Supplementary Materials

A Numerical Example on Convergence Bounds

We use the following numerical experiment to further illustrate our finite-time bounds on the conver-
gence of double Q-learning. Specifically, we execute the synchronous double Q-learning algorithm
over the MDP model of Grid World used in the experiment in Wainwright (2019). We adopt a random
reward function which has a uniformly distribution over { Ry, — 20, Ry, + 20}, where R, = 1is
the expected reward. We run the same experiment 20 times independently with each experiment
taking 3 - 109 iterations. In addition, we initialize both Q estimators as QA =Q%=-80- 1] ISIx|Al
where [1]1°1*I4] denotes the all-one matrix with the dimension of |S| x |.A|.

In such an experiment, the optimal Q-function can be explicitly calculated and thus the learning
errors can be tracked. Figure 2 shows how the two errors ||Q24 - Q* || and HQ{‘ - QB H decay as
the number of iterations enlarges experimentally. To further illustrate our theoretical bounds, we
apply 71 = 800 and 7j41 = 7% + 50072° to compute the block-wise upper bounds, and plot them
also in Figure 2. It can be seen that the actual experimental errors are bounded by their corresponding
block-wise upper bounds { Dy, } and {G,}.
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Figure 2: The convergence errors and their theoretical bounds of double Q-learning in the Grid World
experiment. We choose v = 0.8, oy = 555 and 7441 = 7 + 5007° with 71 = 800.

B Proof of Lemma 1

We prove Lemma 1 by induction. First, it is easy to justify that the initial case is satisfied, i.e.,

||QA|| < 1}?;‘ = “‘a" ||QB H < V‘“a" . (In practice we usually initialize the algorithm as Q' =

= 0). Next, we assume that at tlmet HQt H < V‘“"‘" and HQtB H < ‘“a" hold. It then remains to
show that these conditions also hold for ¢ 4+ 1. To thls end, we observe that

QA (s, a)]| = ||(1 — a)QA(s.0) + e (Rt 20 arg maxQ (o )H
a’eU(s

< (- ag) |QF | + aclIRell + ey [| Q7|

Rmax Rmax
S (1 - af) + atRmax + %

- -y
_ Rmax _ Vmax
1=y 27
Similarly, we can show that ||Qt Ti(s,a H rg“‘ which completes the proof.
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C Proof of Theorem 1

In this appendix, we will provide a detailed proof of Theorem 1. Our proof includes: (a) Part I
which analyzes the stochastic error propagation between the two Q-estimators ||Q,f3 — Qf ; (b)
Part IT which analyzes the error dynamics between one Q-estimator and the optimum HQ;4 - Q* ||
conditioned on the error event in Part I; and (c¢) Part III which bounds the unconditional error
||Q;4 -Q H We describe each of the three parts in more details below.

C.1 Part I: Bounding HQtB — QtAH

The main idea is to upper bound ||QF — Q{*|| by a decreasing sequence {Gy }4>0 block-wisely with
high probability, where each block or epoch ¢ (with ¢ > 0) is defined by ¢ € [7,, Tg+1).

Proposition 1. Fixe > 0,x € (0,1),0 € (0,1) and A € (0,e — 2). Consider synchronous double
Q-learning using a polynomial learning rate oy = -5 withw € (0,1). Let G4 = (1 — £)1Gy with
Go = Viax and € = 1777- Let Tg41 = T4 + %?;’forq > 1withe > In@+A)+1/7;

T2 A)—1/7% and 71 as the
finishing time of the first epoch satisfying

) 1 5[ 128¢(c+ R)V2,, 64c(c+ r)V2,,
71 > max — ) 3 In 2
1-In(2+A) 12 <2+AA> 0222 2 (HAA) 02£2¢2

Then for any n such that G,, > o€, we have

P [Vg € [0,n],Vt € [Fgi1, Fqr2), |

Q7 = Q7' < G

2

2(_a 2 2 220

de(n+1) 2c K (2+A) §Zo Tt
>1-——=(1+=]|S —

- K ( + H) [S]lAfexp 64c(c+ k)V2

max

The proof of Proposition | consists of the following four steps.

C.1.1 Step 1: Characterizing the dynamics of QF (s, a) — Q#(s, a)

We first characterize the dynamics of uP4 (s, a) := QP (s,a) — Q{}(s, a) as a stochastic approxima-
tion (SA) algorithm in this step.

Lemma 2. Consider double Q-learning in Algorithm 1. Then we have
u7fB-&-A?L(S7 G,) = (1 - at)utBA(S? CL) + atFt(S7 a‘))
where

Fy(s.0) = {QtB(Sva)A_ Ry = 7Qf (st41,a%), wp. 172
Ry +7Q (s141,0%) — Qi (s,a),  wp. 122,
In addition, F; satisfies
BRI < 52 P4,
where the filtration F in the synchronous case is given by Fy = o ({si}, {Rr-1},2 < k <t).

Proof. Algorithm 1 indicates that at each time, either Q“ or Q¥ is updated with equal probability.
When updating Q at time ¢, for each (s, a) we have

uiAl(S? a) = QEH(& a) - Q?Jrl(sﬂ a)
= QP (5,0) — (Qf' (s,a) + ar(Ry +7QF (5141, 0") — Q7' (s, 0)))
= (1 - a)Qf (s,a) = (1 = ar) Q7' (s,a) + a(Re +7QF (s141,07) = QF (s,a)))
= (1= a)uPA(5,0) + a(QP(5,0) — By —7QB (s141,0%).
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Similarly, when updating Q¥ we have

utB+Al(saa) = QtBJrl(sva’) - Qf#»l(sv CL)

= (QF(s,0) + ar(Be +7Q (s141,b%) = Q7 (5, 0))) = Qi (5,.)
= (1 - a)QF (s,0) + (e (R + Q7 (s041,0") — Q7 (s,0) — (1 = a)Q7' (s, a))
= (1 - aui(s,a) + (R +7Qf (5141, ") — Q7' (s, a)).

Therefore, we can rewrite the dynamics of u?# as uZ4(s,a) = (1 — ay)uP?(s,a) + v Fi(s,a),

where
Fi(s,a) = QF(s,a) — Ri —vQf (s141,a%), wp. 112
t 3 == .
Rt + 7@?(3t+1, b ) — Qf((& a,)7 w.p. 1/2.
Thus, we have

E[Fi(s, a)|Fi)
— 5 (QPG0- B (R =1QP (s )] )+ 5 (B (A +9Q (10,5~ Q1 5,0))
= 3QP(0) — @5, @) + ] B QM sur1,b) - QP s,
= SuPA(s,0) + 2 B QM su10,67) — QP (sus1,0)]. ™

Next, we bound E [Qf(st+1,b*)—QtB(stH,a*)]. First, consider the case when

St+

E Q& (si41,0*) > E Qt (St+1,a™). Then we have
St+41 St4+1

E [Qf (st41,0") = QF (si1,0")]| = E [Qf (s141,6") — QF (5141, 0")]

St+1 St4+1
()

< E [Q(st1,0") — QF (st41,0)]

St41
H“t

where (i) follow from the definition of a* in Algorithm 1. Similarly, if E Q7' (s;41,b*) <
St4+1

IN

ok

E QP (s¢41,a*), we have
St4+1

sf]El [Q7 (5141,0%) — QtB(StJrh(l*)]‘ = SEI [QF (s141,a%) — Q7 (s141,0%)]
2 E [QF(st41,0") — Qi (s41,0%)]

St41

IA

H“t AH

where (i) follows from the definition of b*. Thus we can conclude that

E [Qf(s111.6) Qmﬂ,a*n\ < [[u24].

St+1

Then, we continue to bound (7), and obtain

1
|E[Fi(s, a)[F]| = QUfM(S a) + zst (@ (s441,b7) — Qf(st+1,a*)]’
< 514+ 3 | B, (@b - QP a)]
< 1+~ HUBA ’
for all (s, a) pairs. Hence, ||E[F;|F]|| < HTV ||utBA||. O
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Applying Lemma 2, we write the dynamics of u”4 (s, a) in the form of a classical SA algorithm
driven by a martingale difference sequence as follows:

ufﬁ(s, a) = (1 — a)ul(s,a) + a,Fi(s,a) = (1 — a,)uP?(s,a) + ay(hi(s,a) + z(s, a)),
where hi(s,a) = E[F(s,a)|F:] and z(s,a) = Fi(s,a) — E[F}|F;]. Then, we obtain
El2:(s,a)|F] = 0 and || he|| < 22 ||uP4| following from Lemma 2. We define u* (s, a) = 0, and
treat h; as an operator over uf A Then h¢ has a contraction property as:

[he — u*|| < ' [Juf? — ¥, (8)

where 7/ = 14 € (0,1). Based on this SA formulation, we bound u”“(s, a) block-wisely in the
next step.

