
Supplementary Materials

A Numerical Example on Convergence Bounds

We use the following numerical experiment to further illustrate our finite-time bounds on the conver-
gence of double Q-learning. Specifically, we execute the synchronous double Q-learning algorithm
over the MDP model of Grid World used in the experiment in Wainwright (2019). We adopt a random
reward function which has a uniformly distribution over {Rsa − 20, Rsa + 20}, where Rsa = 1 is
the expected reward. We run the same experiment 20 times independently with each experiment
taking 3 · 106 iterations. In addition, we initialize both Q estimators as QA = QB = −80 · [1]|S|×|A|,
where [1]|S|×|A| denotes the all-one matrix with the dimension of |S| × |A|.
In such an experiment, the optimal Q-function can be explicitly calculated and thus the learning
errors can be tracked. Figure 2 shows how the two errors

∥∥QAt −Q∗∥∥ and
∥∥QAt −QBt ∥∥ decay as

the number of iterations enlarges experimentally. To further illustrate our theoretical bounds, we
apply τ1 = 800 and τk+1 = τk + 500τ0.5

k to compute the block-wise upper bounds, and plot them
also in Figure 2. It can be seen that the actual experimental errors are bounded by their corresponding
block-wise upper bounds {Dk} and {Gq}.

Figure 2: The convergence errors and their theoretical bounds of double Q-learning in the Grid World
experiment. We choose γ = 0.8, αt = 1

t0.85 and τk+1 = τk + 500τ0.5
k with τ1 = 800.

B Proof of Lemma 1

We prove Lemma 1 by induction. First, it is easy to justify that the initial case is satisfied, i.e.,∥∥QA1 ∥∥ ≤ Rmax

1−γ = Vmax

2 ,
∥∥QB1 ∥∥ ≤ Vmax

2 . (In practice we usually initialize the algorithm as QA1 =

QB1 = 0). Next, we assume that at time t
∥∥QAt ∥∥ ≤ Vmax

2 and
∥∥QBt ∥∥ ≤ Vmax

2 hold. It then remains to
show that these conditions also hold for t+ 1. To this end, we observe that∥∥QAt+1(s, a)

∥∥ =

∥∥∥∥∥(1− αt)QAt (s, a) + αt

(
Rt + γQBt (s′, arg max

a′∈U(s′)

QAt (s′, a′)

)∥∥∥∥∥
≤ (1− αt)

∥∥QAt ∥∥+ αt ‖Rt‖+ αtγ
∥∥QBt ∥∥

≤ (1− αt)
Rmax

1− γ
+ αtRmax +

αtγRmax

1− γ

=
Rmax

1− γ
=
Vmax

2
.

Similarly, we can show that
∥∥QBt+1(s, a)

∥∥ ≤ Vmax

2 , which completes the proof.
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C Proof of Theorem 1

In this appendix, we will provide a detailed proof of Theorem 1. Our proof includes: (a) Part I
which analyzes the stochastic error propagation between the two Q-estimators

∥∥QBt −QAt ∥∥; (b)
Part II which analyzes the error dynamics between one Q-estimator and the optimum

∥∥QAt −Q∗∥∥
conditioned on the error event in Part I; and (c) Part III which bounds the unconditional error∥∥QAt −Q∗∥∥. We describe each of the three parts in more details below.

C.1 Part I: Bounding
∥∥QBt −QAt ∥∥

The main idea is to upper bound
∥∥QBt −QAt ∥∥ by a decreasing sequence {Gq}q≥0 block-wisely with

high probability, where each block or epoch q (with q ≥ 0) is defined by t ∈ [τ̂q, τ̂q+1).

Proposition 1. Fix ε > 0, κ ∈ (0, 1), σ ∈ (0, 1) and ∆ ∈ (0, e− 2). Consider synchronous double
Q-learning using a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Let Gq = (1− ξ)qG0 with
G0 = Vmax and ξ = 1−γ

4 . Let τ̂q+1 = τ̂q + 2c
κ τ̂

ω
q for q ≥ 1 with c ≥ ln(2+∆)+1/τ̂ω1

1−ln(2+∆)−1/τ̂ω1
and τ̂1 as the

finishing time of the first epoch satisfying

τ̂1 ≥ max


(

1

1− ln(2 + ∆)

) 1
ω

,

 128c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

σ2ξ2ε2
ln

 64c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

σ2ξ2ε2




1
ω

 .

Then for any n such that Gn ≥ σε, we have

P
[
∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≥ 1− 4c(n+ 1)

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

 .

The proof of Proposition 1 consists of the following four steps.

C.1.1 Step 1: Characterizing the dynamics of QBt (s, a)−QAt (s, a)

We first characterize the dynamics of uBAt (s, a) := QBt (s, a)−QAt (s, a) as a stochastic approxima-
tion (SA) algorithm in this step.

Lemma 2. Consider double Q-learning in Algorithm 1. Then we have

uBAt+1(s, a) = (1− αt)uBAt (s, a) + αtFt(s, a),

where

Ft(s, a) =

{
QBt (s, a)−Rt − γQBt (st+1, a

∗), w.p. 1/2

Rt + γQAt (st+1, b
∗)−QAt (s, a), w.p. 1/2.

In addition, Ft satisfies

‖E[Ft|Ft]‖ ≤
1 + γ

2

∥∥uBAt ∥∥ ,
where the filtration F in the synchronous case is given by Ft = σ ({sk}, {Rk−1}, 2 ≤ k ≤ t).

Proof. Algorithm 1 indicates that at each time, either QA or QB is updated with equal probability.
When updating QA at time t, for each (s, a) we have

uBAt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= QBt (s, a)− (QAt (s, a) + αt(Rt + γQBt (st+1, a
∗)−QAt (s, a)))

= (1− αt)QBt (s, a)− ((1− αt)QAt (s, a) + αt(Rt + γQBt (st+1, a
∗)−QBt (s, a)))

= (1− αt)uBAt (s, a) + αt(Q
B
t (s, a)−Rt − γQBt (st+1, a

∗)).
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Similarly, when updating QB , we have

uBAt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= (QBt (s, a) + αt(Rt + γQAt (st+1, b
∗)−QBt (s, a)))−QAt (s, a)

= (1− αt)QBt (s, a) + (αt(Rt + γQAt (st+1, b
∗)−QAt (s, a))− (1− αt)QAt (s, a))

= (1− αt)uBAt (s, a) + αt(Rt + γQAt (st+1, b
∗)−QAt (s, a)).

Therefore, we can rewrite the dynamics of uBAt as uBAt+1(s, a) = (1 − αt)uBAt (s, a) + αtFt(s, a),
where

Ft(s, a) =

{
QBt (s, a)−Rt − γQBt (st+1, a

∗), w.p. 1/2

Rt + γQAt (st+1, b
∗)−QAt (s, a), w.p. 1/2.

Thus, we have

E[Ft(s, a)|Ft]

=
1

2

(
QBt (sa)− E

st+1

[Rs
′

sa−γQBt (st+1, a
∗)]

)
+

1

2

(
E
st+1

[Rs
′

s,a+γQAt (st+1, b
∗)]−QAt (s, a)

)
=

1

2
(QBt (s, a)−QAt (s, a)) +

γ

2
E
st+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]

=
1

2
uBAt (s, a) +

γ

2
E
st+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]
. (7)

Next, we bound E
st+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]
. First, consider the case when

E
st+1

QAt (st+1, b
∗) ≥ E

st+1

QBt (st+1, a
∗). Then we have∣∣∣∣ Est+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]∣∣∣∣ = E

st+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]

(i)
≤ E
st+1

[
QAt (st+1, a

∗)−QBt (st+1, a
∗)
]

≤
∥∥uBAt ∥∥ ,

where (i) follow from the definition of a∗ in Algorithm 1. Similarly, if E
st+1

QAt (st+1, b
∗) <

E
st+1

QBt (st+1, a
∗), we have∣∣∣∣ Est+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]∣∣∣∣ = E

st+1

[
QBt (st+1, a

∗)−QAt (st+1, b
∗)
]

(i)
≤ E
st+1

[
QBt (st+1, b

∗)−QAt (st+1, b
∗)
]

≤
∥∥uBAt ∥∥ ,

where (i) follows from the definition of b∗. Thus we can conclude that∣∣∣∣ Est+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]∣∣∣∣ ≤ ∥∥uBAt ∥∥ .

Then, we continue to bound (7), and obtain

|E[Ft(s, a)|Ft]| =
∣∣∣∣12uBAt (s, a) +

γ

2
E
st+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]∣∣∣∣

≤ 1

2

∥∥uBAt ∥∥+
γ

2

∣∣∣∣ Est+1

[
QAt (st+1, b

∗)−QBt (st+1, a
∗)
]∣∣∣∣

≤ 1 + γ

2

∥∥uBAt ∥∥ ,
for all (s, a) pairs. Hence, ‖E[Ft|Ft]‖ ≤ 1+γ

2

∥∥uBAt ∥∥.
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Applying Lemma 2, we write the dynamics of uBAt (s, a) in the form of a classical SA algorithm
driven by a martingale difference sequence as follows:

uBAt+1(s, a) = (1− αt)uBAt (s, a) + αtFt(s, a) = (1− αt)uBAt (s, a) + αt(ht(s, a) + zt(s, a)),

where ht(s, a) = E[Ft(s, a)|Ft] and zt(s, a) = Ft(s, a) − E[Ft|Ft]. Then, we obtain
E[zt(s, a)|Ft] = 0 and ‖ht‖ ≤ 1+γ

2

∥∥uBAt ∥∥ following from Lemma 2. We define u∗(s, a) = 0, and
treat ht as an operator over uBAt . Then ht has a contraction property as:

‖ht − u∗‖ ≤ γ′
∥∥uBAt − u∗

∥∥ , (8)

where γ′ = 1+γ
2 ∈ (0, 1). Based on this SA formulation, we bound uBAt (s, a) block-wisely in the

next step.

C.1.2 Step 2: Constructing sandwich bounds on uBAt
We derive lower and upper bounds on uBAt via two sequences Xt;τ̂q and Zt;τ̂q in the following lemma.

Lemma 3. Let τ̂q be such that
∥∥uBAt ∥∥ ≤ Gq for all t ≥ τ̂q . Define Zt;τ̂q (s, a), Xt;τ̂q (s, a) as

Zt+1;τ̂q (s, a) = (1− αt)Zt;τ̂q (s, a) + αtzt(s, a), with Zτ̂q ;τ̂q (s, a) = 0;

Xt+1;τ̂q (s, a) = (1− αt)Xt;τ̂q (s, a) + αtγ
′Gq, with Xτ̂q ;τ̂q (s, a) = Gq, γ

′ =
1 + γ

2
.

