contrast, the reparameterization trick is only applicable under specific conditions. We
now give a brief overview of the existing alternatives and refer the reader to [31] for a more extensive
review. The importance of handling discrete distributions without relaxations is discussed in [9].

NVIL [13], DARN [17], and MuProp [18] demonstrate that score function estimators with carefully
crafted control variates allow to train deep generative models. VIMCO [14] extends this to multi-
sample objectives, and recycles the Monte Carlo samples z�k to define a control variate ck = ck(z�k).
Unlike OVIS, VIMCO only controls the variance of the term log Ẑ in dk = log Ẑ � vk, leaving vk
uncontrolled, and causing the SNR to decrease with the number of particles K as we empirically
observe in Section 6.1. We provide a detailed review of VIMCO in Appendix F.

The Reweighted Wake-Sleep (RWS) algorithm [20] is an extension of the original Wake-Sleep
algorithm (ws) [19] that alternates between two distinct learning phases for optimizing importance
weighted objectives. A detailed review of RWS and ws is available in Appendix F.

The Thermodynamic Variational Objective (TVO) [21] is a lower bound to log p✓(x) that stems
from a Riemannian approximation of the Thermodynamic Variational Identity (TVI), and unifies the
objectives of Variational Inference and Wake-Sleep. Evaluating the gradient involves differentiating
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through an expectation over a distribution with an intractable normalizing constant. To accommodate
this, the authors propose an estimator that generalizes the score function estimator based on a tractable
covariance term. We review the TVO in more detail in Appendix F.

Given a deterministic sampling path g(✏; ✓) such that z ⇠ p✓(z) and z = g(✏; ✓), ✏ ⇠ p(✏)
are equivalent, one can derive a pathwise gradient estimator of the form r✓Ep✓(z) [f✓(z)] =

Ep(✏) [r✓f✓(g(✏; ✓))]. This estimator – introduced in machine learning as the reparameterization
trick or stochastic backpropagation [2, 3] – exhibits low variance thanks to the structural information
provided by the sampling path. Notably, a zero expectation term can be removed from the estima-
tor [32]. Extending on this, [24] derives an alternative gradient estimator for IWAE that exhibits
SNR ⇠ K1/2, as opposed to SNR ⇠ K�1/2 for the standard IWAE objective [23].

Continuous relaxations of discrete distributions yield a biased low-variance gradient estimate thanks
to the reparameterization trick [16, 33]. Discrete samples can be obtained using the Straight-Through
estimator [5, 34]. The resulting gradient estimate remains biased, but can be used as a control variate
for the score function objective, resulting in an unbiased low-variance estimate of the gradient [15, 35].

6 Experimental Results

We conduct a number of experiments1 on benchmarks that have previously been used to test score
function based estimators. All models are trained via stochastic gradient ascent using the Adam
optimizer [36] with default parameters. We use regular gradients on the training objective for the
generative model parameters ✓. The SNR for ✓ scales as O(K1/2

) [23].

6.1 Asymptotic Variance

Figure 1: Gaussian model. Parameter-wise average of the asymptotic SNR, DSNR and variance
of the gradients of the parameter b for different number of particles K 2 [3, 1000] using 10

4 MC
samples. The dotted lines stand for y = 10

±1K±0.5.

Following [23], we empirically corroborate the asymptotic properties of the OVIS gradient estimator
by means of the following simple model:

z ⇠ N (z;µ, I), x|z ⇠ N (x; z, I), q�(z|x) = N
�
z;Ax+ b, 2

3I
�
.

where x and z are real vectors of size D = 20. We sample N = 1024 points
�
x(n)

 N

n=1
from

the true model where µ?
⇠ N (0, I). The optimal parameters are A?

= I/2, b?
= µ?/2, and

µ?
=

1
N

PN
n=1 x

(n). The model parameters are obtained by adding Gaussian noise of scale ✏ = 10
�3.

We measure the variance and the SNR of the gradients with 10
4 MC samples. We also measured the

directional SNR (DSNR [23]) to probe if our results hold in the multidimensional case.

In Figure 1 we report the gradient statistics for b. We observe that using more samples in the standard
IWAE leads to a decrease in SNR as O(K�1/2

) for both VIMCO and the pathwise-IWAE [23]. The
tighter variance control provided by OVIS leads the variance to decrease almost at a rate O(K�3

),
resulting in a measured SNR not far from O(K1/2

) both for OVISMC and OVIS⇠. This shows that,
despite the approximations, the proposed gradient estimators OVISMC and OVIS⇠ are capable of
achieving the theoretical SNR of O(K1/2

) derived in the asymptotic analysis in Section 3.