C.1.2  Step 2: Constructing sandwich bounds on u”4

We derive lower and upper bounds on u? A

Lemma 3. Let 7 be such that |[uP?|| < G, forall t > #,. Define Zyz (s, a), Xz, (s, a) as

via two sequences Xy.7, and Zy z_ in the following lemma.

Zis13,(5,a) = (1 — o) Zyz, (5, a) + apze(s,a),  with Zz .+, (s,a) = 0;
1
Xip17,(5,0) = (1 — o) X5, (s,0) + oy’ Gy, with X5, 3, (s,a) = Gg, ' = %

Then for any t > 74 and state-action pair (s, a), we have

—Xi1,(8,a) + Zy3,(s,0) < qu(s, a) < Xz, (8,a) + Zz,(s,a).

Proof. We proceed the proof by induction. For the initial condition ¢ = 7, ’ufq“ H < G4 implies

-G, < uqu < G4. We assume the sandwich bound holds for time ¢. It remains to check that the
bound also holds for ¢ 4 1.

At time t + 1, we have
ufi(s,a) = (1 — ap)u; (s, a) + ar(he(s, a) + z(s, a))
< (1= ) (Xeiz, (5, 0) + Zeiz, (s, a)) + ar(he(s, a) + 2e(s, a))

2 [(1 — o) X2, (s,a) + ay HquH] + [(1 — ) Zz,(s,0) + atzt(s,a)]
< [(1 = ) Xz, (5,0) + ey’ Gy) + [(1 — ar) Zesz, (s, a) + arze(s, a)]
= Xit1;7,(8,a) + Ziy1,2,(s,a),
where (i) follows from Lemma 2. Similarly, we can bound the other direction as
u?ﬁ(s, a) = (1 — a)uPA(s,a) 4+ ay(he(s, a) + z(s, a))
> (1= a)(=Xuz,(s,0) + Zuz, (s,0)) + ar(he(s, a) + 2e(s, a))
> [-(1— ) Xz, (s,a) — oy’ Hu?AH] + [(1 = ) Zuz, (s, a) + oy zi(s, a)
> [—(1— o) Xz, (5,0) — oy’ Gy] + [(1 — ) Zysz, (5, a) + w2 (s, a)]
= 7Xt+1:,7:q (s,a) + Zt+1;7:q (s,a).

C.1.3 Step 3: Bounding X;.; and Z;; for block q + 1

We bound X7 and Z;; in Lemma 5 and Lemma 6 below, respectively. Before that, we first
introduce the following technical lemma which will be useful in the proof of Lemma 5.

Lemma4. Fixw € (0,1). Let 0 < t; < to. Then we have

to
1 to —t
[l (-5 <on(-25")
3 ty

1=t
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Proof. Since In(1 — z) < —z for any = € (0,1), we have

to tlfw o tlfw
W[ (- D) < o e [foman 48
— W

1=t i=t

Thus, fixw € (0,1),let 0 < ¢; < tq, and then we have
to 1-w 1-w

1 t -t
(L) zen( 47207
: A 1-w

1=t
Define f(t) := t'=*. Observe that f(¢) is an increasing concave function. Then we have
ty =t > fta)(ta — 1) = (1 — W)tz (2 — 1),

which immediately indicates the result. O

We now derive a bound for X, .

Lemma 5. Fix k € (0,1) and A € (0,e — 2). Let {G4} be defined in Proposition 1. Consider
synchronous double Q-learning using a polynomial learning rate oy = t% withw € (0, 1). Suppose
that X+ (s,a) < Gg forany t > 7,. Then for any t € [Tyq1,Tq42), given Tgqy1 = Tq + 207’ with

1
T 1 © In(24+A)+1/7%
T2 (m) and ¢ > m, we have

2
Xi(s.0) < (7' + 52 5€) G

Proof. Observe that X .z (s,a) = Gy = 7' Gy + (1 —v')Gy := ¥'G4 + pz,. We can rewrite the
dynamics of Xz (s,a) as

Xip12,(5,0) = (1 — o) X7, (s,0) + ' Gq = +'Gg 4+ (1 — ay)py,

where p;11 = (1 — ay)ps. By the definition of p;, we obtain

t—1
pr=(01—a1)p—1 == (1-+)G, H (1
t—1 Tar1—1
1 (1)

:(1—’7’)qu h(l—ﬂ) G, ] (1—)

1=Tq i= Tq
(i) Tg+1 — 1 — 7, Tg+1 — 1 — 7,
< (1—-~"Gyexp <—qj'q> <(1—-+)Gyexp | ——LF—"1

! (Tg+1 —1)* ! TSJH

2c rw ~ w
=7e—1 2 (7 1
=(1—7")Gyexp | — 2L — Ai =(1—-+")Gyexp | —— <A d ) +
Tg+1 Kk \Tq+1 Tg+1

(iii) 2¢c 1 1\ @ c 1

< (1 -G - 4+ )< (1-4Y)a —

< ( 7') leP< li1+2;+7°f’>_( 7) leP< 1+C+f'f>’
where (i) follows because «; is decreasing and ¢t > 7,1, (ii) follows from Lemma 4, (iii) follows
because 7, > 71 and

Tq Tq Ty 1
<7A—q+1> T fgr1 g+ Bfw T 142
and (iv) follows because 2—; > c. Next, observing the conditions that > m and ¢ >
m — 1, we have
c
1+c¢ le -

In(2 + A).
Thus we have p; < 2 A G Finally, We finish our proof by further observing that 1 — ' = 2¢. O
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Since we have bounded X.; (s,a) by ('y’ + ﬁf) Gg for all t > 7,41, it remains to bound

Ziz,(5,a) by (1= 525 ) €G, for block g-+ 1, which will further yield [|uf (s, a)]| < (+/+€)Gy =
(1—-&)Gy = Ggy1 forany t € [7,41,7442) as desired. Differently from X,z (s,a) which is a
deterministic monotonic sequence, Z;.+ (s, a) is stochastic. We need to capture the probability for

a bound on Z;; (s,a) to hold for block ¢ + 1. To this end, we introduce a different sequence
{2\, (s,a)} given by

FoHl -1 Fotl
t‘rq Z @ H 1 - a] zl S a) = Z d)(iz’t_lz’i(saa’)a 9
i=Tq j=i+1 =74
where ¢7' " = H] —i41(1—qy). By the definition of Z;.+ (s, a), one can check that Z;.; (s, a) =
tt._%ql_%q (s, a). Thus we have
t—1—74
Zt;‘f'q (53 CL) = Zt;‘f'q (37 (1) - Z‘rq,‘rq Z Zl 1(5 (I)) + ngq (S, a)' (10)
=1

In the following lemma, we capture an important property of Z,f; 2 (s,a) defined in (9).

Lemma 6. Foranyt € [Tg11,7q42) and 1 <1 <t —1—1,, Z,f.;.q (s, a) is a martingale sequence
and satisfies

|Zé;‘?'q (s,a) - Ztl;;—j(sa a’)| < ~ : )

Proof. To show the martingale property, we observe that

E|Z};, (s,0) = Z{7}(5,0)| Fr pio1] = B2 27, 44(5, @) | Fr 11
(b-,q— t+ll [Z+q+l(8,a)‘]:{—q+g_1] =0,
where the last equation follows from the definition of z(s, a).

In addition, based on the definition of gbg’t*l in (9) which requires ¢ > 7,, we have

t—1

_ 1
¢?’t1:ai H(l—@j)ﬁaié —.
j=it1 Tq

Further, since | Fy| < 2{tuax = V.., we obtain | 24(s, a)| = |F; — E[F;|F]| < 2Vinax. Thus
2Vinax

W
Tq

_ =1
|Zé;+q(57 a) — Zé;%j(& a)| = ¢q+qt+l |22,41(s,0)| <
O

Lemma 6 guarantees that Ztl; 7o (s, a) is a martingale sequence, which allows us to apply the following
Azuma’s inequality.