Then for any t ≥ τ̂q and state-action pair (s, a), we have

−Xt;τ̂q (s, a) + Zt;τ̂q (s, a) ≤ uBAt (s, a) ≤ Xt;τ̂q (s, a) + Zt;τ̂q (s, a).

Proof. We proceed the proof by induction. For the initial condition t = τ̂q,
∥∥∥uBAτ̂q ∥∥∥ ≤ Gq implies

−Gq ≤ uBAτ̂q ≤ Gq. We assume the sandwich bound holds for time t. It remains to check that the
bound also holds for t+ 1.

At time t+ 1, we have

uBAt+1(s, a) = (1− αt)uBAt (s, a) + αt(ht(s, a) + zt(s, a))

≤ (1− αt)(Xt;τ̂q (s, a) + Zt;τ̂q (s, a)) + αt(ht(s, a) + zt(s, a))

(i)
≤
[
(1− αt)Xt;τ̂q (s, a) + αtγ

′ ∥∥uBAt ∥∥]+
[
(1− αt)Zt;τ̂q (s, a) + αtzt(s, a)

]
≤
[
(1− αt)Xt;τ̂q (s, a) + αtγ

′Gq
]

+
[
(1− αt)Zt;τ̂q (s, a) + αtzt(s, a)

]
= Xt+1;τ̂q (s, a) + Zt+1;τ̂q (s, a),

where (i) follows from Lemma 2. Similarly, we can bound the other direction as

uBAt+1(s, a) = (1− αt)uBAt (s, a) + αt(ht(s, a) + zt(s, a))

≥ (1− αt)(−Xt;τ̂q (s, a) + Zt;τ̂q (s, a)) + αt(ht(s, a) + zt(s, a))

≥
[
−(1− αt)Xt;τ̂q (s, a)− αtγ′

∥∥uBAt ∥∥]+
[
(1− αt)Zt;τ̂q (s, a) + αtzt(s, a)

]
≥
[
−(1− αt)Xt;τ̂q (s, a)− αtγ′Gq

]
+
[
(1− αt)Zt;τ̂q (s, a) + αtzt(s, a)

]
= −Xt+1;τ̂q (s, a) + Zt+1;τ̂q (s, a).

C.1.3 Step 3: Bounding Xt;τ̂q and Zt;τ̂q for block q + 1

We bound Xt;τ̂q and Zt;τ̂q in Lemma 5 and Lemma 6 below, respectively. Before that, we first
introduce the following technical lemma which will be useful in the proof of Lemma 5.
Lemma 4. Fix ω ∈ (0, 1). Let 0 < t1 < t2. Then we have

t2∏
i=t1

(
1− 1

iω

)
≤ exp

(
− t2 − t1

tω2

)
.
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Proof. Since ln(1− x) ≤ −x for any x ∈ (0, 1), we have

ln

[
t2∏
i=t1

(
1− 1

iω

)]
≤ −

t2∑
i=t1

i−ω ≤ −
∫ t2

t1

t−ωdt = − t
1−ω
2 − t1−ω1

1− ω
.

Thus, fix ω ∈ (0, 1), let 0 < t1 < t2, and then we have
t2∏
i=t1

(
1− 1

iω

)
≤ exp

(
− t

1−ω
2 − t1−ω1

1− ω

)
.

Define f(t) := t1−ω . Observe that f(t) is an increasing concave function. Then we have

t1−ω2 − t1−ω1 ≥ f ′(t2)(t2 − t1) = (1− ω)t−ω2 (t2 − t1),

which immediately indicates the result.

We now derive a bound for Xt;τ̂q .

Lemma 5. Fix κ ∈ (0, 1) and ∆ ∈ (0, e − 2). Let {Gq} be defined in Proposition 1. Consider
synchronous double Q-learning using a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Suppose
that Xt;τ̂q (s, a) ≤ Gq for any t ≥ τ̂q. Then for any t ∈ [τ̂q+1, τ̂q+2), given τ̂q+1 = τ̂q + 2c

κ τ̂
ω
q with

τ̂1 ≥
(

1
1−ln(2+∆)

) 1
ω

and c ≥ ln(2+∆)+1/τ̂ω1
1−ln(2+∆)−1/τ̂ω1

, we have

Xt;τ̂q (s, a) ≤
(
γ′ +

2

2 + ∆
ξ

)
Gq.

Proof. Observe that Xτ̂q ;τ̂q (s, a) = Gq = γ′Gq + (1− γ′)Gq := γ′Gq + ρτ̂q . We can rewrite the
dynamics of Xt;τ̂q (s, a) as

Xt+1;τ̂q (s, a) = (1− αt)Xt;τ̂q (s, a) + αtγ
′Gq = γ′Gq + (1− αt)ρt,

where ρt+1 = (1− αt)ρt. By the definition of ρt, we obtain

ρt = (1− αt−1)ρt−1 = · · · = (1− γ′)Gq
t−1∏
i=τ̂q

(1− αi)

= (1− γ′)Gq
t−1∏
i=τ̂q

(
1− 1

iω

)
(i)
≤ (1− γ′)Gq

τ̂q+1−1∏
i=τ̂q

(
1− 1

iω

)
(ii)
≤ (1− γ′)Gq exp

(
− τ̂q+1 − 1− τ̂q

(τ̂q+1 − 1)ω

)
≤ (1− γ′)Gq exp

(
− τ̂q+1 − 1− τ̂q

τ̂ωq+1

)

= (1− γ′)Gq exp

(
−

2c
κ τ̂

ω
q − 1

τ̂ωq+1

)
= (1− γ′)Gq exp

(
−2c

κ

(
τ̂q
τ̂q+1

)ω
+

1

τ̂ωq+1

)
(iii)
≤ (1− γ′)Gq exp

(
−2c

κ

1

1 + 2c
κ

+
1

τ̂ω1

)
(iv)
≤ (1− γ′)Gq exp

(
− c

1 + c
+

1

τ̂ω1

)
,

where (i) follows because αi is decreasing and t ≥ τ̂q+1, (ii) follows from Lemma 4, (iii) follows
because τ̂q ≥ τ̂1 and (

τ̂q
τ̂q+1

)ω
≥ τ̂q
τ̂q+1

=
τ̂q

τ̂q + 2c
κ τ̂

ω
q

≥ 1

1 + 2c
κ

,

and (iv) follows because 2c
κ ≥ c. Next, observing the conditions that τ̂ω1 ≥ 1

1−ln(2+∆) and c ≥
1

1−ln(2+∆)−1/τ̂ω1
− 1, we have

c

1 + c
− 1

τ̂ω1
≥ ln(2 + ∆).

Thus we have ρt ≤ 1−γ′
2+∆Gq . Finally, We finish our proof by further observing that 1− γ′ = 2ξ.
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Since we have bounded Xt;τ̂q (s, a) by
(
γ′ + 2

2+∆ξ
)
Gq for all t ≥ τ̂q+1, it remains to bound

Zt;τ̂q (s, a) by
(

1− 2
2+∆

)
ξGq for block q+1, which will further yield

∥∥uBAt (s, a)
∥∥ ≤ (γ′+ξ)Gq =

(1 − ξ)Gq = Gq+1 for any t ∈ [τ̂q+1, τ̂q+2) as desired. Differently from Xt;τ̂q (s, a) which is a
deterministic monotonic sequence, Zt;τ̂q (s, a) is stochastic. We need to capture the probability for
a bound on Zt;τ̂q (s, a) to hold for block q + 1. To this end, we introduce a different sequence
{Zlt;τ̂q (s, a)} given by

Zlt;τ̂q (s, a) =

τ̂q+l∑
i=τ̂q

αi

t−1∏
j=i+1

(1− αj)zi(s, a) :=

τ̂q+l∑
i=τ̂q

φq,t−1
i zi(s, a), (9)

where φq,t−1
i = αi

∏t−1
j=i+1(1−αj). By the definition ofZt;τ̂q (s, a), one can check thatZt;τ̂q (s, a) =

Z
t−1−τ̂q
t;τ̂q

(s, a). Thus we have

Zt;τ̂q (s, a) = Zt;τ̂q (s, a)− Zτ̂q ;τ̂q (s, a) =

t−1−τ̂q∑
l=1

(Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)) + Z0
t;τ̂q (s, a). (10)

In the following lemma, we capture an important property of Zlt;τ̂q (s, a) defined in (9).

Lemma 6. For any t ∈ [τ̂q+1, τ̂q+2) and 1 ≤ l ≤ t− 1− τ̂q, Zlt;τ̂q (s, a) is a martingale sequence
and satisfies

|Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)| ≤ 2Vmax

τ̂ωq
. (11)

Proof. To show the martingale property, we observe that

E[Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)|Fτ̂q+l−1] = E[φq,t−1
τ̂q+l

zτ̂q+l(s, a)|Fτ̂q+l−1]

= φq,t−1
τ̂q+l

E[zτ̂q+l(s, a)|Fτ̂q+l−1] = 0,

where the last equation follows from the definition of zt(s, a).

In addition, based on the definition of φq,t−1
i in (9) which requires i ≥ τ̂q , we have

φq,t−1
i = αi

t−1∏
j=i+1

(1− αj) ≤ αi ≤
1

τ̂ωq
.

Further, since |Ft| ≤ 2Rmax

1−γ = Vmax, we obtain |zt(s, a)| = |Ft − E[Ft|Ft]| ≤ 2Vmax. Thus

|Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)| = φq,t−1
τ̂q+l

|zτ̂q+l(s, a)| ≤ 2Vmax

τ̂ωq
.

Lemma 6 guarantees that Zlt;τ̂q (s, a) is a martingale sequence, which allows us to apply the following
Azuma’s inequality.

