
We thank the reviewers for their useful feedback. We will carefully address all raised questions in the camera-ready1

version. Additionally, we will incorporate detailed new material based on the clarifications outlined below. This will2

go along with a treatment of the reviewers’ smaller improvement suggestions on notation and figure design. Further,3

we intend to increase the number of facilitating pointers to the appendix, where detailed theorem formulations and4

supplementary information on numerical quantities such as time interval parameters can be found.5

(Non-) Necessity of Affine-Linear Coefficients (reviewer #3): In our numerical examples, we focus on affine-linear6

coefficient functions because they are important in practical applications, computationally fast to evaluate, and easy7

to parametrize. As rightfully pointed out by one reviewer, however, the presented method is indeed not restricted to8

the case of affine-linear coefficients and can as well be used in a substantially more general setting. In particular, note9

that affine-linear coefficients are not assumed when the rigorous validity of the core learning problem is established in10

Theorem 1.11

Robustness w.r.t. Approximate Data Generation via Euler-Maruyama (reviewers #2, #5) : Let SNΛ be the Euler-12

Maruyama approximation of the solution to the parametric SDE SΛ = SΓ,X,T (as defined in (10) in the paper) with13

N ∈ N equidistant steps, given by14

S0
Λ = X and Sn+1

Λ = SnΛ + µΓ(SnΛ) TN + σΓ(SnΛ)
(
B (n+1)T

N
−BnT

N

)
, n = 0, . . . , N − 1.

We managed to prove a theorem which shows that using our method with data obtained via the Euler-Maruyama scheme15

must result in the expected approximation of the parametric PDE solution map ū.16

Theorem. Assume Assumptions 1 and 2 from the appendix and further assume that ϕγ has an at most polynomially17

growing derivative. Let ū be the parametric solution map of the Kolmogorov PDE. Then there exists a constant C18

depending only on v, w, T , and the growth rates and (local) Lipschitz constants of σγ , µγ , and ϕγ such that the solution19

to the approximated learning problem ūN = argminf E
[(
f(Λ)− ϕΓ(SNΛ )

)2]
satisfies that20

max
(γ,x,t)∈D×[v,w]d×[0,T ]

|ūN − ū| ≤ C√
N
.

Proof (Sketch). Extending results on the Euler-Maruyama scheme (see, e.g., [Kloeden and Platen, 1992, Theorem21

10.2.2]) one can prove that also in the parametric SDE case for p ≥ 2 the p-th moments of SΛ and SNΛ are bounded and22

that it holds that
(
E
[
‖SΛ − SNΛ ‖

p
Rd

])1/p ≤ C√
N
. The local Lipschitz property of ϕγ then proves the claim.23

This result provides a theoretical guarantee for the robustness of our machine learning method; it can easily be used to24

prove that our generalization results are not compromised by using data simulated by the Euler-Maruyama scheme.25

The factor 1/V (reviewer #2): The factor 1
V = 1

vol(D×[v,w]d×[0,T ])
naturally appears when transforming L∞- to26

Lp-results and can be omitted by viewing the error in the space Lp(PΛ) (where PΛ is the uniform probability measure27

on V ) via28

‖ · ‖pLp(PΛ) = 1
V ‖ · ‖

p
Lp(D×[v,w]d×[0,T ])

≤ ‖ · ‖p
L∞(D×[v,w]d×[0,T ])

.

All results within the established standard setting of statistical learning theory (including our generalization bound)29

give rise to Lp-bounds w.r.t. a given probability measure on the input domain. In fact, note that our setting easily30

allows us to choose arbitrary probability measures P on D × [v, w]d × [0, T ] and prove analogous results w.r.t. the31

L2(P) norm. Thus, following the conventional terminology used in statistical learning, we can indeed claim that the32

presented bound overcomes the curse of dimensionality. To underline this we mention Barron [1993] as one of many33

examples of a classical and well-known approximation result where the terminology "avoiding/overcoming the curse of34

dimensionality" is used in strictly the same context as in our paper. We aim to further clarify this in the camera-ready35

version.36

Overcoming the Curse of Dimensionality (reviewer #5): Based on the feedback of reviewer #5 we will further37

clarify in the camera-ready version that the curse of dimensionality is overcome with respect to the neural network size38

as well as the sample size. We emphasize that our empirical results strongly suggest that also the ERM algorithm does39

not suffer from the curse of dimensionality but proving this is out of scope of this paper.40
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