1The full experimental framework is available at github.com/vlievin/ovis
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Figure 2: Training of the Gaussian mixture model. Minimum test-diagnostics recorded during training
and training average of the SNR of the gradients of � with M = card(�). In contrast to VIMCO,
OVIS⇠ and OVISMC all benefit from the increase of the particles budget, OVISMC yields the most
accurate posterior among the compared methods.

In Appendix G, we learn the parameters of the Gaussian model using OVIS,RWS,VIMCO and
the TVO. We find that optimal variance reduction translates into a more accurate estimation of the
optimal parameters of the inference network when compared to RWS,VIMCO and the TVO.

6.2 Gaussian Mixture Model

We evaluate OVIS on a Gaussian Mixture Model and show that, unlike VIMCO [9], our method
yields better inference networks as the number of particles K increases. Following [9], we define:

p✓(z) = Cat(z| softmax(✓)) p(x|z) = N
�
x|µz,�

2
z

�
q�(z|x) = Cat (z| softmax (⌘�(x)))

where z 2 {0, . . . , C � 1}, µz = 10z, �z = 5, and C = 20 is the number of clusters. The
inference network ⌘� is parameterized by a multilayer perceptron with architecture 1–16–C and tanh

activations. The true generative model is set to p✓?(z = c) = (c+ 5)/
PC

i=1(i+ 5).

All models are trained for 100k steps with 5 random seeds. We compare OVIS with VIMCO,
RWS with wake-� update, Reinforce, and the TVO. For the latter we chose to use 5 partitions and
�1 = 10

�2, after a hyperparameter search over �1 2 {10
�1, 10�1.5, 10�2, 10�2.5, 10�3

} and {2, 5}
partitions.

Each model is evaluated on a held-out test set of size M = 100. We measure the accu-
racy of the learned posterior q�(z|x) by its average L2 distance from the true posterior, i.e.
1
M

PM
m=1

��q�
�
z|x(m)

�
� p✓?

�
z|x(m)

���
2
. As a sanity check, we assess the quality of the gen-

erative model using ksoftmax(✓)� softmax (✓?)k2. The SNR of the gradients for the parameters �
is evaluated on one mini-batch of data using 500 MC samples.

We report our main results in Figure 2, and training curves in Appendix H. In contrast to VIMCO,
the accuracy of the posteriors learned using OVISMC and OVIS⇠ all improve monotonically with
K and outperform the baseline estimators, independently of the choice of the number of auxiliary
particles S. All OVIS methods outperform the state-of-the-art estimators RWS and the TVO, as
measured by the L2 distance between the approximate and the true posterior.

6.3 Deep Generative Models

We utilize the OVIS estimators to learn the parameters of both discrete and continuous deep generative
models using stochastic gradient ascent. The base learning rate is fixed to 3·10

�4, we use mini-batches
of size 24 and train all models for 4 · 106 steps. We use the statically binarized MNIST dataset [37]
with the original training/validation/test splits of size 50k/10k/10k. We follow the experimental
protocol as detailed in [21], including the � partition for the TVO and the exact architecture of the
models. We use a three-layer Sigmoid Belief Network [38] as an archetype of discrete generative
model [13, 14, 21] and a Gaussian Variational Autoencoder [2] with 200 latent variables. All models
are trained with three initial random seeds and for K 2 {5, 10, 50} particles.

We assess the performance based on the marginal log-likelihood estimate log p̂✓(x) = L5000(x),
that we evaluate on 10k training data points, such as to disentangle the training dynamics from the
regularisation effect that is specific to each method. We measure the quality of the inference network
solution using the divergence DKL (q�(z|x)||p✓(z|x)) ⇡ log p̂✓(x)�L1(x). The full training curves
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Figure 3: Training a Sigmoid Belief Network on Binarized MNIST. (Left) Optimizing for the
importance weighted bound LK using OVIS. (Right) Optimizing for the Rényi importance lower
bound L

↵
K using OVIS with ↵ annealing 0.99 ! 0. The curves are averaged over three seeds and

smoothed for clarity.

Figure 4: Training a one layer Gaussian VAE. Maximum recorded training log p̂✓(x), final estimate
of the bound DKL (q�(z|x)||p✓(z|x)) and training average of the ESS and of the SNR. OVIS yields
similar likelihood performances as the TVO but benefits from a tighter bound thanks to optimizing
for the IWR bound.

– including the test log likelihood and divergences – are available in Appendix J. We will show that
OVIS improves over VIMCO, on which it extends, and we show that combining OVIS⇠ with the
Variational Rényi bound (IWR) as described in Section 4 outperforms the TVO.