Lemma 7. (Azuma, 1967) Let X0, X1, . . . , Xn be a martingale sequence such that for each 1 ≤
k ≤ n,

|Xk −Xk−1| ≤ ck,
where the ck is a constant that may depend on k. Then for all n ≥ 1 and any ε > 0,

P[|Xn −X0| > ε] ≤ 2 exp

(
− ε2

2
∑n
k=1 c

2
k

)
.
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By Azuma’s inequality and the relationship between Zt;τ̂q (s, a) and Zlt;τ̂q (s, a) in (9), we obtain

P
[
|Zt;τ̂q (s, a)| > ε̂|t ∈ [τ̂q+1, τ̂q+2)

]
≤ 2 exp

− ε̂2

2
∑t−τ̂q−1
l=1

(
Zlt;τ̂q (s, a)− Zl−1

t;τ̂q
(s, a)

)2

+ 2(Z0
t;τ̂q

(s, a))2


(i)
≤ 2 exp

(
−

ε̂2τ̂2ω
q

8(t− τ̂q)V 2
max

)
≤ 2 exp

(
−

ε̂2τ̂2ω
q

8(τ̂q+2 − τ̂q)V 2
max

)
(ii)
≤ 2 exp

(
−

κ2ε̂2τ̂ωq
32c(c+ κ)V 2

max

)
= 2 exp

(
−

κ2ε̂2τ̂ωq
32c(c+ κ)V 2

max

)
,

where (i) follows from Lemma 6, and (ii) follows because

τ̂q+2 − τ̂q =
2c

κ
τ̂ωq+1 +

2c

κ
τ̂ωq =

2c

κ

(
τ̂q +

2c

κ
τ̂ωq

)ω
+

2c

κ
τ̂ωq ≤

2c

κ

(
2 +

2c

κ

)
τ̂ωq =

4c(c+ κ)

κ2
τ̂ωq .

C.1.4 Step 4: Unionizing all blocks and state-action pairs

Now we are ready to prove Proposition 1 by taking a union of probabilities over all blocks and
state-action pairs. Before that, we introduce the following two preliminary lemmas, which will be
used for multiple times in the sequel.

Lemma 8. Let {Xi}i∈I be a set of random variables. Fix ε > 0. If for any i ∈ I, we have
P(Xi ≤ ε) ≥ 1− δ, then

P(∀i ∈ I, Xi ≤ ε) ≥ 1− |I|δ.

Proof. By union bound, we have

P(∀i ∈ I, Xi ≤ ε) = 1− P

(⋃
i∈I

Xi > ε

)
≥ 1−

∑
i∈I

P(Xi > ε) ≥ 1− |I|δ.

Lemma 9. Fix positive constants a, b satisfying 2ab ln ab > 1. If τ ≥ 2ab ln ab, then

τ b exp

(
−2τ

a

)
≤ exp

(
−τ
a

)
.

Proof. Let c = ab. If τ ≤ c2, we have

c ln τ ≤ c ln c2 = 2c ln c ≤ τ.

If τ ≥ c2, we have

c ln τ ≤
√
τ ln τ ≤

√
τ
√
τ = τ,

where the last inequality follows from lnx2 = 2 lnx ≤ x. Therefore, we obtain c ln τ = ab ln τ ≤ τ .
Thus τ b ≤ exp

(
τ
a

)
, which implies this lemma.

Proof of Proposition 1
Based on the results obtained above, we are ready to prove Proposition 1. Applying Lemma 8, we
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have

P
[
∀(s, a),∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2), |Zt;τ̂q (s, a)| ≤ ∆

2 + ∆
ξGq

]
≥ 1−

n∑
q=0

|S||A|(τ̂q+2 − τ̂q+1) · P
[
|Zt;τ̂q (s, a)| > ∆

2 + ∆
ξGq

∣∣∣t ∈ [τ̂q+1, τ̂q+2)

]

≥ 1−
n∑
q=0

|S||A|2c
κ
τ̂ωq+1 · 2 exp

−κ2
(

∆
2+∆

)2

ξ2G2
q τ̂
ω
q

32c(c+ κ)V 2
max


≥ 1−

n∑
q=0

|S||A|2c
κ

(
1 +

2c

κ

)
τ̂ωq · 2 exp

−κ2
(

∆
2+∆

)2

ξ2G2
q τ̂
ω
q

32c(c+ κ)V 2
max


(i)
≥ 1−

n∑
q=0

|S||A|2c
κ

(
1 +

2c

κ

)
τ̂ωq · 2 exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ωq

32c(c+ κ)V 2
max


(ii)
≥ 1− 4c

κ

(
1 +

2c

κ

) n∑
q=0

|S||A| · exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ωq

64c(c+ κ)V 2
max


(iii)
≥ 1− 4c(n+ 1)

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

 ,

where (i) follows because Gq ≥ Gn ≥ σε, (ii) follows from Lemma 9 by substituting that a =
64c(c+κ)V 2

max

κ2( ∆
2+∆ )

2
σ2ξ2ε2

, b = 1 and observing

τ̂ωq ≥ τ̂ω1 ≥
128c(c+ κ)V 2

max

κ2
(

∆
2+∆

)2

σ2ξ2ε2
ln

 64c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

σ2ξ2ε2

 = 2ab ln ab,

and (iii) follows because τ̂q ≥ τ̂1.

Finally, we complete the proof of Proposition 1 by observing that Xt;τ̂q is a deterministic sequence
and thus

P
[
∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≥ P

[
∀(s, a),∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2), |Zt;τ̂q (s, a)| ≤ ∆

2 + ∆
ξGq

]
.

C.2 Part II: Conditionally bounding
∥∥QAt −Q∗∥∥

In this part, we upper bound
∥∥QAt −Q∗∥∥ by a decreasing sequence {Dk}k≥0 block-wisely condi-

tioned on the following two events: fix a positive integer m, we define

E :=
{
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QBt −QAt ∥∥ ≤ σDk+1

}
, (12)

F := {∀k ∈ [1,m+ 1], IAk ≥ cτωk }, (13)

where IAk denotes the number of iterations updating QA at epoch k, τk+1 is the starting iteration
index of the (k + 1)th block, and ω is the decay parameter of the polynomial learning rate. Roughly,
Event E requires that the difference between the two Q-estimators are bounded appropriately, and
Event F requires that QA is sufficiently updated in each block.
Proposition 2. Fix ε > 0, κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2). Consider synchronous double Q-
learning under a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Let {Gq}q≥0, {τ̂q}q≥0 be
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defined in Proposition 1. Define Dk = (1− β)k Vmax

σ with β = 1−γ(1+σ)
2 and σ = 1−γ

2γ . Let τk = τ̂k

for k ≥ 0. Suppose that c ≥ κ(ln(2+∆)+1/τω1 )
2(κ−ln(2+∆)−1/τω1 ) and τ1 as the finishing time of the first block satisfies

τ1 ≥ max


(

1

κ− ln(2 + ∆)

) 1
ω

,

 32c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2
ln

 16c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2




1
ω

 .

Then for any m such that Dm ≥ ε, we have

P
[
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|E,F
]

≥ 1− 4c(m+ 1)

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16c(c+ κ)V 2
max

 ,

where the events E,F are defined in (12) and (13), respectively.

The proof of Proposition 2 consists of the following four steps.

C.2.1 Step 1: Designing {Dk}k≥0

The following lemma establishes the relationship (illustrated in Figure 1) between the block-wise
bounds {Gq}q≥0 and {Dk}k≥0 and their block separations, such that Event E occurs with high
probability as a result of Proposition 1.

Lemma 10. Let {Gq} be defined in Proposition 1, and let Dk = (1− β)k Vmax

σ with β = 1−γ(1+σ)
2

and σ = 1−γ
2γ . Then we have

P
[
∀q ∈ [0,m],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≤ P

[
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QBt −QAt ∥∥ ≤ σDk+1

]
,

given that τk = τ̂k.

Proof. Based on our choice of σ, we have

β =
1− γ(1 + σ)

2
=

1− γ · 1+γ
2γ

2
=

1− γ
4

= ξ.

Therefore, the decay rate of Dk is the same as that of Gq. Further considering G0 = σD0, we can
make the sequence {σDk} as an upper bound of {Gq} for any time as long as we set the same starting
point and ending point for each epoch.

In Lemma 10, we make Gk = σDk at any block k and ξ = β = 1−γ
4 by careful design of σ. In fact,

one can choose any value of σ ∈ (0, (1− γ)/γ) and design a corresponding relationship between
τk and τ̂k as long as the sequence {σDk} can upper bound {Gq} for any time. For simplicity of
presentation, we keep the design in Lemma 10.

C.2.2 Step 2: Characterizing the dynamics of QAt (s, a)−Q∗(s, a)

We characterize the dynamics of the iteration residual rt(s, a) := QAt (s, a) − Q∗(s, a) as an SA
algorithm in Lemma 11 below. Since not all iterations contribute to the error propagation due to the
random update between the two Q-estimators, we introduce the following notations to label the valid
iterations.
Definition 1. We define TA as the collection of iterations updating QA. In addition, we denote
TA(t1, t2) as the set of iterations updating QA between time t1 and t2. That is,

TA(t1, t2) =
{
t : t ∈ [t1, t2] and t ∈ TA

}
.

Correspondingly, the number of iterations updating QA between time t1 and t2 is the cardinality of
TA(t1, t2) which is denoted as |TA(t1, t2)|.
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Lemma 11. Consider double Q-learning in Algorithm 1. Then we have

rt+1(s, a)=

{
rt(s, a), t /∈ TA;

(1−αt)rt(s, a)+αt(T QAt (s, a)−Q∗(s, a))+αtwt(s, a)+αtγu
BA
t (s′, a∗), t ∈ TA,

where wt(s, a) = TtQAt (s, a)− T QAt (s, a), uBAt (s, a) = QBt (s, a)−QAt (s, a).

Proof. Following from Algorithm 1 and for t ∈ TA, we have

QAt+1(s, a)

= QAt (s, a) + αt(Rt + γQBt (s′, a∗)−QAt (s, a))

= (1− αt)QAt (s, a) + αt
(
Rt + γQAt (s′, a∗)

)
+ αt

(
γQBt (s′, a∗)− γQAt (s′, a∗)

)
(i)
= (1− αt)QAt (s, a) + αt

(
TtQAt (s, a) + γuBAt (s′, a∗)

)
= (1− αt)QAt (s, a) + αtT QAt (s, a) + αt(TtQAt (s, a)− T QAt (s, a)) + αtγu

BA
t (s′, a∗)

= (1− αt)QAt (s, a) + αtT QAt (s, a) + αtwt(s, a) + αtγu
BA
t (s′, a∗),

where (i) follows because we denote TtQAt (s, a) = Rt + γQAt (s′, a∗). By subtracting Q∗ from both
sides, we complete the proof.