Lemma 7. (Azuma, 1967) Let Xy, X1, ..., X, be a martingale sequence such that for each 1 <
k<n,
| Xk — Xia| <,

where the cy, is a constant that may depend on k. Then for alln > 1 and any € > 0,

2
PIIX, — X0l > € < 2exp (—yr— ).
QZk 1Ck
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By Azuma’s inequality and the relationship between Z;; (s, a) and Zéﬁq (s,a) in (9), we obtain

P [‘Zt;?q (S,a)| > €|t € [%q+1v7ﬁq+2)]

< _
< Zexp t—tq—1 ( -1 2 0 2
2> o1 (Zt;+q (s,a) — Zis, (Saa)) + 2(Zt;%q(sva))

= TP TR — i) V2 ) T TP T 8 — 7 V2

(i<i) 5 K22 Td 5 K22 Ta
= e 32c(c+r)V2,. | P 32c(c+ K)V2,. ]’

where (i) follows from Lemma 6, and (ii) follows because

R ) 2, 2., 2/, 2¢c_\“ 2., 2c 2c\ ., Adelc+k),
Tq+2—Tq=;Tq+1+;Tq=; Tq+;7'q —l—;TqS; 2+; g = 5 T4

C.1.4 Step 4: Unionizing all blocks and state-action pairs
Now we are ready to prove Proposition | by taking a union of probabilities over all blocks and

state-action pairs. Before that, we introduce the following two preliminary lemmas, which will be
used for multiple times in the sequel.

Lemma 8. Let {X;};cr be a set of random variables. Fix ¢ > 0. If for any i € I, we have
P(X; <€) >1—0, then

P(VieZ, X; <¢€)>1-—|Z|o.
Proof. By union bound, we have

P(Vi € 7, X; §e):1—]P’<UXi>e> >1-Y P(X;>e)>1—|T[s.
1€L i€L

Lemma 9. Fix positive constants a, b satisfying 2ablnab > 1. If 7 > 2abln ab, then
b < 27’) T
T°exp | —— ) < exp (77).
a a

Proof. Letc=ab. If 7 < 2, we have
clnt <clne® =2clne < 7.

If 7 > ¢2, we have
cnt <V7Tlnt < VTVT =7,

where the last inequality follows from In 22 = 2In 2 < x. Therefore, we obtain cln7 = abln 7 < 7.
Thus 7° < exp (g), which implies this lemma. O

Proof of Proposition 1
Based on the results obtained above, we are ready to prove Proposition 1. Applying Lemma 8, we
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have

P {V(s a),¥q € [0,n],Vt € [Tg11,Tq42), | Zi:z,(5,a)| < A

fG}

n . A A . .
> 1= Y IIAGus2 ~ i) B (12, (0] > 556Gt € s o)
q=0
12 (2+A) 2G5y
32¢(c+ k)V2

max

i 2c .,
>1 72|S||A|;Tq+1~2exp —

q=0

2 22 ~w
2¢ k (2+A) Gty
>1— —
1 Z|S||A|H (1+ ) 2exp Pele i AIVE

max

2 2
2c K (2+A) §?o?

01 ~w _

! Z ISIAIS K (1 + ) q " Zexp 32¢(c+ H)V

max

2,2 2,0
(if) 4c 2¢\ w K <2+A) {Fotetry
>1-— — S| Al -
- K < /{) — [SIMA-exp 64c(c+ k)V;2

max

2 2 2 2 w
i) de(n 4 1) 2 . (2+A) §Coe
>1- AT (1) s -
K < * KJ>| [l Afexp 64c(c + k)V2 ’

max

where (i) follows because G, > G, > oe, (ii) follows from Lemma 9 by substituting that a =

%, b =1 and observing

”2(2+A) 02£2¢2

128 V2 64 V2
K2 (ng> 25262 K2 <2$A> 025262

and (iii) follows because 7, > 7.

Finally, we complete the proof of Proposition 1 by observing that X, is a deterministic sequence
and thus

P [Vg € [0,n],Yt € [Fgr1, 7qr2), ||QF — Q|| < Go1]

>P [V(s a),Vq € [0,n],Vt € [Tgq1,Tg12), 1212, (5,a)| < -—+EG,

< A
T24A

C.2  PartII: Conditionally bounding ||Q;* — Q

In this part, we upper bound HQ{‘ -Q* | by a decreasing sequence { Dy, },>0 block-wisely condi-
tioned on the following two events: fix a positive integer m, we define
E = {Vk € [0,m],Vt € [Thy1, Ths2), |QF — Q|| < oDis1}, (12)
F = {Vke[l,m+1],I{ > cri}, (13)
where [, ];4 denotes the number of iterations updating Q* at epoch k, 754 is the starting iteration
index of the (k + 1)th block, and w is the decay parameter of the polynomial learning rate. Roughly,

Event F requires that the difference between the two Q-estimators are bounded appropriately, and
Event F requires that Q is sufficiently updated in each block.

Proposition 2. Fixe > 0,5 € (In2,1) and A € gO, e"” — 2). Consider synchronous double Q-
learning under a polynomial learning rate oy = 5 with w € (0,1). Let {Gy}q>0,{74}q>0 be
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defined in Proposition 1. Define Dy, = (1 — B)k% with = 129049 g o = 12—% Let 1, = T,

2
for k > 0. Suppose that ¢ > Qél_nlgigfk;i/ﬁil) and Ty as the finishing time of the first block satisfies
1

w

max

2 2
2 (_A 2.2 2 (_A 2.2
K (2+A) pre K (2+A) p?e

w 2 2
71 2 max 1 , 320(0 + K/)Vmax In 16C(C + R)V
k—I(2+A)

Then for any m such that D,,, > €, we have

P [Vk € [0,m],Vt € [Tht1, Tht2),

Qi' = Q|| < Dyy1| B, F]

2
2(_A 2.2 w
4de(m + 1) 2¢ k (2+A) prerry
>1- 20T 1) s -
K ( * m)' Al exp 16¢c(c+ k) V2 ’

max

where the events E, F' are defined in (12) and (13), respectively.

The proof of Proposition 2 consists of the following four steps.

C.2.1 Step 1: Designing { Dy, } x>0

The following lemma establishes the relationship (illustrated in Figure 1) between the block-wise
bounds {G} >0 and {Dy}r>0 and their block separations, such that Event E occurs with high
probability as a result of Proposition 1.

Lemma 10. Let {G,} be defined in Proposition 1, and let Dy, = (1 — )% Ymex yith 3 = w

and o = 127—77 Then we have

P [Vg € [0,m], Vt € [Fg11, Tgt2), ||QF — Q]| < G
< P[Vk € [0,m],Vt € [Ths1, Tret2), [|QF — Q7| < 0Dgy1]

given that T, = Ty.

Proof. Based on our choice of o, we have

1
= 1—v(1+4+0) 1—7'% B 1—'y_E
B 2 - 2 4
Therefore, the decay rate of Dy, is the same as that of G,. Further considering Gy = 0Dy, we can
make the sequence {0 Dy, } as an upper bound of { G, } for any time as long as we set the same starting

point and ending point for each epoch. O

In Lemma 10, we make G, = o Dy, at any block k and £ = § = 1?% by careful design of o. In fact,
one can choose any value of o € (0, (1 — v)/~) and design a corresponding relationship between
7, and 73, as long as the sequence {o Dy} can upper bound {G,} for any time. For simplicity of
presentation, we keep the design in Lemma 10.

C.2.2 Step 2: Characterizing the dynamics of Q{' (s, a) — Q*(s, a)

We characterize the dynamics of the iteration residual (s, a) := Q{'(s,a) — Q*(s,a) as an SA
algorithm in Lemma 11 below. Since not all iterations contribute to the error propagation due to the
random update between the two Q-estimators, we introduce the following notations to label the valid
iterations.

Definition 1. We define T as the collection of iterations updating Q. In addition, we denote
TA(t1,t2) as the set of iterations updating Q* between time t, and to. That is,

TA(t1,ta) = {t 1t € [t1,t2] and t € T} .
Correspondingly, the number of iterations updating Q** between time t| and to is the cardinality of
TA(ty, o) which is denoted as | T4 (t1,t2).
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Lemma 11. Consider double Q-learning in Algorithm 1. Then we have

r(s,a), t¢ T4,

(1—ay)r(s, )+ (TQ(s,a)—Q* (s, a)) +ayw (s, a) +ayryulA(s', a*), t € T4,
where wy(s,a) = T;Q(s,a) — TQP (s,a),uP?(s,a) = QP (s,a) — QA (s, a).

rt+1(s,a)={

Proof. Following from Algorithm 1 and for ¢ € T4, we have

where (i) follows because we denote 7;Q7(s,a) = R; + Qi (s',a*). By subtracting Q* from both
sides, we complete the proof. O

C.2.3 Step 3: Constructing sandwich bounds on (s, a)

We provide upper and lower bounds on 7; by constructing two sequences Y;.,, and W, in the
following lemma.

