
A Section 3 details

We prove Lemma 4.
Lemma 4 (restated). LetH ⊂ [K]X be a class of multi-class hypotheses.

1. Ldimτ (H) is decreasing in τ .

2. SOAτ (Algorithm 1) makes at most Ldimτ (H) mistakes with respect to `0−1τ .

3. For any deterministic learning algorithm, an adversary can force Ldim2τ (H) mistakes with
respect to `0−1τ .

Proof. Part 1 follows by observing that if T is a binary shattered tree with tolerance τ , then so is it
with tolerance τ ′ < τ .

For part 2, assume SOAτ makes a mistake at round t. We claim that Ldimτ (Vt+1) < Ldimτ (Vt). If
Ldimτ does not decrease, we can infer that

Ldimτ (V
(ŷt)
t ) = Ldimτ (V

(yt)
t ) = Ldimτ (Vt) =: d.

Then we can find binary trees T1 and T2 of height d that are shattered by V (ŷt)
t and V (yt)

t , respectively.
By concatenating T1 and T2 with a root node xt and its edges labeled by ŷt and yt, we can obtain a
binary tree T of height d+ 1 that is shattered by Vt. This contradicts to Ldimτ (Vt) = d and proves
our assertion.

To prove part 3, let T be a binary shattered tree of height Ldim2τ (H). For a given node x, suppose
the adversary shows x to the learner. Since the descending edges have labels apart from each other by
more than 2τ , the adversary can choose a label that incurs a mistake with respect to `0−1τ . Thus by
following down the tree T from the root node, the adversary can force Ldim2τ (H) mistakes.

B Section 4 details

In this section, the proofs omitted in Section 4 are presented.

B.1 Proof of Theorem 8

We first define sub-trees. Let T be a binary tree. Any node of T becomes its sub-tree of height 1. For
h > 1, choose a node x and let T1 and T2 be the trees that are rooted at its two children. A sub-tree
of height h is obtained by aggregating a sub-tree of height h− 1 of T1 and a sub-tree of height h− 1
of T2 at the root node x. Note that if the original tree T is shattered by some hypothesis class, then so
is any sub-tree of it.

Next we prove a helper lemma.
Lemma 16. Suppose there are n colors C = {ci}1:n and n positive integers {di}1:n. Let T be a
binary tree of height −(n− 1) +

∑n
i=1 di whose vertices are colored by C. Then there exists a color

ci such that T has a sub-tree of height di in which all internal vertices are colored by ci.

Proof. We will prove by induction on
∑n
i=1 di. If di = 1 for all i, then the height of T becomes 1,

and the statement holds trivially. Now suppose the lemma holds for any di’s whose summation is less
than N and let T have the height N − n+ 1. Without loss of generality, we may assume that the root
node x0 is colored by c1. We consider two sub-trees T1, T2 of height N − n whose root nodes are
children of x0. Let e1 = d1 − 1 and ei = di for i > 1. Since

∑n
i=1 ei = N − 1, by the inductive

assumption each Tj has a sub-tree of height eij in which all internal vertices are colored by cij . If
ij 6= 1 for some j, then we are done because eij = dij . If ij = 1 for all j = 1, 2, then merging these
two trees with the node x0 forms a sub-tree of height e1 + 1 = d1 of color c1. This completes the
inductive argument.

Now we are ready to prove Theorem 8.
Theorem 8 (restated). LetH ⊂ [K]X and F ⊂ [−1, 1]X be multi-class and regression hypothesis
classes, respectively.
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1. If Ldim2τ (H) ≥ d, thenH contains b logK d
K2 c thresholds with a gap τ .

2. If fatγ(F) ≥ d, then F contains b γ
2

104 log100/γ dc thresholds with a margin γ
5 .