C.2.3 Step 3: Constructing sandwich bounds on rt(s, a)

We provide upper and lower bounds on rt by constructing two sequences Yt;τk and Wt;τk in the
following lemma.
Lemma 12. Let τk be such that ‖rt‖ ≤ Dk for all t ≥ τk. Suppose that we have

∥∥uBAt ∥∥ ≤ σDk

with σ = 1−γ
2γ for all t ≥ τk. Define Wt;τk(s, a) as

Wt+1;τk(s, a) =

{
Wt;τk(s, a), t /∈ TA;

(1− αt)Wt;τk(s, a) + αtwt(s, a), t ∈ TA,

where Wτk;τk(s, a) = 0 and define Yt;τk(s, a) as

Yt+1;τk(s, a) =

{
Yt;τk(s, a), t /∈ TA;

(1− αt)Yt;τk(s, a) + αtγ
′′Dk, t ∈ TA,

where Yτk;τk(s, a) = Dk and γ′′ = γ(1 + σ). Then for any t ≥ τk and state-action pair (s, a), we
have

−Yt;τk(s, a) +Wt;τk(s, a) ≤ rt(s, a) ≤ Yt;τk(s, a) +Wt;τk(s, a).

Proof. We proceed the proof by induction. For the initial condition t = τk, we have ‖rt(s, a)‖ ≤ Dk,
and thus it holds that −Dk ≤ rτk(s, a) ≤ Dk. We assume the sandwich bound holds for time t ≥ τk.
It remains to check whether this bound holds for t+ 1.

If t /∈ TA, then rt+1(s, a) = rt(s, a),Wt+1;τk(s, a) = Wt;τk(s, a), Yt+1;τk(s, a) = Yt;τk(s, a).
Thus the sandwich bound still holds.

If t ∈ TA, we have

rt+1(s, a) = (1− αt)rt(s, a) + αt(T QAt (s, a)−Q∗(s, a)) + αtwt(s, a) + αtγu
BA
t (s′, a∗)

≤ (1− αt)(Yt;τk(s, a) +Wt;τk(s, a)) + αt
∥∥T QAt −Q∗∥∥

+ αtwt(s, a) + αtγ
∥∥uBAt ∥∥

(i)
≤ (1− αt)(Yt;τk(s, a) +Wt;τk(s, a)) + αtγ ‖rt‖

+ αtwt(s, a) + αtγ
∥∥uBAt ∥∥

(ii)
≤ (1− αt)Yt;τk(s, a) + αtγ(1 + σ)Dk + (1− αt)Wt;τk(s, a) + αtwt(s, a)

≤ Yt+1;τk(s, a) +Wt+1;τk(s, a),
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where (i) follows from the contraction property of the Bellman operator, and (ii) follows from the
condition

∥∥uBAt ∥∥ ≤ σDk.

Similarly, we can bound the other direction as

rt+1(s, a) = (1− αt)rt(s, a) + αt(T QAt (s, a)−Q∗(s, a)) + αtwt(s, a) + αtγu
BA
t (s′, a∗)

≥ (1− αt)(−Yt;τk(s, a) +Wt;τk(s, a))− αt
∥∥T QAt −Q∗∥∥

+ αtwt(s, a)− αtγ
∥∥uBAt ∥∥

≥ (1− αt)(Yt;τk(s, a) +Wt;τk(s, a))− αtγ ‖rt‖
+ αtwt(s, a)− αtγ

∥∥uBAt ∥∥
≥ −(1− αt)Yt;τk(s, a)− αtγ(1 + σ)Dk + (1− αt)Wt;τk(s, a) + αtwt(s, a)

≥ −Yt+1;τk(s, a) +Wt+1;τk(s, a).

C.2.4 Step 4: Bounding Yt;τk(s, a) and Wt;τk(s, a) for epoch k + 1

Similarly to Steps 3 and 4 in Part I, we conditionally bound ‖rt‖ ≤ Dk for t ∈ [τk, τk+1) and
k = 0, 1, 2, . . . by the induction arguments followed by the union bound. We first bound Yt;τk(s, a)
and Wt;τk(s, a) in Lemma 13 and Lemma 14, respectively.
Lemma 13. Fix κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2). Let {Dk} be defined in Lemma 10. Consider
synchronous double Q-learning using a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Suppose
that Yt;τk(s, a) ≤ Dk for any t ≥ τk. At block k, we assume that there are at least cτωk iterations
updating QA, i.e., |TA(τk, τk+1)| ≥ cτωk . Then for any t ∈ [τk+1, τk+2), we have

Yt;τk(s, a) ≤
(
γ′′ +

2

2 + ∆
β

)
Dk.

Proof. Since we have defined τk = τ̂k in Lemma 10, we have τk+1 = τk + 2c
κ τ

ω
k .

Observe that Yτk;τk(s, a) = Dk = γ′′Dk + (1 − γ′′)Dk := γ′′Dk + ρτk . We can rewrite the
dynamics of Yt;τk(s, a) as

Yt+1;τk(s, a) =

{
Yt;τk(s, a), t /∈ TA

(1− αt)Yt;τk(s, a) + αtγ
′′Dk = γ′′Dk + (1− αt)ρt, t ∈ TA

where ρt+1 = (1− αt)ρt for t ∈ TA. By the definition of ρt, we obtain

ρt = ρτk
∏

i∈TA(τk,t−1)

(1− αi) = (1− γ′′)Dk

∏
i∈TA(τk,t−1)

(1− αi)

= (1− γ′′)Dk

∏
i∈TA(τk,t−1)

(
1− 1

iω

)
(i)
≤ (1− γ′′)Dk

∏
i∈TA(τk,τk+1−1)

(
1− 1

iω

)
(14)

(ii)
≤ (1− γ′′)Dk

τk+1−1∏
i=τk+1−cτωk

(
1− 1

iω

)
(iii)
≤ (1− γ′′)Dk exp

(
− cτωk − 1

(τk+1 − 1)ω

)

≤ (1− γ′′)Dk exp

(
−cτ

ω
k − 1

τωk+1

)
= (1− γ′′)Dk exp

(
−c
(

τk
τk+1

)ω
+

1

τωk+1

)
(iv)
≤ (1− γ′′)Dk exp

(
− c

1 + 2c
κ

+
1

τω1

)
,

where (i) follows because αi < 1 and t ≥ τk+1, (ii) follows because |TA(τk, τk+1 − 1)| ≥ cτωk
where TA(t1, t2) and |TA(t1, t2)| are defined in Definition 1, (iii) follows from Lemma 9, and (iv)
holds because τ + k ≥ τ1 and(

τk
τk+1

)ω
≥ τk
τk+1

=
τk

τk + 2c
κ τ

ω
k

≥ 1

1 + 2c
κ

.
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Next we check the value of the power− c
1+ 2c

κ

+ 1
τω1

. Since κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ−2), we have

ln(2 + ∆) ∈ (0, κ). Further, observing τω1 > 1
κ−ln(2+∆) , we obtain ln(2 + ∆) + 1

τω1
∈ (0, κ). Last,

since c ≥ κ
2

(
1

1− ln(2+∆)+1/τω1
κ

− 1

)
=

κ(ln(2+∆)+1/τω1 )
2(κ−ln(2+∆)−1/τω1 ) , we have − c

1+ 2c
κ

+ 1
τω1
≤ − ln(2 + ∆).

Thus, we have ρt ≤ 1−γ′′
2+∆ Dk. Finally, we finish our proof by further observing that 1− γ′′ = 2β.

It remains to bound |Wt;τk(s, a)| ≤
(

1− 2
2+∆

)
βDk for t ∈ [τk+1, τk+2). Combining the bounds

of Yt;τk and Wt;τk yields (γ′′ + β)Dk = (1 − β)Dk = Dk+1. Since Wt;τk is stochastic, we need
to derive the probability for the bound to hold. To this end, we first rewrite the dynamics of Wt;τk
defined in Lemma 12 as

Wt;τk(s, a) =
∑

i∈TA(τk,t−1)

αi Π
j∈TA(i+1,t−1)

(1− αj)wi(s, a).

Next, we introduce a new sequence {W l
t;τk

(s, a)} as

W l
t;τk

(s, a) =
∑

i∈TA(τk,τk+l)

αi Π
j∈TA(i+1,t−1)

(1− αj)wi(s, a).

Thus we have Wt;τk(s, a) = W t−1−τk
t;τk

(s, a). Then we have the following lemma.

Lemma 14. For any t ∈ [τk+1, τk+2] and 1 ≤ l ≤ t−τk−1, {W l
t;τk

(s, a)} is a martingale sequence
and satisfies

|W l
t;τk

(s, a)−W l−1
t;τk

(s, a)| ≤ Vmax

τωk
.

Proof. Observe that

W l
t;τk

(s, a)−W l−1
t;τk

(s, a) =

0, τk + l − 1 /∈ TA;

ατk+l Π
j∈TA(τk+l+1,t−1)

(1− αj)wτk+l(s, a), τk + l − 1 ∈ TA.

Since E[wt|Ft−1] = 0, we have

E
[
W l
t;τk

(s, a)−W l−1
t;τk

(s, a)|Fτk+l−1

]
= 0.

Thus {W l
t;τk

(s, a)} is a martingale sequence. In addition, since l ≥ 1 and αt ∈ (0, 1), we have

ατk+l Π
j∈TA(τk+l+1,t−1)

(1− αj) ≤ ατk+l ≤ ατk =
1

τωk
.

Further, we obtain |wt(s, a)| = |TtQAt (s, a)− T QAt (s, a)| ≤ 2Qmax

1−γ = Vmax. Thus

|W l
t;τk

(s, a)−W l−1
t;τk

(s, a)| ≤ ατk+l|wτk+l(s, a)| ≤ Vmax

τωk
.

Next, we bound Wt;τk(s, a). Fix ε̃ > 0. Then for any t ∈ [τk+1, τk+2), we have
P [|Wt;τk(s, a)| > ε̃|t ∈ [τk+1, τk+2), E, F ]

(i)
≤ 2 exp

 −ε̃2

2
∑

l:τk+l−1∈TA(τk,t−1)

(
W l
t;τk

(s, a)−W l−1
t;τk

(s, a)
)2

+ 2(W
min(TA(τk,t−1))
t;τk

(s, a))2


(ii)
≤ 2 exp

(
− ε̂2τ2ω

k

2(|TA(τk, t− 1)|+ 1)V 2
max

)
(iii)
≤ 2 exp

(
− ε̃2τ2ω

k

2(t+ 1− τk)V 2
max

)
≤ 2 exp

(
− ε̃2τ2ω

k

2(τk+2 − τk)V 2
max

)
(iv)
≤ 2 exp

(
− κ2ε̃2τωk

8c(c+ κ)V 2
max

)
,

23



where (i) follows from Lemma 7, (ii) follows from Lemma 14, (iii) follows because |TA(t1, t2)| ≤
t2 − t1 + 1 and (iv) holds because

τk+2 − τk =
2c

κ
τωk+1 +

2c

κ
τωk =

2c

κ

(
τk +

2c

κ
τωk

)ω
+

2c

κ
τωk ≤

4c(c+ κ)

κ2
τωk .