Lemma 12. Let 73, be such that ||r¢|| < Dy, for allt > Ty,. Suppose that we have HutBAH < oDy
with o = 12_—77]‘0;” allt > 1y,. Define Wy, (s,a) as

Wt;Tk (57(1)’ t ¢ TA;
(1 —ag)Wir, (s,a) + apwi(s,a), te TA,

Witiir,(s,a) = {

where W, .., (s,a) = 0 and define Yy, (s, a) as
Yin(s,0), ¢ ¢ T4

Yit1.7.(s5,0) =
t+ 3 k( ) {(1 _ O[t)}/tn—k(s,a) +at7//Dk, t E TA,

where Y;, .-, (s,a) = Dy and v" = v(1 + o). Then for any t > 1, and state-action pair (s, a), we
have
7}/;?7'19 (s’ a) + Wt;ﬂc (Sv a) < rt(sv a) < Y;ﬁ;Tk (57 a) + Wt;‘rk (s’ a)'

Proof. We proceed the proof by induction. For the initial condition ¢ = 7y, we have ||r4(s,a)|| < Dx,
and thus it holds that — Dy, < r,, (s,a) < Dj. We assume the sandwich bound holds for time ¢ > 7.
It remains to check whether this bound holds for ¢ + 1.
If ¢ ¢ TA’ then Tt+1(sa a) = Tt(57 CL), Wt+1;7k (57 CL) = Wt;"’k (57 a)a )/1‘/-5-1;7'1@ (57 a’) = }/t;Tk (57 CL).
Thus the sandwich bound still holds.
Ift € T4, we have
rip1(s,a) = (1 — ap)re(s,a) + at(TQf(s, a) — Q*(s,a)) + arwe(s,a) + aﬂutBA(s', a®)
< (1= ) (Yirr, (5,0) + Wir, (5,0)) + a0 | TQF — Q7
+ aqgwy(s, a) + agy ||utBAH

()

< (1 - Olt)(i/t;'rk (Sva) + Wt;ﬂc (S’ a)) + ay HTtH
+agwi(s, a) + apy |l

(i)

< (1= a)Yir, (s,0) + apy(1+0) D + (1 — o) Wir, (s, a) + arw(s, a)

< Vi1 (s, 0) + Wigair, (s, 0),
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where (i) follows from the contraction property of the Bellman operator, and (ii) follows from the
condition ||utBAH < oDy.

Similarly, we can bound the other direction as

revi(s,a) = (1= an)re(s, a) + a(TQ (s,a) — Q*(s,a)) + aywy(s, a) + ayyup (s’ a”)
> (1= ) (Y (s,0) + Weir (5,0)) — e | TQL = Q7|
+ agwi(s, a) — oy [Ju?|
> (1= ) (Yir, (8,0) + Wir, (s,a)) — awy |||
+ apwi(s,a) — apy HquH
—(1 —a)Yer, (s,a) —ay(1 4+ 0) Dy + (1 — o) Weer, (5, 0) + aqwy (s, a)

>
> _Yt+1§7'k (37 a) + Wt-‘rl;‘rk (Sa a)'

C.2.4 Step 4: Bounding Y;.;, (s,a) and Wy, (s, a) for epoch k + 1

Similarly to Steps 3 and 4 in Part I, we conditionally bound ||r;|| < Dy, for t € |7y, Tk+1) and
k=0,1,2,... by the induction arguments followed by the union bound. We first bound Y;.;, (s, a)
and W;.;, (s, a) in Lemma 13 and Lemma 14, respectively.

Lemma 13. Fix x € (In2,1) and A € (0,e" — 2). Let { Dy} be defined in Lemma 10. Consider
synchronous double Q-learning using a polynomial learning rate oy, = t% withw € (0,1). Suppose
that Y7, (s,a) < Dy, for any t > Ty. At block k, we assume that there are at least ct}’ iterations
updating Q4 i.e., |T* (T, Tiy1)| > 78 Then for any t € [Ti1, Thi2), we have

2
Y;f;’rk (87 a) < (P}’” + 72 T Aﬁ) Dk

2c, w
;@Tk'

Proof. Since we have defined 7, = 73, in Lemma 10, we have 74,41 = 7 +

Observe that Y, .-, (s,a) = Dy = "Dy + (1 —~")Dy, := ~"Dy + p,,. We can rewrite the
dynamics of Y., (s, a) as
Yvﬁ‘ﬁc (S’ a)v i §é TA
}/tjtl;rk (Sva) = " " A
(1—a)Yr(s,a)+ "Dy =~"Dp+ (1 —au)py, teT

where p;1 = (1 — a;)p; for t € T4. By the definition of p;, we obtain

pr=pr, ] (Q-e)=0-9"Dr J] Q-w)

€T A(T),t—1) €T A (1),t—1)

—a-voe I1 (%) 2a-vme T (1-%) o9

iGTA(Tk,t—l) iETA(Tk,Tk+1—1)

(if) " Tht1-1 1\ (i) . e —1
< (I —~")Dy H 1—3 < (1 —+")Drexp —m
i:Tk+1ch;)

< (1 —+")Dy exp (CTkw_ 1) = (1 —+")Dy exp (c <Tk) + ! >

w
Tht1 Tht+1

c 1
< (1 —=9")Dyexp (—Hg’f + 7_fj) )
where (i) follows because o; < 1 and t > 741, (ii) follows because |74 (7, 71 — 1)| > et
where T4 (t,t5) and |T“(t1,t,)| are defined in Definition 1, (iii) follows from Lemma 9, and (iv)
holds because 7 + k£ > 71 and

( Tk >w Tk Tk 1
= - 2 - 2c*
Thk+1 Th+1 T+ TTe T 1+ 58
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Next we check the value of the power — 7%= gc + —. Since k € (In2,1) and A € (0,e” —2), we have

In(2 + A) € (0, k). Further, observing 74’ m, we obtain In(2 + A) + % € (0, k). Last,
: K 1 _ _s(n@+A)+1/77)

since ¢ > 5 <11<2+A)+1/ff - 1) = 3(e—n(zta)—1/77)> We have — 1+2° + 5 <—In(2+A4).

Thus, we have p; < 2 T SIR Dk Finally, we finish our proof by further observing that 1 — 4" = 24.

O

It remains to bound |Wy.,, (s,a)] < (1 - ﬁ) BDy, fort € [Tk41, Tk+2). Combining the bounds
of Yy, and Wy, yields (v + 8)Dy = (1 — 8)Dy, = Dy1. Since Wy, is stochastic, we need
to derive the probability for the bound to hold. To this end, we first rewrite the dynamics of Wy,
defined in Lemma 12 as

Wir (s,a) = Z a; I (1—aj)wi(s,a).

JETA(i+1,t—1
i€TA (1, t—1) JETA(i+ )
Next, we introduce a new sequence {W/.. (s,a)} as
l
W= 3 e T (- ausa)
i€TA (Tk,‘l']c+l) J ’

Thus we have W;.,, (s,a) = W}, Tkl ™ (s, a). Then we have the following lemma.

Lemma 14. Foranyt € [Tpy1, Teyo) and 1 <1 <t—m,—1, {W}]._, (s, a)} is a martingale sequence
and satisfies
VmaX

l -1
|Wt;‘rk( ) W (S a)‘ < 7_;:

67T —

Proof. Observe that
0, m+l—1¢T4,

« 11 1—a;)w s,a), Te4+1—1eT4.
TkJrleTA('rkJrlJrl,tfl)( 3 Wni(s,a) T

th;Tk (57 a’) th ‘f'kl (S a’)
Since E[w;|F;_1] = 0, we have
E [Wiir, (s,0) = Wiz (5, @) Froia] = 0.

Thus {W}.,, (s,a)} is a martingale sequence. In addition, since [ > 1 and a; € (0, 1), we have

1
o II 1l—¢a;)La <a;, =—.
Tk+ljeTA(Tk+l+1,t—1)( 3) S On S am T
Further, we obtain |w; (s, a)| = |T;Q{(s,a) — TQ7 (s,a)| < 216’2_% = Vinax. Thus
Vi
|th;‘rk( ) thrkl(s a‘)‘ < aTk+l‘wTk+l(sva)| < ;_njx'
k

Next, we bound Wy, (s, a). Fix € > 0. Then for any ¢ € [711, Tk+2), we have
P “Wt;‘rk (57 a)‘ > €|t € [Tk’-‘rla Tk’-‘r?)v E7 F]

) 2
< 2exp
- min(TA (7 t—1

2 Z (Wl‘l,'rk (57 a) th T:(S a)) (Wt .y (T4 (st = ))( ))

L +Hl—1€TA(T),t—1)
D, e W, i
e N T (7Y Co g § R VBN et ) (N R Rty

2 2w (iv) KJQGQTW
<2 - k <2 k)
= wp(2@mQ—mﬂﬁw) ”@( 8@+nngm)
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where (i) follows from Lemma 7, (ii) follows from Lemma 14, (iii) follows because |TA(1€17 ta)| <
to — t1 + 1 and (iv) holds because

2¢ 2¢ , 2c 2¢c \* 2 ., Ac(c+r)
Thao — Th = —T =+ =1 —r < ——=77.
k+2 k /{k+1+/{k /{(k+/€k + kK = K2 k