Proof. We begin with the multi-class setting. Suppose d = KK2t. It suffices to show H contains
t thresholds. Let T be a shattered binary tree of height d and tolerance 2τ . Letting H0 = H and
T0 = T , we iteratively apply COLORANDCHOOSE (Algorithm 2). Namely, we write

kn, k
′
n, hn, xn,Hn, Tn = COLORANDCHOOSE(Hn−1, Tn−1, 2τ). (2)

Observe that for all n, we can infer hn(xn) = hn(x) = kn for all internal vertices x of Tn (∵ line 4
of Algorithm 2) and h(xn) = k′n for all h ∈ Hn (∵ line 8 of Algorithm 2).

Additionally, Lemma 16 ensures that the height of Tn is no less than 1
K times the height of Tn−1.

This means that the iterative step (2) can be repeated K2t times since d = KK2t. Then there exist
k, k′ and indices {ni}ti=1 such that kni

= k and k′ni
= k′ for all i.

It is not hard to check that the functions {hni
}1:t and the arguments {xni

}1:t form thresholds with
labels k, k′. Since |k − k′| > τ (∵ line 6 of Algorithm 2), this completes the proof.

Now we move on to the regression setting. Proposition 5 implies that Ldim20([F ]γ/50) ≥
Ldim24([F ]γ/50) ≥ d. Then using the previous result in the multi-class setting, we can deduce

that [F ]γ/50 contains n := b γ
2

104 log100/γ dc thresholds with a gap 10. This means that there exist
k, k′ ∈ [ 100γ ], {xi}1:n ⊂ X , and {[fi]γ/50}1:n ⊂ H such that |k − k′| ≥ 10 and

[fi]γ/50(xj) =

{
k if i ≤ j
k′ if i > j

.

Let u, u′ be the middles points of the intervals that correspond to the labels k, k′. Then it is easy to
check that |u− u′| ≥ γ/5 and

fi(xj) ∈
{

[u− γ
100 , u+ γ

100 ) if i ≤ j
[u′ − γ

100 , u
′ + γ

100 ) if i > j
.

This proves the theorem.

B.2 Proof of Theorem 9

Theorem 9 (restated). Let F = {fi}1:n ⊂ [−1, 1]X be a set of threshold functions with a margin
γ on a domain {xi}1:n ⊂ X along with bounds u, u′ ∈ [−1, 1]. Suppose A is a ( γ

200 ,
γ

200 )-
accurate learning algorithm for F with sample complexity m. If A is (ε, δ)-DP with ε = 0.1 and
δ = O( 1

m2 logm ), then it can be shown that m ≥ Ω(log∗ n).

Proof. The proof consists of two main lemmas. Lemma 19 proves that there is a large homogeneous
set (see Definition 17). Then Lemma 21 yields the lower bound of the sample complexity when there
exists a large homogeneous set. In particular, from these two lemmas, we can deduce that

log(m) n

2O(m logm)
≤ 2O(m2 log(2)m).

This means that there exists a constant c such that

log(m) n ≤ ecm
2 logm.

Observing that log∗
(

log(m) n
)
≥
(

log∗ n
)
−m and log∗

(
2O(m2 log(2)m)

)
= O(log∗m), we can

check the desired inequality m ≥ Ω(log∗ n).
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B.2.1 Existence of a large homogenous set

Suppose A is a learning algorithm over a finite domain D. The hypothesis class consists of threshold
functions over D with bounds u, u′. According to Definition 7, u and u′ can be in an arbitrary order
as long as |u − u′| > γ. But for simpler presentation, without loss of generality, we will assume
u > u′. Also, let ū = u+u′

2 . We define the following quantity:

AS(x) = Pf∼A(S)

(
f(x) ≥ ū

)
.

The definition of homogenous sets (Definition 17) and Lemma 19 are adopted from Alon et al. [4].
Assume that X is linearly ordered. Given a training set S =

(
(xi, yi)

)
1:m

, we say S is increasing
if x1 ≤ · · · ≤ xm. Additionally, we say S is balanced if yi = u′ for all i ≤ m

2 and yi = u for all
i > m

2 . Given x ∈ X , we define ordS(x) =
∣∣{i | xi ≤ x}∣∣. Lastly, we use SX to denote (xi)1:m.