Proof of Proposition 2
Now we bound ‖rt‖ by combining the bounds of Yt;τk and Wt;τk . Applying the union bound in
Lemma 8 yields

P
[
∀(s, a),∀k ∈ [0,m],∀t ∈ [τk+1, τk+2), |Wt;τk(s, a)| ≤ ∆

2 + ∆
βDk|E,F

]
≥ 1−

m∑
k=0

|S||A|(τk+2 − τk+1) · P
[
|Wt;τk(s, a)| > ∆

2 + ∆
βDk

∣∣∣t ∈ [τk+1, τk+2), E, F

]

≥ 1−
m∑
k=0

|S||A|2c
κ
τωk+1 · 2 exp

−κ2
(

∆
2+∆

)2

β2D2
kτ
ω
k

8c(c+ κ)V 2
max


≥ 1−

m∑
k=0

|S||A|2c
κ

(
1 +

2c

κ

)
τωk · 2 exp

−κ2
(

∆
2+∆

)2

β2D2
kτ
ω
k

8c(c+ κ)V 2
max


(i)
≥ 1−

m∑
k=0

|S||A|2c
κ

(
1 +

2c

κ

)
τωk · 2 exp

−κ2
(

∆
2+∆

)2

β2ε2τωk

8c(c+ κ)V 2
max

 (15)

(ii)
≥ 1− 4c

κ

(
1 +

2c

κ

) m∑
k=0

|S||A| · exp

−κ2
(

∆
2+∆

)2

β2ε2τωk

16c(c+ κ)V 2
max


≥ 1− 4c(m+ 1)

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16c(c+ κ)V 2
max

 ,

where (i) follows because Dk ≥ Dm ≥ ε, and (ii) follows from Lemma 9 by substituting a =
16c(c+κ)V 2

max

κ2( ∆
2+∆ )

2
β2ε2

, b = 1 and observing that

τωk ≥ τ̂ω1 ≥
32c(c+ κ)V 2

max

κ2
(

∆
2+∆

)2

β2ε2
ln

 16c(c+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2

 = 2ab ln ab.

Note that Yt;τk(s, a) is deterministic. We complete this proof by observing that

P
[
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|E,F
]

≥ P
[
∀(s, a),∀k ∈ [0,m],∀t ∈ [τk+1, τk+2), |Wt;τk(s, a)| ≤ ∆

2 + ∆
βDk|E,F

]
.

C.3 Part III: Bounding
∥∥QAt −Q∗∥∥

We combine the results in the first two parts, and provide a high probability bound on ‖rt‖ with
further probabilistic arguments, which exploit the high probability bounds on P(E) in Proposition 1
and P(F ) in the following lemma.
Lemma 15. Let the sequence τk be the same as given in Lemma 10, i.e. τk+1 = τk + 2c

κ τ
ω
k for

k ≥ 1. Then we have

P
[
∀k ∈ [1,m], IAk ≥ cτωk

]
≥ 1−m exp

(
− (1− κ)2cτω1

κ

)
.
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where IAk denotes the number of iterations updating QA at epoch k.

Proof. The event updating QA is a binomial random variable. To be specific, at iteration t we define

JAt =

{
1, updating QA;

0, updating QB .

Clearly, the events are independent across iterations. Therefore, for a given epoch [τk, τk+1), IAk =∑τk+1−1
t=τk

JAt is a binomial random variable satisfying the distribution Binomial(τk+1 − τk, 0.5).
In the following, we use the tail bound of a binomial random variable. That is, if a random variable
X ∼ Binomial(n, p), by Hoeffding’s inequality we have P(X ≤ x) ≤ exp

(
− 2(np−x)2

n

)
for

x < np, which implies P(X ≤ κnp) ≤ exp
(
−2np2(1− κ)2

)
for any fixed κ ∈ (0, 1).

If k = 0, IA0 ∼ Binomial(τ1, 0.5). Thus the tail bound yields

P
[
IA0 ≤

κ

2
· τ1
]
≤ exp

(
− (1− κ)2τ1

2

)
.

If k ≥ 1, since τk+1 − τk = 2c
κ τ

ω
k , we have IAk ∼ Binomial

(
2c
κ τ

ω
k , 0.5

)
. Thus the tail bound of a

binomial random variable gives

P
[
IAk ≤

κ

2
· 2c

κ
τωk

]
≤ exp

(
− (1− κ)2cτωk

κ

)
.

Then by the union bound, we have

P
[
∀k ∈ [1,m], IAk ≥ cτωk

]
= P

[
∀k ∈ [1,m], IAk ≥

κ

2
· 2c

κ
τωk

]
≥ 1−

m∑
k=1

exp

(
− (1− κ)2cτωk

κ

)
≥ 1−m exp

(
− (1− κ)2cτω1

κ

)
.

We further give the following Lemma 16 and Lemma 17 before proving Theorem 1. Lemma 16
characterizes the number of blocks to achieve ε-accuracy given Dk defined in Lemma 10.

Lemma 16. Let Dk+1 = (1 − β)Dk with β = 1−γ
4 , D0 = 2γVmax

1−γ . Then for m ≥ 4
1−γ ln 2γVmax

ε(1−γ) ,
we have Dm ≤ ε.

Proof. By the definition of Dk, we have Dk = (1− β)
k
D0. Then we obtain

Dk ≤ ε⇐⇒ (1− β)
k
D0 ≤ ε⇐⇒

1

(1− β)k
≥ D0

ε
⇐⇒ k ≥ ln(D0/ε)

ln(1/(1− β))
.

Further observe that ln 1
1−x ≤ x if x ∈ (0, 1). Thus we have

k ≥ 1

β
ln
D0

ε
=

4

1− γ
ln

2γVmax

ε(1− γ)
.

From the above lemma, it suffices to find the starting time at epoch m∗ =
⌈

4
1−γ ln 2γVmax

ε(1−γ)

⌉
.

The next lemma is useful to calculate the total iterations given the initial epoch length and number of
epochs.
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Lemma 17. (Even-Dar and Mansour, 2003, Lemma 32) Consider a sequence {xk} satisfying

xk+1 = xk + cxωk = x1 +

k∑
i=1

cxωi .

Then for any constant ω ∈ (0, 1), we have

xk = O
(

(x1−ω
1 + ck)

1
1−ω

)
= O

(
x1 + (ck)

1
1−ω

)
.

Proof of Theorem 1
Now we are ready to prove Theorem 1 based on the results obtained so far.
Let m∗ =

⌈
4

1−γ ln 2γVmax

ε(1−γ)

⌉
, then Gm∗−1 ≥ σε,Dm∗−1 ≥ ε. Thus we obtain

P(
∥∥QAτm∗ (s, a)−Q∗

∥∥ ≤ ε)
≥ P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1

]
= P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|E,F
]
· P(E ∩ F )

≥ P
[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|E,F
]

· (P(E) + P(F )− 1)

(i)
≥ P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|E,F
]

·
(
P
[
∀q ∈ [0,m∗ − 1],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
+ P(F )− 1

)
(ii)
≥

1− 4cm∗

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16c(c+ κ)V 2
max




·

1− 4cm∗

κ

(
1+

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

−m∗exp

(
− (1−κ)2cτ̂ω1

κ

)
≥ 1− 4cm∗

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16c(c+ κ)V 2
max


− 4cm∗

κ

(
1+

2c

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

−m∗ exp

(
− (1− κ)2cτ̂ω1

κ

)

(iii)
≥ 1− 12cm∗

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

 ,

where (i) follows from Lemma 10, (ii) follows from Proposition 1 and 2 and (iii) holds due to the fact
that

4cm∗

κ

(
1 +

2c

κ

)
|S||A|=max

{
4cm∗

κ

(
1 +

2c

κ

)
|S||A|,m∗

}
,

κ2(1−κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

≤min


κ2
(

∆
2+∆

)2

β2ε2τ̂ω1

16c(c+ κ)V 2
max

,
(1−κ)2τ̂ω1

κ
,
κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

 .

By setting

1− 12cm∗

κ

(
1 +

2c

κ

)
|S||A| exp

−κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64c(c+ κ)V 2
max

 ≥ 1− δ,
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we obtain

τ̂1 ≥

 64c(c+ κ)V 2
max

κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2
ln

12cm∗|S||A|(2c+ κ)

κ2δ


1
ω

.

Considering the conditions on τ̂1 in Proposition 1 and Proposition 2, we choose

τ̂1 = Θ

((
V 2

max

(1− γ)4ε2
ln
m∗|S||A|V 2

max

(1− γ)4ε2δ

) 1
ω

)
.

Finally, applying the number of iterations m∗ =
⌈

4
1−γ ln 2γVmax

ε(1−γ)

⌉
and Lemma 17, we conclude that

it suffices to let

T = Ω

((
V 2

max

(1− γ)4ε2
ln
m∗|S||A|V 2

max

(1− γ)4ε2δ

) 1
ω

+

(
2c

κ

1

1− γ
ln

γVmax

(1− γ)ε

) 1
1−ω
)

= Ω

( V 2
max

(1− γ)4ε2
ln
|S||A|V 2

max ln( Vmax

(1−γ)ε )

(1− γ)5ε2δ

) 1
ω

+

(
1

1− γ
ln

Vmax

(1− γ)ε

) 1
1−ω


= Ω

((
V 2

max

(1− γ)4ε2
ln
|S||A|V 2

max

(1− γ)5ε2δ

) 1
ω

+

(
1

1− γ
ln

Vmax

(1− γ)ε

) 1
1−ω
)
,

to attain an ε-accurate Q-estimator.