Proof of Proposition 2
Now we bound ||| by combining the bounds of Y;.;, and W;.,, . Applying the union bound in
Lemma 8 yields

P [\f(s?a),wf R R

> 1= S ISAIsz = ) B Wi (0] >

AﬁDk‘t € [Tk+1,7'k+2),E7F]
k=0

< (b5) P

m
2¢c
>1-— Z|SHA|;T;:+1 <2exp | —

2
pors 8c(c+ k)VZ.«
m 2 2p2
2c 2c K <2+A) B Dy

>1-Y1s =) e 2exp | -

2 ISIAR (142 e | v
0 & 2 (2 w (Tﬁ)g g
>1-3USIAS (1+ ) 7 2exp | — 15
1= SIS (14 2) 7 20y (15)

= 8c(c+ k) V2,4

2
2(_a 2.2 w
W e 2\ — K (2+A) pretri
>1—— (14— S| Al - —

- K ( * H)’;J| [IA] - exp 16¢c(c + r)VZ,

max

2
2 A 2.2 w
de(m+1) K (2+A) preTy
>1—- — 7 —
21 K (1 + ) [S[lAfexp 16¢c(c + k) V2

max

where (i) follows because Dy, > D,, > ¢, and (ii) follows from Lemma 9 by substituting a =

% _ .
2 (32y ) B2 b = 1 and observing that

2 2
32¢(c+ k) Vi ax I 16¢(c + )Vmax — 9ublnab.

2 (2+A) B2e2 P (2+A) B2¢2
Note that Y;.,, (s, a) is deterministic. We complete this proof by observing that
- Q|| £ D11 |E, F]

T > T >

P [Vk € [0,m],Vt € [Th+1, Tk+2),

>P [V(s,a),Vk € [0,m],Vt € [Th1, Tht2), [ Wir (8,0)] < ABD;€|E,F .

C.3  Part III: Bounding ||Q7' — Q|

We combine the results in the first two parts, and provide a high probability bound on ||r;|| with
further probabilistic arguments, which exploit the high probability bounds on P(FE) in Proposition 1
and P(F') in the following lemma.

Lemma 15. Let the sequence Ty, be the same as given in Lemma 10, i.e. Typy1 = Tp + 2 <1y for
k > 1. Then we have

1— 2w
P[Vk e [L,m],I{ > cri?] > 1 —mexp (_(’207'1) .
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where I ,;4 denotes the number of iterations updating Q* at epoch k.

Proof. The event updating Q“ is a binomial random variable. To be specific, at iteration ¢ we define

. A,
JA = 1, updating Q“;
0, updating Q5.

Clearly, the events are independent across iterations. Therefore, for a given epoch [y, T41), ,‘;‘ =

Zi:_l J{ is a binomial random variable satisfying the distribution Binomial(7y4+1 — Tx,0.5).

In the following, we use the tail bound of a binomial random variable. That is, if a random variable
2

X ~ Binomial(n,p), by Hoeffding’s inequality we have P(X < z) < exp (—M) for

n

@ < np, which implies P(X < rnp) < exp (—2np*(1 — x)?) for any fixed € (0, 1).
If k =0, I§* ~ Binomial(7y,0.5). Thus the tail bound yields

(1- 5)27—1> .

PP?S% ﬁ}§@®<— 5

If k > 1, since 711 — 7p = 257, we have I{* ~ Binomial (2¢7{,0.5). Thus the tail bound of a
binomial random variable gives

(1- @207;;) |

2
1< 5 2] o (1

Then by the union bound, we have

2
P[VkE[l,m],IﬁECT‘é’]P[Vke[l,m],lfzg.c'r}j]
K
—k)%erf
>1-—
Zexp( . )
2
Zl_mexp(_ﬂff)%)_
K

O

We further give the following Lemma 16 and Lemma 17 before proving Theorem 1. Lemma 16
characterizes the number of blocks to achieve e—accuracy given Dy, defined in Lemma 10.

Lemma 16. Let Dy 1 = (1 — 8)Dy, with § = =2, Dg = 1 2 Vaax  Then for m > - 1n 26(71‘/7“‘;;’)‘,
we have D,,, < e.

Proof. By the definition of Dy, we have Dy, = (1 — B)k Dy. Then we obtain
1 DO h’l(Do/G)
D <e<— l—ﬁkD <edse—=s —— > —<— k> — -
(=0 Do =9~ e n(1/(1 - 5)
Further observe that In 2= < z if 2 € (0,1). Thus we have
1. Dy 4 29Vinax
Boe 1—v €el-7)

From the above lemma, it suffices to find the starting time at epoch m* = L 5 In 2?1‘/7“;’)‘] .

The next lemma is useful to calculate the total iterations given the initial epoch length and number of
epochs.
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Lemma 17. (Even-Dar and Mansour, 2003, Lemma 32) Consider a sequence {xy} satisfying
k
Thy1 = Tk +cxf =1 + ch‘f
i=1
Then for any constant w € (0,1), we have

xp =0 ((x%_“’ + ck)ﬁ) =0 (xl + (ck)ﬁ) .
Proof of Theorem 1

Now we are ready to prove Theorem 1 based on the results obtained so far.

Let m* = L = In 2?1‘/(”)‘} then G« —1 > o€, Dyy«_1 > €. Thus we obtain

P(|Qs,. (s )
EPWkemnz—uv“qumH2 — Q|| < Dis1]
=P [Vk € [0,m" — 1],Vt € [Thq1, Tht2), |- P(ENF)

> P [Vk € [0,m* —1],Vt € [Thi1, Tht2),
-(P(E) +P(F)—1)

]

(i)
> P [k € [0,m" — 1],V € [Tk, Thy2), [|QF' — Q|| < Drsa| E, F]

: (P [Vq € [Ovm* - 1}7Vt € [72(1+177A—q+2)7 ||Qi{3 - Q?H < Gq+1} +P(F) - 1)
2 (25) e

16¢(c + ) V2

max

@) 4em”™

> [1- - (1+ )|S||A|eXp —

64c(c + k)V2

max

2 2 2 2w
4 * 2 K (2 A) EO' € 7' 1— 2 cw
| dem” (1+C> (S| Alexp | -2 _m*exp(_(ﬁm>
K K K

2

2(_A 2.2 w

dem* 2¢ k (2+A) petry
>1— 1+—||S —

- K ( + K ) [SllAfexp 16¢(c + k)V2

max

2 22 220
dem* 2¢ K <2+A) {oteTy (1 — k)%cry
" (142 1S _ —m* A SV T
m ( +H> || Al exp S1c(c + m)V2 m exp( - )

max
k2(1 - kK)? (2+A) 202627y
64c(c+ k)V2 ’

max

(iii) 12em*

>1- - <1+ )|S||.A|exp —

where (i) follows from Lemma 10, (ii) follows from Proposition | and 2 and (iii) holds due to the fact

that

4em* dem™ 2

T (14 2 sl mma {2 (14 ) A

K K K

2

K2(1—r)? (2+A> 520262T“< ' /432(24_%) B2y (1—k)27% K <2+A) 20227

64c(c + m)V2, ST Teclc V2L T k0 6Gde(c+ V2,
By setting

K2(1 — k)2 (2+A> 202627

64c(c+ k)V2

max

12em*

1- >1-4

)

<1+ >|S|A|exp -
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we obtain

€=

. 64c(c+ k)V2

max
T1 Z A 2
K2(1 — k)2 (ﬂ) £202¢2

Considering the conditions on 74 in Proposition 1 and Proposition 2, we choose

o (Vi mISIAVEL
mEP\\aeye oyt ) )

Finally, applying the number of iterations m* = {% In 26?1‘/2“;’)‘

12em*|S|]A|(2¢ + k)
In 5
K26

1 and Lemma 17, we conclude that
it suffices to let

V2 m*|S||A|V,2 “ 2¢ 1 YVinax =
T =0 max 1 max o 1
(((1—%2 Yot ) T\ T e

1
2 S||A|V2, In(Amac )\ @ 1 S
_Q ( Viax ! |S[|A] ((177)6) +< Vinax >

]
(1—vy)te " (1 =)0 1= " (1—7)e

1 1
Vi [SIAVRax  © 1 Vinax \ 77
— Q max 1 max 1
(((1—7)462 tr—pes) T\Tm - ’

to attain an e-accurate Q-estimator.

D Proof of Theorem 2

The main idea of this proof is similar to that of Theorem 1 with further efforts to characterize the
effects of asynchronous sampling. The proof also consists of three parts: (a) Part I which analyzes the
stochastic error propagation between the two Q-estimators HQtB — Q#||; (b) Part IT which analyzes

the error dynamics between one Q-estimator and the optimum HQ{‘ -Q* | conditioned on the error
event in Part I; and (c¢) Part ITII which bounds the unconditional error HQtA —Q*|l.