Definition 17 (m-homogeneous set). A set D′ ⊂ D is m-homogeneous with respect to a learning
algorithm A if there are numbers pi ∈ [0, 1] for 0 ≤ i ≤ m such that for every increasing balanced
sample S ∈ (D′ × {u, u′})m and for every x ∈ D′ \ SX

|AS(x)− pi| ≤
1

100m
,

where i = ordS(x).

The following theorem is a well-known result in Ramsey theory. It was originally introduced by
Erdos and Rado [15] and rephrased by Alon et al. [4].

Theorem 18 (Alon et al. [4, Theorem 11]). Let s > t ≥ 2 and q be integers, and let N ≥
twrt(3sq log q). Then for every coloring of the subsets of size t of a universe of size N using q colors,
there is a homogeneous subset 2 of size s.

The next lemma states that we can find a large homogeneous set.

Lemma 19 (Existence of a large homogeneous set). Let A be a learning algorithm over a domain D
with |D| = n. Then there exists a set D′ ⊂ D which is m-homogeneous with respect to A such that

|D′| ≥ log(m) n

2O(m logm)
.

Proof. We first define a coloring on the (m+ 1)-subsets of D. Let B = {x1 < x2 < · · · < xm+1}
be an (m+ 1)-subset. For each i ∈ [m+ 1], let B(i) = B \ {xi}. Then by labeling the first half of
B(i) by u′ and the second half by u, we get a balanced increasing training set S(i). Then we compute
pi that is of the form t

100m and closest to AS(i)(xi) (in case of ties, choose the smaller one). Then
we color B by the tuple (pi)1:m+1.

This scheme includes (100m+ 1)m+1 colors, and Theorem 18 provides that there exists a set D′ of
size larger than

log(m) n

3(100m+ 1)m+1(m+ 1) log(100m+ 1)
=

log(m) n

2O(m logm)

such that all (m + 1)-subsets of D′ have the same color. It is easy to verify that this set is indeed
m-homogeneous with respect to A according to Definition 17.

B.2.2 Large homogeneous set implies the lower bound

Recall that PAC learning is defined with respect to lossD (see Definition 1). When lossD is replaced
by lossS , we say an algorithm A empirically learns a training set S. Bun et al. [9, Lemma 5.9] prove
that if a hypothesis class is PAC learnable, then there exists an empirical learner as well.

Lemma 20 (Empirical learner). Suppose A is an (ε, δ)-DP PAC learner for a hypothesis class H
that is (α, β)-accurate and has sample complexity m. Then there is an (ε, δ)-DP and (α, β)-accurate
empirical learner forH with sample complexity 9m.

2A subset of the universe is homogeneous if all of its t-subsets have the same color.
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The next is the main lemma.
Lemma 21 (Large homogeneous sets imply lower bounds on sample complexity). Suppose a learning
algorithm A is (ε, δ)-DP with sample complexity m. Let X = [N ] be m-homogeneous with respect
to A. If ε = 0.1, δ ≤ 1

1000m2 logm , and A empirically learns the threshold functions with a margin γ
over X with ( γ

200 ,
γ

200 )-accuracy, then

N ≤ 2O(m2 log(2)m).

Proof. The proof is done by combining Lemma 22 and Lemma 23, which come below.

This is the first helper lemma to prove Lemma 21. It adopts Alon et al. [4, Lemma 12].
Lemma 22. Let A, X,m,N as in Lemma 21 and assume N > 2m. Then there exists a family
P = {Pi}1:N−m of distributions over {−1, 1}N−m that satisfies the following two properties.

1. Pi and Pj are (ε, δ)-indistinguishable for all i 6= j.

2. There exists r ∈ [0, 1] such that for all i, j ∈ [N −m],

Pv∼Pi
(vj = 1)

{
≤ r − 1

10m if j < i

≥ r + 1
10m if j > i

.

Proof. Let (pi)0:m be the probability list associated with m-homogeneous set X = [N ]. We first
prove that there exists i∗ such that pi∗ − pi∗−1 ≥ 1

4m . Fix an increasing balanced training set
S :=

(
(xi, yi)

)
1:m
∈
(
X × {u, u′}

)m
such that xi − xi−1 ≥ 2 for all i, which is possible by the

assumption N > 2m. By the definition of threshold functions with a margin γ, we can infer

min
f

lossS(f) ≤ γ

20
= 0.05γ,

where the minimum is taken over the threshold functions with a margin γ.