D Proof of Theorem 2

The main idea of this proof is similar to that of Theorem 1 with further efforts to characterize the
effects of asynchronous sampling. The proof also consists of three parts: (a) Part I which analyzes the
stochastic error propagation between the two Q-estimators

∥∥QBt −QAt ∥∥; (b) Part II which analyzes
the error dynamics between one Q-estimator and the optimum

∥∥QAt −Q∗∥∥ conditioned on the error
event in Part I; and (c) Part III which bounds the unconditional error

∥∥QAt −Q∗∥∥.

To proceed the proof, we first introduce the following notion of valid iterations for any fixed state-
action pair (s, a).
Definition 2. We define T (s, a) as the collection of iterations if a state-action pair (s, a) is used to
update the Q-function QA or QB , and TA(s, a) as the collection of iterations specifically updating
QA(s, a). In addition, we denote T (s, a, t1, t2) and TA(s, a, t1, t2) as the set of iterations updating
(s, a) and QA(s, a) between time t1 and t2, respectively. That is,

T (s, a, t1, t2) = {t : t ∈ [t1, t2] and t ∈ T (s, a)} ,
TA(s, a, t1, t2) =

{
t : t ∈ [t1, t2] and t ∈ TA(s, a)

}
.

Correspondingly, the number of iterations updating (s, a) between time t1 and t2 equals the cardinal-
ity of T (s, a, t1, t2) which is denoted as |T (s, a, t1, t2)|. Similarly, the number of iterations updating
QA(s, a) between time t1 and t2 is denoted as |TA(s, a, t1, t2)|.

Given Assumption 1, we can obtain some properties of the quantities defined above.
Lemma 18. It always holds that |T (s, a, t1, t2)| ≤ t2 − t1 + 1 and |TA(s, a, t1, t2)| ≤ t2 − t1 + 1.
In addition, suppose that Assumption 1 holds. Then we have T (s, a, t, t + 2kL − 1) ≥ k for any
t ≥ 0.

Proof. Since in a consecutive 2L running iterations of Algorithm 1, either QA or QB is updated at
least L times. Then following from Assumption 1, (s, a) is visited at least once for each 2L running
iterations of Algorithm 1, which immediately implies this proposition.

Now we proceed our proof by three parts.
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D.1 Part I: Bounding
∥∥QBt −QAt ∥∥

We upper bound
∥∥QBt −QAt ∥∥ block-wisely using a decreasing sequence {Gq}q≥0 as defined in Propo-

sition 3 below.

Proposition 3. Fix ε > 0, κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2). Consider asynchronous double
Q-learning using a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Suppose that Assumption 1
holds. Let Gq = (1− ξ)qG0 with G0 = Vmax and ξ = 1−γ

4 . Let τ̂q+1 = τ̂q + 2cL
κ τ̂ωq for q ≥ 1 with

c ≥ Lκ(ln(2+∆)+1/τω1 )
2(κ−ln(2+∆)−1/τω1 ) and τ̂1 as the finishing time of the first block satisfying

τ̂1 ≥ max


(

1

κ− ln(2 + ∆)

) 1
ω

,

128cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

ξ2σ2ε2
ln

64cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

ξ2σ2ε2




1
ω

 .

Then for any n such that Gn ≥ σε, we have

P
[
∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≥ 1− 4cL(n+ 1)

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

 .

The proof of Proposition 3 consists of the following steps. Since the main idea of the proofs is similar
to that of Proposition 1, we will focus on pointing out the difference. We continue to use the notation
uBAt (s, a) := QBt (s, a)−QAt (s, a).

Step 1: Characterizing the dynamics of uBAt
First, we observe that when (s, a) is visited at time t, i.e., t ∈ T (s, a), Lemmas 2 and 3 still apply.
Otherwise, uBA is not updated. Thus, we have

uBAt+1(s, a) =

{
uBAt (s, a), t /∈ T (s, a);

(1− αt)uBAt (s, a) + αtFt(s, a), t ∈ T (s, a),

where Ft satisfies

‖E[Ft|Ft]‖ ≤
1 + γ

2

∥∥uBAt ∥∥ ,
where the filtration F in the asynchronous double Q-learning case is given by Ft =
σ (sk, T (s, a, 0, k), Rk−1, 2 ≤ k ≤ t).

For t ∈ T (s, a), we rewrite the dynamics of uBAt (s, a) as

uBAt+1(s, a) = (1− αt)uBAt (s, a) + αtFt = (1− αt)uBAt (s, a) + αt(ht(s, a) + zt(s, a)),

where ht(s, a) = E[Ft(s, a)|Ft] and zt(s, a) = Ft(s, a)− E[Ft(s, a)|Ft].
In the following steps, we use induction to proceed the proof of Proposition 3. Given Gq defined
in Proposition 3, since

∥∥uBAt ∥∥ ≤ G0 holds for all t, and thus it holds for t ∈ [0, τ̂1]. Now suppose τ̂q
satisfies that

∥∥uBAt ∥∥ ≤ Gq for any t ≥ τ̂q . Then we will show there exists τ̂q+1 = τ̂q + 2cL
κ τ̂ωq such

that
∥∥uBAt ∥∥ ≤ Gq+1 for any t ≥ τ̂q+1.

Step 2: Constructing sandwich bounds

We first observe that the following sandwich bound still holds for all t ≥ τ̂q .

−Xt;τ̂q (s, a) + Zt;τ̂q (s, a) ≤ uBAt (s, a) ≤ Xt;τ̂q (s, a) + Zt;τ̂q (s, a),

where Zt;τ̂q (s, a) is defined as

Zt+1;τ̂q (s, a) =

{
Zt;τ̂q (s, a), t /∈ T (s, a)

(1− αt)Zt;τ̂q (s, a) + αtzt(s, a), t ∈ T (s, a),
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with the initial condition Zτ̂q ;τ̂q (s, a) = 0, and Xt;τ̂q (s, a) is defined as

Xt+1;τ̂q (s, a) =

{
Xt;τ̂q (s, a), t /∈ T (s, a)

(1− αt)Xt;τ̂q (s, a) + αtγ
′Gq, t ∈ T (s, a),

with Xτ̂q ;τ̂q (s, a) = Gq, γ
′ = 1+γ

2 .

This claim can be shown by induction. This bound clearly holds for the initial case with t = τ̂q.
Assume that it still holds for iteration t. If t ∈ T (s, a), the proof is the same as that of Lemma 3. If
t /∈ T (s, a), since all three sequences do not change from time t to time t+ 1, the sandwich bound
still holds. Thus we conclude this claim.

Step 3: Bounding Xt;τ̂q (s, a)

Next, we bound the deterministic sequence Xt;τ̂q (s, a). Observe that Xt;τ̂q (s, a) ≤ Gq for any

t ≥ τ̂q. We will next show that Xt;τ̂q (s, a) ≤
(
γ′ + 2

2+∆ξ
)
Gq for any t ∈ [τ̂q+1, τ̂q+2) where

τ̂q+1 = τ̂q + 2cL
κ τ̂ωq .

Similarly to the proof of Lemma 5, we still rewrite Xτ̂q ;τ̂q (s, a) as Xτ̂q ;τ̂q (s, a) = Gq = γ′Gq +
(1− γ′)Gq := γ′Gq + ρτ̂q . However, in this case the dynamics of Xt;τ̂q (s, a) is different, which is
represented as

Xt+1;τ̂q (s, a) =

{
Xt;τ̂q (s, a), t /∈ T (s, a)

(1− αt)Xt;τ̂q (s, a) + αtγ
′Gq = γ′Gq + (1− αt)ρt, t ∈ T (s, a).

where ρt+1 = (1− αt)ρt when t ∈ T (s, a). By the definition of ρt, we obtain
ρt = ρτ̂q Π

i∈T (s,a,τ̂q,t−1)
(1− αi) = (1− γ′)Gq Π

i∈T (s,a,τ̂q,t−1)
(1− αi)

≤ (1− γ′)Gq Π
i∈T (s,a,τ̂q,τ̂q+1−1)

(
1− 1

iω

)
≤ (1− γ′)Gq

τ̂q+1−1∏
i=τ̂q+1−|T (s,a,τ̂q,τ̂q+1−1)|

(
1− 1

iω

)
(i)
≤ (1− γ′)Gq

τ̂q+1−1∏
i=τ̂q+1− c

κ τ̂
ω
q

(
1− 1

iω

)
(ii)
≤ (1− γ′)Gq exp

(
−

c
κ τ̂

ω
q − 1

(τ̂q+1 − 1)ω

)

≤ (1− γ′)Gq exp

(
−

c
κ τ̂

ω
q − 1

τ̂ωq+1

)
= (1− γ′)Gq exp

(
− c
κ

(
τ̂q
τ̂q+1

)ω
+

1

τ̂ωq+1

)
(iii)
≤ (1− γ′)Gq exp

(
− c
κ

1

1 + 2cL
κ

+
1

τ̂ω1

)
,

where (i) follows from Lemma 18, (ii) follows Lemma 4, and (iii) follows because τ̂q ≥ τ̂1 and(
τ̂q
τ̂q+1

)ω
≥ τ̂q
τ̂q+1

=
τ̂q

τ̂q + 2cL
κ τ̂ωq

≥ 1

1 + 2cL
κ

.

Since κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2), we have ln(2 + ∆) ∈ (0, κ). Further, observing τ̂1ω >
1

κ−ln(2+∆) , we obtain ln(2 + ∆) + 1
τ̂1ω
∈ (0, κ). Last, since c ≥ Lκ(ln(2+∆)+1/τ̂1

ω)
2(κ−ln(2+∆)−1/τ̂1ω) , we have

− c
1+ 2c

κ

+ 1
τ̂1ω
≤ − ln(2 + ∆).

Finally, combining the above observations with the fact 1 − γ′ = 2ξ, we conclude that for any
t ≥ τ̂q+1 = τ̂q + 2cL

κ τ̂ωq ,

Xt;τ̂q (s, a) ≤
(
γ′ +

2

2 + ∆
ξ

)
Gq.

Step 4: Bounding Zt;τ̂q (s, a)

It remains to bound the stochastic sequence Zt;τ̂q (s, a) by ∆
2+∆ξGq at epoch q + 1. We define an

auxiliary sequence {Zlt;τ̂q (s, a)} (which is different from that in (9)) as:

Zlt;τ̂q (s, a) =
∑

i∈T (s,a,τ̂q,t−1)

αi Π
j∈T (s,a,i+1,t−1)

(1− αj)zi(s, a).
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Following the same arguments as the proof of Lemma 6, we conclude that {Zlt;τ̂q (s, a)} is a martingale
sequence and satisfies

|Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)| = ατ̂q+l|zτ̂q+l(s, a)| ≤ 2Vmax

τ̂ωq
.