To proceed the proof, we first introduce the following notion of valid iterations for any fixed state-
action pair (s, a).

Definition 2. We define T'(s, a) as the collection of iterations if a state-action pair (s, a) is used to
update the Q-function Q* or QP, and T (s, a) as the collection of iterations specifically updating
Q4 (s, a). In addition, we denote T (s, a,t1,t2) and T4 (s, a,ty1,to) as the set of iterations updating
(s,a) and Q* (s, a) between time t, and to, respectively. That is,

T(s,a,ti,ta) ={t:t € [t1,t2) andt € T(s,a)},
TA(s,a,ty,ta) = {t 1t € [t1,to] and t € T*(s,a)} .
Correspondingly, the number of iterations updating (s, a) between time t, and to equals the cardinal-
ity of T(s, a,t1,t2) which is denoted as |T (s, a,t1,t2)|. Similarly, the number of iterations updating
Q" (s, a) between time t| and to is denoted as | T (s, a,t1,tz)|.
Given Assumption I, we can obtain some properties of the quantities defined above.

Lemma 18. It always holds that |T(s,a,t1,ts)| < to —t1 + L and |T4(s,a,t1,ts)| < tg —t1 + 1.
In addition, suppose that Assumption 1 holds. Then we have T (s, a,t,t + 2kL — 1) > k for any
t>0.

Proof. Since in a consecutive 2L running iterations of Algorithm 1, either Q4 or Q” is updated at
least L times. Then following from Assumption 1, (s, a) is visited at least once for each 2L running
iterations of Algorithm 1, which immediately implies this proposition. O

Now we proceed our proof by three parts.
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D.1 PartI: Bounding | Qf — Q||

We upper bound HQ? — Qf H block-wisely using a decreasing sequence { G } ;>0 as defined in Propo-
sition 3 below.

Proposition 3. Fix e > 0,5 € (In2,1) and A € (0,e"” — 2). Consider asynchronous double
Q-learning using a polynomial learning rate oy = t% with w € (0,1). Suppose that Assumption 1
holds. Let Gg = (1 — £)1Gq with Go = Vinax and § = 32, Let 711 = 7 + 2L3% for ¢ > 1 with

2%:(_1&((2;_?; 11//771_?) and 71 as the finishing time of the first block satisfying

¢z

1
1 “ [ 128¢L(cL 2 dcL(cL 2
oz ()| R iy | AL Vo
k—In(2+ A) (2 (HAA) £202¢2 12 (zfA) 2022

Then for any n such that G,, > o€, we have

P [Vq € [0,n],Vt € [fg1,Tg42), [|QF — QF'|| < Ggi1]

2.2 2-~w

dcL(n +1) 2L K (2+A> At
>1- ——— (142 -

K < T ) [SlAlexp 64cL(cL + k)V2

max

The proof of Proposition 3 consists of the following steps. Since the main idea of the proofs is similar
to that of Proposition 1, we will focus on pointing out the difference. We continue to use the notation

upt(s,a) == QP (s,a) — Qf (s, a).
Step 1: Characterizing the dynamics of u/*

First, we observe that when (s, a) is visited at time ¢, i.e., ¢ € T'(s,a), Lemmas 2 and 3 still apply.
Otherwise, u24 is not updated. Thus, we have

BA( ) utBA(S a“) t ¢ T(S7a)7

u S, a

o (1 - ar)ulA(s,a) + a,Fy(s,a), t€T(s,a),
where F; satisfies

[ELRIF] < 2 [l

K

where the filtration F in the asynchronous double Q-learning case is given by JF; =
o(sk,T(s,a,O, k)7Rk,1,2 < k < t).

For t € T(s,a), we rewrite the dynamics of u?“(s, a) as
urfi(s,a) = (1= auf(s,a) + o Fy = (1 = a)ui (s,0) + ot (he(s, a) + z(s,a)),
where h;(s,a) = E[F;(s,a)|F:] and z:(s, a) = Fi(s,a) — E[Fi(s, a)|F].

In the following steps, we use induction to proceed the proof of Proposition 3. Given G defined
in Proposition 3, since Hut AH < G holds for all ¢, and thus it holds for ¢ € [0, 71]. Now suppose 7,
satisfies that HuBAH < G, for any t > 7,. Then we will show there exists 7,41 = 7, + %Tq such
that HquH < Ggqpforany t > 744 q.

Step 2: Constructing sandwich bounds

We first observe that the following sandwich bound still holds for all ¢t > 7.
—Xu2,(s,a) + Zyz,(s,a) < utBA(s, a) < Xgz,(8,a) + Zz,(s,a),

where Z;.z, (s, a) is defined as

Zyz,(5,a), t¢T(s a)

Z T ) =
137, (5, ) {(1 — ) Zyz,(5,0) + aszi(s,a), teT(s,a),
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with the initial condition Z; .z, (s,a) = 0, and X,z (s, a) is defined as
Xi7,(s,a), t¢T(s,a)
Xt+1;7A'q (570') = /
(1 —ay) Xz, (s,a0) + Gy, te€T(s,a),
with X .z (s,a) = Gg,7' = 1#

This claim can be shown by induction. This bound clearly holds for the initial case with ¢t = 7.
Assume that it still holds for iteration ¢. If ¢t € T'(s, a), the proof is the same as that of Lemma 3. If
t ¢ T(s,a), since all three sequences do not change from time ¢ to time ¢ + 1, the sandwich bound
still holds. Thus we conclude this claim.

Step 3: Bounding X+ (s,a)

Next, we bound the deterministic sequence Xz (s,a). Observe that X (s,a) < G, for any
t > 7,. We will next show that X7, (s,a) < (v’ + H%&) Gy forany ¢ € [q+1,74+2) where
2¢cL ~

T,

Tgr1 = Tq + 55774

Similarly to the proof of Lemma 5, we still rewrite X; .z (s,a) as X3 .z (s,a) = G4 = v'Gy +
(1 =+")Gq := "G4 + pz,. However, in this case the dynamics of X;.; (s, a) is different, which is

represented as
Xt;i'q (57 a)a t ¢ T(S7(l)
Xiy1;7,(5,0) = / /
(1 —a)Xez,(s,0) +ary'Gy =Gy + (1 —ay)ps, te€T(s,a).
where p;11 = (1 — «;)p; when t € T'(s, a). By the definition of p;, we obtain
pu = pr (1-a) = (1-+)G (1-ay)

. I
€T (s,a,7q,t—1)

1 Tq1-1 1
<(1-+)G 1I 1—— ) <(1-~)G 1——
<(=7) e (s,a,7, g1 —1) ( z’w> < (1=7)G, H ( i‘“)

i=Tq+1—|T(s,a,7¢,Tq+1—1)|

q II
€T (s,a,7q,t—1)

/ T 1 G / %ﬁ; -1
Ca-ve I (1-2) 2 a-Ge (-l

- ('fq+1 - 1)w
q

Lrw 1 0\ 1
< (1—-+")Ggexp —% =(1-7")Gyexp _£ <ATq ) +
Ta+1 K \Tg+1 Tor1
(iii) c 1 1
< (1 _'Y/)quXP <—HHQZL + 7A_id> )

where (i) follows from Lemma 18, (ii) follows Lemma 4, and (iii) follows because 7, > 7; and

PPN c A
Z—Tq+1—ﬁ7'

f e ey 1
Tor1) T Tt g+ HERY T 147
Since k € (In2,1) and A € (0,e" — 2), we have In(2 + A) € (0, ). Further, observing 71“ >

m, we obtain In(2 + A) 4+ =4 € (0,x). Last, since ¢ > -rInZEAF/AT)

1 T 2(k—In(2+A)—-1/7A%)"
—ﬁ + e < _ln(2+A)'

we have

Finally, combining the above observations with the fact 1 — «' = 2£, we conclude that for any
tzqu:%qu%ﬁ‘f,
2
i 0.0 < (7 + 5 5 6o
Step 4: Bounding Z;; (s, a)

It remains to bound the stochastic sequence Z;.z, (s, a) by ﬁ{ G4 at epoch g + 1. We define an
auxiliary sequence {Zé; #,(s,a)} (which is different from that in (9)) as:

1 _ . _ N
A= S a0

€T (s,a,7q,t—1)
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Following the same arguments as the proof of Lemma 6, we conclude that { Z!, 2 (s,a)} is amartingale
sequence and satisfies
2‘/Hla,X