6.3.1 Sigmoid Belief Network (SBN)

A. Comparison with VIMCO We learn the parameters of the SBN using the OVIS estimators for
the IWAE bound and use VIMCO as a baseline. We report log p̂✓(x) in the left plot of Figure 3. All
OVIS methods outperform VIMCO, ergo supporting the advantage of optimal variance reduction.
When using a small number of particles K = 5, learning can be greatly improved by using an
accurate MC estimate of the optimal control variate, as suggested by OVISMC(S = 50) which allows
gaining +1.0 nats over VIMCO. While OVIS(� = 0), designed for large ESS barely improved
over VIMCO, the biased OVIS⇠(� = 1) for low ESS performed significantly better than other
methods for K � 10, which coincides with the ESS measured in the range [1.0, 3.5] for all methods.
We attribute the relative decrease of performances observed for OVISMC for K = 50 to posterior
collapse.

B. Training using IWR bounds In Figure 3 (right) we train the SBN using OVIS and the TVO.
OVIS is coupled with the objective L↵

K for which we anneal the parameter ↵ from 0.99 (L0.99
K ⇡ L1)

to 0 (L0
K = LK ) during 1e6 steps using geometric interpolation. For all K values, OVIS outperform

the TVO and OVIS⇠(� = 1) performs comparably with OVISMC.
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6.3.2 Gaussian Variational Autoencoder (VAE)

In Figure 4 we train the Gaussian VAE using the standard pathwise IWAE, Sticking the Landing
(STL) [32], DReG [24], the TVO and OVIS⇠(� = 1).

OVIS is applied to the IWR bound with ↵ = 0.7. As measured by the training likelihood,
OVIS⇠(� = 1) coupled with the IWR bound performs on par with the TVO, which bridges
the gap to the standard pathwise IWAE for K = 50, although different objectives are at play. The
advanced pathwise estimators (STL and DReG) outperform all other methods. Measuring the quality
of the learned proposals q�(z|x) using the KL divergence allows disentangling the TVO and OVIS⇠
methods, as OVIS(� = 1) applied to the IWR bound outputs higher-quality approximate posteriors
for all considered number of particles.

6.4 A final Note on OVIS⇠(� = 1)

OVIS⇠(� = 1) generates training dynamics that are superior to the baseline TVO and to OVISMC

given a comparable particle budget (appendix I). We interpret this result as a consequence of the
ESS-specific design, which also appeared to be robust to the choice of ↵ in the IWR objective. This
also corroborates the results of [32], that suppressing the term �

P
k vkhk from the gradient estimate

improves learning. We therefore recommend the practitioner to first experiment with OVIS⇠(� = 1)

since it delivers competitive results at a reasonable computational cost.

7 Conclusion

We proposed OVIS, a gradient estimator that is generally applicable to deep models with stochastic
variables, and is empirically shown to have optimal variance control. This property is achieved by
identifying and canceling terms in the estimator that solely contribute to the variance. We expect that
in practice it will often be a good trade-off to use a looser bound with a higher effective sample size,
e.g. by utilizing the OVIS estimator with the importance weighted Rényi bound, allowing control
of this trade-off via an additional scalar smoothing parameter. This sentiment is supported by our
method demonstrating better performance than the current state-of-the-art.

8 Financial Disclosure

The PhD program supporting Valentin Liévin is partially funded by Google. This research was
supported by the NVIDIA Corporation with the donation of GPUs.

9 Broader Impact

This work proposes OVIS, an improvement to the score function gradient estimator in the form of
optimal control variates for variance reduction. As briefly touched upon in the introduction, OVIS
has potential practical use cases across several branches of machine learning. As such, the potential
impact of this research is broad, and we will therefore limit the scope of this section to a few clear
applications.

Improved inference over discrete spaces such as action spaces encountered within e.g. model-based
reinforcement learning has the potential of reducing training time and result in more optimal behavior
of the learning agent. This advancement has the capability to increase efficiency of e.g. autonomous
robots used within manufacturing. Such progress is often coveted due to cost optimization, increased
safety, and reduced manual labor for humans. However, as argued in [39], this development can also
lead to immediate disadvantages such as worker displacement, potentially in terms of both tasks and
geographic location.

Another probable avenue of impact of this research is within machine comprehension. A topic within
this field is reading, with practical applications such as chatbots. This use of machine learning has
seen rapid growth and commercial interest over recent years [40]. Apart from the clear consumer
benefits of these bots, focus has also broadened to other cases of use for social benefits [41]. However,
as with most other machine learning inventions, chatbots can be exploited for malicious purposes
such as automated spread of misinformation, e.g. during elections [42].

9



As with other theoretical advances such as those presented in this paper, consequences are not
immediate and depend on the applications in which the research is utilized. It is our hope that this
research will ultimately be of practical use with a tangible positive impact.
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