In addition, note that
Zt;τ̂q (s, a) = Zt;τ̂q (s, a)− Zτ̂q ;τ̂q (s, a)

=
∑

l:τ̂q+l−1∈T (s,a,τ̂q,t−1)

(Zlt;τ̂q (s, a)− Zl−1
t;τ̂q

(s, a)) + Z
min(T (s,a,τ̂q,t−1))
t;τ̂q

(s, a).

Then we apply Azuma’ inequality in Lemma 7 and obtain
P
[
|Zt;τ̂q (s, a)| > ε̂|t ∈ [τ̂q+1, τ̂q+2)

]
≤ 2 exp

 −ε̂2

2
∑

l:τ̂q+l−1∈T (s,a,τ̂q,t−1)

(Zlt;τ̂q (s, a)−Zl−1
t;τ̂q

(s, a))2+2
(
Z

min(T (s,a,τ̂q,t−1))
t;τ̂q

(s, a)
)2


≤ 2 exp

(
−

ε̂2τ̂2ω
q

8(|T (s, a, τ̂q, t− 1)|+ 1)V 2
max

)
(i)
≤ 2 exp

(
−

ε̂2τ̂2ω
q

8(t− τ̂q)V 2
max

)

≤ 2 exp

(
−

ε̂2τ̂2ω
q

8(τ̂q+2 − τ̂q)V 2
max

)
= 2 exp

(
−

ε̂2τ̂2ω
q

8
(

2cL
κ τ̂ωq+1 + 2cL

κ τ̂ωq
)
V 2

max

)

= 2 exp

(
−

ε̂2τ̂2ω
q

8
(

2cL
κ (τ̂q + 2cL

κ τ̂ωq )ω + 2cL
κ τ̂ωq

)
V 2

max

)

≤ 2 exp

(
−

κ2ε̂2τ̂ωq
32cL(cL+ κ)V 2

max

)
where (i) follows from Lemma 18.

Step 5: Taking union over all blocks

Finally, using the union bound of Lemma 8 yields

P
[
∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≥ P

[
∀(s, a),∀q ∈ [0, n],∀t ∈ [τ̂q+1, τ̂q+2), |Zt;τ̂q (s, a)| ≤ ∆

2 + ∆
ξGq

]
≥ 1−

n∑
q=0

|S||A|(τ̂q+2 − τ̂q+1) · P
[
|Zt;τ̂q (s, a)| > ∆

2 + ∆
ξGq

∣∣∣t ∈ [τ̂q+1, τ̂q+2)

]

≥ 1−
n∑
q=0

|S||A|2cL
κ
τ̂ωq+1 · 2 exp

−κ2
(

∆
2+∆

)2

ξ2G2
q τ̂
ω
q

32cL(cL+ κ)V 2
max


≥ 1−

n∑
q=0

|S||A|2cL
κ

(
1 +

2cL

κ

)
τ̂ωq · 2 exp

−κ2
(

∆
2+∆

)2

ξ2G2
q τ̂
ω
q

32cL(cL+ κ)V 2
max


(i)
≥ 1−

n∑
q=0

|S||A|2cL
κ

(
1 +

2cL

κ

)
τ̂ωq · 2 exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ωq

32cL(cL+ κ)V 2
max


(ii)
≥ 1− 4cL

κ

(
1 +

2cL

κ

) n∑
q=0

|S||A| · exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ωq

64cL(cL+ κ)V 2
max


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(iii)
≥ 1− 4cL(n+ 1)

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

 ,

where (i) follows from Gq ≥ Gn ≥ σε, (ii) follows from Lemma 9 by substituting a =
64cL(cL+κ)V 2

max

κ2( ∆
2+∆ )

2
ξ2σ2ε2

, b = 1 and observing that

τ̂ωq ≥ τ̂ω1 ≥
128cL(cL+ κ)V 2

max

κ2
(

∆
2+∆

)2

ξ2σ2ε2
ln

64cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

ξ2σ2ε2

 = 2ab ln ab,

and (iii) follows from τ̂q ≥ τ̂1.

D.2 Part II: Conditionally bounding
∥∥QAt −Q∗∥∥

We upper bound
∥∥QAt −Q∗∥∥ block-wisely by a decreasing sequence {Dk}k≥0 conditioned on the

following two events: fix a positive integer m,

G =
{
∀(s, a),∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QBt −QAt ∥∥ ≤ σDk+1

}
, (16)

H = {∀k ∈ [1,m+ 1], IAk ≥ cLτωk }, (17)

where IAk denotes the number of iterations updatingQA at epoch k, τk is the starting iteration index of
the k + 1th block, and ω is the parameter of the polynomial learning rate. Roughly, Event G requires
that the difference between the two Q-function estimators are bounded appropriately, and Event H
requires that QA is sufficiently updated in each epoch. Again, we will design {Dk}k≥0 in a way such
that the occurrence of Event G can be implied from the event that

∥∥uBAt ∥∥ is bounded by {Gq}q≥0

(see Lemma 19 below). A lower bound of the probability for Event H to hold is characterized
in Lemma 15 in Part III.
Proposition 4. Fix ε > 0, κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2). Consider asynchronous double
Q-learning using a polynomial learning rate αt = 1

tω with ω ∈ (0, 1). Let {Gq}, {τ̂q} be as defined
in Proposition 3. Define Dk = (1 − β)k Vmax

σ with β = 1−γ(1+σ)
2 and σ = 1−γ

2γ . Let τk = τ̂k for

k ≥ 0. Suppose that c ≥ L(ln(2+∆)+1/τω1 )
2(κ−ln(2+∆)−1/τω1 ) and τ1 = τ̂1 as the finishing time of the first epoch

satisfies

τ1 ≥ max


(

1

κ− ln(2 + ∆)

) 1
ω

,

32cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2
ln

16cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2




1
ω

 .

Then for any m such that Dm ≥ ε, we have

P
[
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|G,H
]

≥ 1− 4cL(m+ 1)

κ

(
1 +

2cL

κ

)
|S||A| exp

(
−
κ2
(
1− 2

e

)2
β2ε2τω1

16cL(cL+ κ)V 2
max

)
.

Recall that in the proof of Proposition 2, QA is not updated at each iteration and thus we introduced
notations TA and TA(t1, t2) in Definition 1 to capture the convergence of the error

∥∥QA −Q∗∥∥.
In this proof, the only difference is that when choosing to update QA, only one (s, a)-pair is
visited. Therefore, the proof of Proposition 4 is similar to that of Proposition 2, where most of the
arguments simply substitute TA, TA(t1, t2) in the proof of Proposition 2 by TA(s, a), TA(s, a, t1, t2)
in Definition 2, respectively. Certain bounds are affected by such substitutions. In the following, we
proceed the proof of Proposition 4 in five steps, and focus on pointing out the difference from the
proof of Proposition 2. More details can be referred to Appendix C.2.

Step 1: Coupling {Dk}k≥0 and {Gq}q≥0

We establish the relationship between {Dk}k≥0 and {Gq}q≥0 in the same way as Lemma 10. For
the convenience of reference, we restate Lemma 10 in the following.
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Lemma 19. Let {Gq} be defined in Proposition 3, and let Dk = (1− β)k Vmax

σ with β = 1−γ(1+σ)
2

and σ = 1−γ
2γ . Then we have

P
[
∀(s, a),∀q ∈ [0,m],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
≤ P

[
∀(s, a),∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QBt −QAt ∥∥ ≤ σDk+1

]
,

given that τk = τ̂k.

Step 2: Constructing sandwich bounds

Let rt(s, a) = QA(s, a)−Q∗(s, a) and τk be such that ‖rt‖ ≤ Dk for all t ≥ τk. The requirement
of Event G yields

−Yt;τk(s, a) +Wt;τk(s, a) ≤ rt(s, a) ≤ Yt;τk(s, a) +Wt;τk(s, a),

where Wt;τk(s, a) is defined as

Wt+1;τk(s, a) =

{
Wt;τk(s, a), t /∈ TA(s, a);

(1− αt)Wt;τk(s, a) + αtwt(s, a), t ∈ TA(s, a),

with wt(s, a) = TtQAt (s, a)− T QAt (s, a) and Wτk;τk(s, a) = 0, and Yt;τk(s, a) is given by

Yt+1;τk(s, a) =

{
Yt;τk(s, a), t /∈ TA(s, a);

(1− αt)Yt;τk(s, a) + αtγ
′′Dk, t ∈ TA(s, a),

with Yτk;τk(s, a) = Dk and γ′′ = γ(1 + σ).

Step 3: Bounding Yt;τk(s, a)

Next, we first bound Yt;τk(s, a). Observe that Yt;τk(s, a) ≤ Dk for any t ≥ τk. We will bound

Yt;τk(s, a) by
(
γ′′ + 2

2+∆β
)
Dk for block k + 1.

We use a similar representation of Yt;τk(s, a) as in the proof of Lemma 13, which is given by

Yt+1;τk(s, a) =

{
Yt;τk(s, a), t /∈ TA(s, a)

(1− αt)Yt;τk(s, a) + αtγ
′′Gq = γ′′Gq + (1− αt)ρt, t ∈ TA(s, a)

where ρt+1 = (1− αt)ρt for t ∈ TA(s, a). By the definition of ρt, we obtain

ρt = ρτk
∏

i∈TA(s,a,τk,t−1)

(1− αi) = (1− γ′′)Dk

∏
i∈TA(s,a,τk,t−1)

(1− αi)

= (1− γ′′)Dk

∏
i∈TA(s,a,τk,t−1)

(
1− 1

iω

)
(i)
≤ (1− γ′′)Dk

∏
i∈TA(s,a,τk,τk+1−1)

(
1− 1

iω

)
(ii)
≤ (1− γ′′)Dk

τk+1−1∏
i=τk+1−cτωk

(
1− 1

iω

)
(iii)
≤ (1− γ′′)Dk exp

(
− cτωk − 1

(τk+1 − 1)ω

)

≤ (1− γ′′)Dk exp

(
−cτ

ω
k − 1

τωk+1

)
= (1− γ′′)Dk exp

(
−c
(

τk
τk+1

)ω
+

1

τωk+1

)
(iv)
≤ (1− γ′′)Dk exp

(
− c

1 + 2Lc
κ

+
1

τω1

)
,

where (i) follows because αi < 1 and t ≥ τk+1, (ii) follows from Proposition 18 and the requirement
of event H , (iii) follows from Lemma 9, and (iv) holds because τ + k ≥ τ1 and(

τk
τk+1

)ω
≥ τk
τk+1

=
τk

τk + 2cL
κ τωk

≥ 1

1 + 2cL
κ

.