Fw
Tq

|21z, (s,a) — Zé;_%j(sv a)| = s il 2e,41(8,a)| <

In addition, note that
.7, (s,a) = Lz, (s,a) — L s (s, a)
- 3 (ZLs,(5,0) — Z131(s,0)) + Zn T @00 (5 q),
g +H—1€T (s,a,7¢,t—1)
Then we apply Azuma’ inequality in Lemma 7 and obtain
P [|Zu#,(s,a)| > €t € [Tg1, Tgr2)]

62

. R 2
2 > (ZLs, (5.0) = Ziz 1 (s, 00242 (2 T 070 5,a)

t;7q
l:7q+l—1€T(s,a,7q,t—1)

A2 2w @ 22 22w
Tq <9 . a
8(|T(s, a, Tt =D+ 1)V2. ] — =P 8(t — 7g)ViZax
A2 2w €2A2w
D) =2exp | — =75 P qz L~
8 Tq+2 - Tq Vmax 8 ( ; q+1 + L ) VH213X
( 22 22w

q
2cL 20L ~ 20L W 2
8 ( b jwyw 4 w) Vmax>

< 2exp

\ /\

| /\
"U

< 2exp ( K éQT(‘; )
32cL(cL + K)V2,,
where (i) follows from Lemma 18.
Step 5: Taking union over all blocks
Finally, using the union bound of Lemma 8 yields

P [Vq € [Oa n]’Vt € [7ﬁq+177ﬁq+2)7 - Q?H < Gq+1]

>P {V(s a),¥q € [0,n],Vt € [Tg11,Tq42), | Zi:2,(5,a)| <

——

A
> 1= S ISIAGr2 = ) B[ 0] > 52 5€6
q=0

[fq+1’ 7A'q+2):|

2 2G24
2¢cL K (2+A) € G
>1-— — 2
Z IS1A TqH P  32cL(cL + r)V2

max

n

2cL 2cL
> 1—Z|S||A|( +n> 7y - 2exp

q=0

K (2+A) 62Gv27cw
 32¢L(cL 4 k) V2

max

2 2.2 2,0
I{(2+A)£GET

32¢L(cL + k) V2

max

2cL 2cL
>1—Z|S||A| c ( < >A;"-26Xp

2 2 w

2 2
() el 2L & (2+A) §oter
212 (1 2BV ST sS4 -
- K ( * K )Z| [1A] - exp 64cL(cL 4 k)V2

max
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2
2(_a 2.2 2-0
K (2+A> o Ty

64cL(cL + K)V2 ’

max

1+

KR

(iii) 4cl. 1 2¢cL
21_0(2"")( c)|S|A|eXp _

where (i) follows from G, > G, > oe, (ii) follows from Lemma 9 by substituting a =

64cL(cL+k)V>2 b 1 :
===t "max | — 1 and observing that
w2 (5 ) €202 :

128cL(cL V2 64cL(cL V2
A:;) > Ai‘) > C (C -g/‘i) max C (C d:’i) max = 2abln CLb,
2 (ﬁ) £202€2 2 (HAA) £202¢2

and (iii) follows from 7, > 7.

D.2  Part II: Conditionally bounding ||Q;* — Q*

We upper bound ||Q;4 -Q H block-wisely by a decreasing sequence { Dy, }1>¢ conditioned on the
following two events: fix a positive integer m,

G= {V(s,a),Vk € [0,m],Vt € [Tht1, Tht2)s HQF - Qf” < aDk_H}, (16)
H = {Vke[l,m+1],I{ > cL7}, (17)

where | ,’;‘ denotes the number of iterations updating Q“ at epoch k, 7y, is the starting iteration index of
the k£ + 1th block, and w is the parameter of the polynomial learning rate. Roughly, Event G requires
that the difference between the two Q-function estimators are bounded appropriately, and Event H
requires that Q4 is sufficiently updated in each epoch. Again, we will design { Dy, }1>0 in a way such
that the occurrence of Event G can be implied from the event that Hug3 A || is bounded by {G} >0
(see Lemma 19 below). A lower bound of the probability for Event H to hold is characterized
in Lemma 15 in Part III.

Proposition 4. Fix e > 0,5 € (In2,1) and A € (0,e"” — 2). Consider asynchronous double
Q-learning using a polynomial learning rate o, = 7 withw € (0,1). Let {Gg}, {7} be as defined
in Proposition 3. Define Dy, = (1 — 5)’“% with 8 = w and o = 12_—77 Let 1, = Ty, for

L(In(24+A)+1/7)

k > 0. Suppose that ¢ > A(r—In(2+A)—1/7%)

satisfies

and T1 = Ty as the finishing time of the first epoch

16¢cL(cL + k)V,2

max

1 ) “ 32cL(cL + Kk)V2,.

_ ) 2 p)
k—In(2+A) ;2 (2$A) B2¢2 (2 (2fA) B2¢2
Then for any m such that D,,, > €, we have

P [Vk € [0,m],Vt € [Tk, Tii2), ||Qf — Q|| € Diy1|G, H]

2
deL(m +1) 2cL &2 (1= 2)" p2eiry
- —— 1+ =— — e :
- K ( + K ) [SliAlexp ( 16¢L(cL + k)V2

max

T1 > max (

Recall that in the proof of Proposition 2, Q“ is not updated at each iteration and thus we introduced
notations 74 and T4 (t1,t2) in Definition 1 to capture the convergence of the error ||QA - Q H
In this proof, the only difference is that when choosing to update Q“, only one (s, a)-pair is
visited. Therefore, the proof of Proposition 4 is similar to that of Proposition 2, where most of the
arguments simply substitute 74, T4 (¢, t5) in the proof of Proposition 2 by T4 (s, a), T4 (s, a, t1,t2)
in Definition 2, respectively. Certain bounds are affected by such substitutions. In the following, we
proceed the proof of Proposition 4 in five steps, and focus on pointing out the difference from the
proof of Proposition 2. More details can be referred to Appendix C.2.

Step 1: Coupling { Dy };>0 and {G,} ;>0

We establish the relationship between { Dy, } >0 and {G,},>0 in the same way as Lemma 10. For
the convenience of reference, we restate Lemma 10 in the following.
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Lemma 19. Let {G,} be defined in Proposition 3, and let D}, = (1 — ﬂ)k% with 3 = w

1_
and o = 2—;* Then we have

P [V(s,a),Yq € [0,m],Vt € [fg41,7q42), || QF — Qi'|| < Gg1]
<P [V(s,a),Vk € [O,m],Vt S [Tk+1;7—k+2), HQF - QZAH < UDk—i—l] R
given that T, = Ty.
Step 2: Constructing sandwich bounds

Let 74(s,a) = Q“(s,a) — Q*(s,a) and 74 be such that ||r;|| < Dy, for all t > 7. The requirement
of Event G yields

—Yir (s,a) + Wir (s,a) < 1ri(s,a) < Y, (s,a) + Wyr (s, a),
where W;.., (s, a) is defined as
Wir, (s,a), t¢ T(s,a);
(1 — ) Wir, (5,0) + aswyi(s,a), t€T(s,a),
with wy (s, a) = T;Q{(s,a) — TQ#(s,a) and W, .., (s,a) = 0, and Y;., (s, a) is given by
Yirc(s,a), t¢T(s,a);
(1 — )Yir, (s,a) + "Dy, t€T(s,a),
with Y7, .7, (s,a) = Dy and v = (1 + o).

Witiim, (s,a) = {

)/t“l'l;‘l'k; (57 CL) - {

Step 3: Bounding Y., (s, a)
Next, we first bound Y., (s,a). Observe that Y., (s,a) < Dy, for any ¢ > 7. We will bound
Y., (s,a) by (7” + ﬁﬁ) Dy, for block k + 1.
We use a similar representation of Y3, (s, a) as in the proof of Lemma 13, which is given by
Yin(s,a), t¢T"(s,a)
Y;H—l;‘rk (Sva) = " 1" A
(1—-a)Yir (s,0) +ay'Gy=7"Ge+ (1 —ay)p, t€T(s,a)

where p;1 = (1 — o) p; for t € T4 (s, a). By the definition of p;, we obtain

p=p Il G-a)=0-D [ (-

i€TA(s,a,7k,t—1) i€TA(s,a,7,t—1)

e T (-2 %ooem T (-2

i€TA(s,a,Tk,t—1) i€TA(s,a,Tk,Th4+1—1)

. Tr+1—1

(i) 1 (iii) ey —1

< (1=9")Dx H (1 - z‘*’) < (1 =9")Drexp (_(Tkkl—l)w>
i=7’k+1—0‘r;’ +

©—1 RN
< (1 —~")Dyexp (— CT’“w ) = (1 —v")Dy exp (—c ( T ) + w)
Th+1 Tk+1 Tht1

@iv) 1
< (1 —+9")Dgexp (— ‘4 ) ,

2Lc w
1+ = T1

where (i) follows because o; < 1 and ¢ > 7541, (ii) follows from Proposition 18 and the requirement
of event H, (iii) follows from Lemma 9, and (iv) holds because 7 + k£ > 7 and

Tk © Tk Tk 1
> = > )
<Tk+1> T The1r T4 2Lre T 14 2L
Since k € (In2,1) and A € (0,e" — 2), we have In(2 + A) € (0, x). Further, observing 71“ >

, . L(n(24+A)+1/7:%
m, we obtain In(2 + A) + Tl% € (0,k). Last, since ¢ > 2(,{(7151(‘2:51/1#11), we have

- + 2 < —In(2+A).

c
2c -
1+7 T1
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Then, we have p; < 2 + A Dk Thus we conclude that for any ¢ € 7511, Tkt2],

)/t;Tk(saa) S ( " + Mﬁ) Dk

Step 4: Bounding ;.. (s, a)

It remains to bound |W;., (s, a)| < (1 — ﬁ) BDy fort € [Tky1, Tkt2)-

Similarly to Appendix C.2.4, we define a new sequence {W/._, (s,a)} as

th;Tk(s,a) = Z a; I (1— aj)w(s,a).

i €ETA(s,a,i+1,t—1
i€TA(s,a,7k,Tk+1) J ( )

The same arguments as the proof of Lemma 14 yields

Vmax
Wi, (s,0) = WiT! (s, 0)] < =22
Tk
If we fix € > 0, then for any ¢ € [7g41, Tk+2) We have
HDHWt;Tk (s,a)\ > €|t € [Tk+177-k+2)7G7H]
<92 -
> 26Xp min(T4(s,a,T; 1
2 > (Wi (5.0) = Wi (s,a))" +2(wimn @ eam ) (g q))2

Liti+l—1€TA(s,a,Tk,t—1)

A2 20.) i 2,2

<9 T 22 €Ty
ex — ex _——
=S\ T2(T A (s aym t— D[+ D)V2a ) P 20— ) V2

< 2exp ( N ’?w > (1<1) 2 exp < KET >
- 2hpe — T)Vi20 ) 8cL(eL 4+ k)V2,,
= 2exp (— RrE T )
8cL(cL + K)V2,. )’
where (i) follows from Proposition 18 and (ii) holds because

2cL 2cL , 2cL 2cL  \“ 2cL , _4cL(cL+k)
Tk+2_7—k:77—k+1+77—k_ k+7k' +7Tk <7Tk:'

K2

Step 5: Taking union over all blocks

Applying the union bound in Lemma 8, we obtain

]

A
> P [¥(5,0). ¥ € 0,11] ¥ € [, ). (Wi (s,00] < 55 £ BDAIG ]

P [Vk € [0,m],Vt € [Tht1, Tht2),

> 1—k2=0|8\|,4|(7'k+2 — Tpt1) - P [th(s,aﬂ > 2+AﬁDk’t€ [Tkt1s Tht2), G H}
2 2
i 2cL k (2+A) B*Dirye
>1-— S —_— -2 —
> kz=o| A ==7is1 - 2exp SeL(cL TRV

2 212
2cL 2cL r <2+A) B Dy

>1- ©.9 -

Z SIAI=- ( ) Te =P TRl + R)V2

max

42 <2+A) B2e2ri
"~ 8cL(cL + k)V2,,

@ m 2¢L 2¢cL
> 1= ISIAI== (14 == ) -2
> 2 0| ||Al < + - >Tk exp
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2

2(_A 2.2 w

(i) 4cL 2¢cL k (2+A) pretT;
>1- —

K ( ) Z [SIMAl - exp 16¢L(cL + k) V2

max

2
2 A 2.2 w
deL(m + 1) 2cL . (2+A) Bretn
>1- T 1+ =) s
- K ( T )' [ Afexp " 16¢L(cL + k) V2 ’

max

where (i) follows because Dy > D,, > ¢, and (ii) follows from Lemma 9 by substituting a =

16¢L(cLtmVaiax § — 1 and observing that

“2(2+A) B2e2 ?

2 2
o 32eL(eL + /)Vidue | | 64cL{cl+m)Viax | _ oy o

,@2( )522 KQ(ﬁ) (22

D.3 Part III: Bound HQ{‘ —

In order to obtain the unconditional high-probability bound on HQ;4 - Q* || we first characterize a
lower bound on the probability of Event H. Note that the probability of Event G is lower bounded
in Proposition 3.

Lemma 20. Let the sequence Ty, be the same as given in Lemma 19, i.e. 41 = Tg + %T,‘;’ for
k > 1. Define I} as the number of iterations updating Q* at epoch k. Then we have

1 — k)2cLt¥
P [vk € [1,m], I > cL7¥] > 1— mexp <_(f€)0ﬁ)
K

Proof. We use the same idea as the proof of Lemma 15. Since we only focus on the blocks with
k>1, I,f ~ Binomial (@Tk ,0. 5) in such a case. Thus the tail bound of a binomial random

variable gives
_ 2 w
P [I,f < <. 2CLTk:| < exp (—(1 k) el ) .
2 K K

Then by the union bound, we have

2cL
P [Vk € [1,m], I{ > cL7f’] =P [Vk elLml =2 = T,;J}
K

m

— Kk)%cLT
>1-— E ~ J "k
exp( -
_ 2 w
>1—mexp <_(1/€)6L71> .
K
]

Following from Lemma 16, it suffices to determine the starting time at epoch m* = [% In 25(71‘/%;’)‘—‘ .

This can be done by using Lemma 17 if we have 7.

Now we are ready to prove the main result of Theorem 2. By the definition of m*, we know
D,_1 > €,G,+_1 > oe. Then we obtain

P([|Q7.. <e)
> P [Vk € [0,m" — 1],Vt € [T41, Thr2), ||Qf — Q|| < Diy1]
=P [Vk € [0,m" — 1],Vt € [Ths1, Ths2), ||Qf — Q|| < Dis1|G, H] - P(G N H)
>P[Vk € [0,m" — 1],Vt € [T41, Thr2), ||Qf — Q|| < Diy1|G, H]

-(P(G) +P(H) — 1)
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@
> P I:Vk S [Oam* - 1]th € [Tk+17Tk+2)7 ||6224 - Q*H < Dk‘-‘rl‘Ga H]
: (P [Vq € [O,m* - 1]>Vt € [7A'q+177ﬁq+2)7 ||Qf - Q?H < Gq+1} "’P(H) - 1)
2
2 A 2.2 _w
(i) deLm* 2L K (m) prety
b= (1 * m> [SIATexp | =36 T T vz

max

2 2
dcLm* 2L K ( A) §Po’e
1-— ch (1—1—2) |S|| Al exp | — o

64cL(cL + H)V2
ey
K

2
2(_A 2.2 w
4cLm* 2cL K (2+A) prery
>1-— 1 S —
- K ( * ) Sl Alexp 16¢L(cL + k)V2

max

deLm* 1+ 2¢cL S|lAle W (2+A) golelry * (1—k)%cL7y
— — xp | — —m¥exp | ———F——
K K P 64cL(cL 4+ k)V2 P K

max

@ | A2eLm® (2L o K2 (1= r)? (2+A) oty
- K [S]1A] exp 64cL(cL + k)V2 ’

max

where (i) follows from Lemma 19, (ii) follows from Propositions 3 and 4 and (iii) holds due to the
fact that

4eLm* 2¢cL 4eLm* 2¢cL
(1 2B ) 1Al = e { 4 (14 22 ) LAl

2
k2(1—k)? (2+A) o227y o K2 (ﬁ) e 7y (1—k)27¢ K (2+A> o227y
64cL(cL + Kk)V2,. =t 16cL(cL + k)V2,~ K " 64cL(cL + k)V2,.
By setting

12¢Lm* 1y 2k 2cL S|4 K2(1 = k)? (2+A 520
P 64cL(cL + r)V2

max

we obtain

€=

. 64cL(cL + k) V2

7_1 2 max 1

w21 rp (25) €02

Combining with the requirement of 7; in Propositions 3 and 4, we can choose

. L V2 o mISIAILAYVE ) *
™ = C) In .
N R

29 Vimax
e(1-7)

LAV2 M SIAILAVZ, \N® (2L 1 . AV \TF
T:Q max 1 max - 1
<<<1—v>42“ (1 -t > +<m l—vn(l—we)
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Finally, applying m* = [ In —‘ and Lemma 17, we conclude that it suffices to let
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max

|S|| AL V2

max ln

(1

“)ie

LAV?2

max

1=y

:Q(Q

1—7)%e?

SIAIL VEL )
(=27

to attain an e-accurate Q-estimator.
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