Since κ ∈ (ln 2, 1) and ∆ ∈ (0, eκ − 2), we have ln(2 + ∆) ∈ (0, κ). Further, observing τ̂1ω >
1

κ−ln(2+∆) , we obtain ln(2 + ∆) + 1
τ̂1ω
∈ (0, κ). Last, since c ≥ L(ln(2+∆)+1/τ̂1

ω)
2(κ−ln(2+∆)−1/τ̂1ω) , we have

− c
1+ 2c

κ

+ 1
τ̂1ω
≤ − ln(2 + ∆).
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Then, we have ρt ≤ 1−γ′′
2+∆ Dk. Thus we conclude that for any t ∈ [τk+1, τk+2],

Yt;τk(s, a) ≤
(
γ′′ +

2

2 + ∆
β

)
Dk.

Step 4: Bounding Wt;τk(s, a)

It remains to bound |Wt;τk(s, a)| ≤
(

1− 2
2+∆

)
βDk for t ∈ [τk+1, τk+2).

Similarly to Appendix C.2.4, we define a new sequence {W l
t;τk

(s, a)} as

W l
t;τk

(s, a) =
∑

i∈TA(s,a,τk,τk+l)

αi Π
j∈TA(s,a,i+1,t−1)

(1− αj)wi(s, a).

The same arguments as the proof of Lemma 14 yields

|W l
t;τk

(s, a)−W l−1
t;τk

(s, a)| ≤ Vmax

τωk
.

If we fix ε̃ > 0, then for any t ∈ [τk+1, τk+2) we have

P [|Wt;τk(s, a)| > ε̃|t ∈ [τk+1, τk+2), G,H]

≤ 2 exp

 −ε̃2

2
∑

l:τk+l−1∈TA(s,a,τk,t−1)

(
W l
t;τk

(s, a)−W l−1
t;τk

(s, a)
)2

+2(W
min(TA(s,a,τk,t−1))
t;τk

(s, a))2


≤ 2 exp

(
− ε̂2τ2ω

k

2(|TA(s, a, τk, t− 1)|+ 1)V 2
max

)
(i)
≤ 2 exp

(
− ε̃2τ2ω

k

2(t− τk)V 2
max

)
≤ 2 exp

(
− ε̃2τ2ω

k

2(τk+2 − τk)V 2
max

)
(ii)
≤ 2 exp

(
− κ2ε̃2τωk

8cL(cL+ κ)V 2
max

)
= 2 exp

(
− κ2ε̃2τωk

8cL(cL+ κ)V 2
max

)
,

where (i) follows from Proposition 18 and (ii) holds because

τk+2 − τk =
2cL

κ
τωk+1 +

2cL

κ
τωk =

2cL

κ

(
τk +

2cL

κ
τωk

)ω
+

2cL

κ
τωk ≤

4cL(cL+ κ)

κ2
τωk .

Step 5: Taking union over all blocks

Applying the union bound in Lemma 8, we obtain

P
[
∀k ∈ [0,m],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|G,H
]

≥ P
[
∀(s, a),∀k ∈ [0,m],∀t ∈ [τk+1, τk+2), |Wt;τk(s, a)| ≤ ∆

2 + ∆
βDk|G,H

]
≥ 1−

m∑
k=0

|S||A|(τk+2 − τk+1) · P
[
|Wt;τk(s, a)| > ∆

2 + ∆
βDk

∣∣∣t ∈ [τk+1, τk+2), G,H

]

≥ 1−
m∑
k=0

|S||A|2cL
κ
τωk+1 · 2 exp

−κ2
(

∆
2+∆

)2

β2D2
kτ
ω
k

8cL(cL+ κ)V 2
max


≥ 1−

m∑
k=0

|S||A|2cL
κ

(
1 +

2cL

κ

)
τωk · 2 exp

−κ2
(

∆
2+∆

)2

β2D2
kτ
ω
k

8cL(cL+ κ)V 2
max


(i)
≥ 1−

m∑
k=0

|S||A|2cL
κ

(
1 +

2cL

κ

)
τωk · 2 exp

−κ2
(

∆
2+∆

)2

β2ε2τωk

8cL(cL+ κ)V 2
max


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(ii)
≥ 1− 4cL

κ

(
1 +

2cL

κ

) m∑
k=0

|S||A| · exp

−κ2
(

∆
2+∆

)2

β2ε2τωk

16cL(cL+ κ)V 2
max


≥ 1− 4cL(m+ 1)

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16cL(cL+ κ)V 2
max

 ,

where (i) follows because Dk ≥ Dm ≥ ε, and (ii) follows from Lemma 9 by substituting a =
16cL(cL+κ)V 2

max

κ2( ∆
2+∆ )

2
β2ε2

, b = 1 and observing that

τωk ≥ τ̂ω1 ≥
32cL(cL+ κ)V 2

max

κ2
(

∆
2+∆

)2

β2ε2
ln

64cL(cL+ κ)V 2
max

κ2
(

∆
2+∆

)2

β2ε2

 = 2ab ln ab.

D.3 Part III: Bound
∥∥QAt −Q∗∥∥

In order to obtain the unconditional high-probability bound on
∥∥QAt −Q∗∥∥, we first characterize a

lower bound on the probability of Event H . Note that the probability of Event G is lower bounded
in Proposition 3.
Lemma 20. Let the sequence τk be the same as given in Lemma 19, i.e. τk+1 = τk + 2cL

κ τωk for
k ≥ 1. Define IAk as the number of iterations updating QA at epoch k. Then we have

P
[
∀k ∈ [1,m], IAk ≥ cLτωk

]
≥ 1−m exp

(
− (1− κ)2cLτω1

κ

)
.

Proof. We use the same idea as the proof of Lemma 15. Since we only focus on the blocks with
k ≥ 1, IAk ∼ Binomial

(
2cL
κ τωk , 0.5

)
in such a case. Thus the tail bound of a binomial random

variable gives

P
[
IAk ≤

κ

2
· 2cL

κ
τωk

]
≤ exp

(
− (1− κ)2cLτωk

κ

)
.

Then by the union bound, we have

P
[
∀k ∈ [1,m], IAk ≥ cLτωk

]
= P

[
∀k ∈ [1,m], IAk ≥

κ

2
· 2cL

κ
τωk

]
≥ 1−

m∑
k=1

exp

(
− (1− κ)2cLτωk

κ

)
≥ 1−m exp

(
− (1− κ)2cLτω1

κ

)
.

Following from Lemma 16, it suffices to determine the starting time at epoch m∗ =
⌈

4
1−γ ln 2γVmax

ε(1−γ)

⌉
.

This can be done by using Lemma 17 if we have τ̂1.

Now we are ready to prove the main result of Theorem 2. By the definition of m∗, we know
Dm∗−1 ≥ ε,Gm∗−1 ≥ σε. Then we obtain

P(
∥∥QAτm∗ −Q∗∥∥ ≤ ε)
≥ P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1

]
= P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|G,H
]
· P(G ∩H)

≥ P
[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|G,H
]

· (P(G) + P(H)− 1)
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(i)
≥ P

[
∀k ∈ [0,m∗ − 1],∀t ∈ [τk+1, τk+2),

∥∥QAt −Q∗∥∥ ≤ Dk+1|G,H
]

·
(
P
[
∀q ∈ [0,m∗ − 1],∀t ∈ [τ̂q+1, τ̂q+2),

∥∥QBt −QAt ∥∥ ≤ Gq+1

]
+ P(H)− 1

)
(ii)
≥

1− 4cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16cL(cL+ κ)V 2
max




·

1− 4cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max


−m∗exp

(
− (1− κ)2cLτ̂ω1

κ

)]

≥ 1− 4cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

β2ε2τω1

16cL(cL+ κ)V 2
max


− 4cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

−m∗ exp

(
− (1−κ)2cLτ̂ω1

κ

)

(iii)
≥ 1− 12cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

 ,

where (i) follows from Lemma 19, (ii) follows from Propositions 3 and 4 and (iii) holds due to the
fact that

4cLm∗

κ

(
1 +

2cL

κ

)
|S||A| = max

{
4cLm∗

κ

(
1 +

2cL

κ

)
|S||A|,m∗

}
,

κ2(1−κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

≤min


κ2
(

∆
2+∆

)2

β2ε2τ̂ω1

16cL(cL+ κ)V 2
max

,
(1−κ)2τ̂ω1

κ
,
κ2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

 .

By setting

1− 12cLm∗

κ

(
1 +

2cL

κ

)
|S||A| exp

−κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2τ̂ω1

64cL(cL+ κ)V 2
max

 ≥ 1− δ,

we obtain

τ̂1 ≥

 64cL(cL+ κ)V 2
max

κ2(1− κ)2
(

∆
2+∆

)2

ξ2σ2ε2
ln

12m∗|S||A|cL(2cL+ κ)

κ2δ


1
ω

.

Combining with the requirement of τ̂1 in Propositions 3 and 4, we can choose

τ̂1 = Θ

((
L4V 2

max

(1− γ)4ε2
ln
m∗|S||A|L4V 2

max

(1− γ)4ε2δ

) 1
ω

)
.

Finally, applying m∗ =
⌈

4
1−γ ln 2γVmax

ε(1−γ)

⌉
and Lemma 17, we conclude that it suffices to let

T = Ω

((
L4V 2

max

(1− γ)4ε2
ln
m∗|S||A|L4V 2

max

(1− γ)4ε2δ

) 1
ω

+

(
2cL

κ

1

1− γ
ln

γVmax

(1− γ)ε

) 1
1−ω
)
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= Ω

( L4V 2
max

(1− γ)4ε2
ln
|S||A|L4V 2

max ln 2γVmax

ε(1−γ)

(1− γ)5ε2δ

) 1
ω

+

(
2cL

κ

1

1− γ
ln

γVmax

(1− γ)ε

) 1
1−ω


= Ω

((
L4V 2

max

(1− γ)4ε2
ln
|S||A|L4V 2

max

(1− γ)5ε2δ

) 1
ω

+

(
L2

1− γ
ln

γVmax

(1− γ)ε

) 1
1−ω
)
.

to attain an ε-accurate Q-estimator.
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