Furthermore, since A is an (α = γ
200 , β = γ

200 )-accurate empirical learner, we can bound the
expected loss of A(S) as

Ef∼A(S)lossS(f) ≤ α+ β + min
f

lossS(f) ≤ 0.06γ. (3)

Also, we can lower bound the expected empirical loss by using the quantity AS(xi) as follows (recall
that we assumed u > u′)

Ef∼A(S)lossS(h) ≥ 1

m
· γ

2

m/2∑
i=1

[AS(xi)] +

m∑
i=m/2+1

[1−AS(xi)]

 . (4)

Combining (3) and (4), we can show that there exists j ≤ m
2 such that AS(xj) ≤ 1

4 . Let S′ =

(S \ {(xj , yj)}) ∪ {(xj + 1, yj)}. Since A is (ε = 0.1, δ ≤ 1
1000m2 logm )-DP, we have

pj−1 −
1

100m
≤ AS′(xj) ≤

1

4
eε + δ ≤ 0.3,

which implies that pj−1 ≤ 0.3 + 1
100m ≤

1
3 . Similarly, we can find k > m

2 such that pk+1 ≥ 2
3 .

Then we can find i∗ ∈ [j, k + 1] such that pi∗ − pi∗−1 ≥ 1
4m , which proves our assertion.

Now we construct P = {Pi}1:N−m. Given i, let

B(i) = {1, · · · , i∗ − 1} ∪ {i∗ + i} ∪ {i∗ +N −m+ 1, · · · , N} ⊂ X.
Observe that B(i) and B(j) only differ by one item at the position i∗. Then define S(i) to be the
balanced increasing training set built upon B(i). Given a hypothesis f , we can compute a N −m
dimensional binary vector v ∈ {−1, 1}N−m such that

vj = I (f(i∗ − 1 + j) ≥ ū) , where ū =
u+ u′

2
.

This mapping induces a distribution over {−1, 1}N−m from A(S(i)), which we define to be Pi.

Due to DP property of A, Pi and Pj are (ε, δ)-indistinguishable. Furthermore, our construction of i∗

ensures the second property with r = pi−1+pi
2 . This completes the proof.
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The second helper lemma is shown by Alon et al. [4, Lemma 13].

Lemma 23. Suppose the family P as in Lemma 22 exists. Then N −m ≤ 21000m
2 log(2)m.

C Section 5 details

We provide details omitted in Section 5.

C.1 Proof of Theorem 13

LetH be a multi-class hypothesis class with Ldim(H) = d and D be a realizable distribution over
examples (x, c(x)) where c ∈ H is an unknown target hypothesis. The globally-stable (GS) leaner G
forH will make use of the Standard Optimal Algorithm (SOA0, Algorithm 1).

SOA0 can be simply extended to non-realizable sequences as follows.

Definition 24 (Extending the SOA0 to non-realizable sequences). Consider a run of SOA0 on
examples

(
(xi, yi)

)
1:m

, and let ht denote the predictor used by the SOA0 after observing the first t
examples. Then after observing (xt+1, yt+1), proceed as below.

• If
(
(xi, yi)

)
1:t+1

is realizable by some h ∈ H, then apply the usual update rule of the SOA0 to
obtain ht+1.

• Else, set ht+1 as ht+1(xt+1) = yt+1, and ht+1(x) = ht(x) for every x 6= xt+1. That is to say,
ht+1 no longer belongs toH.

This update rule keeps updating the predictor ht to agree with the last example while observing
the sequences which are not necessarily realized by a hypothesis in H. Due to this extension, our
resulting algorithm possibly becomes improper.

The finite Littlestone class is online learnable by SOA0 (Algorithm 1) with at most d mistakes on any
realizable sequence. Prior to building a GS learner G, we define a distribution Dk as in Algorithm 3.

Algorithm 3 Distribution Dk
1: D0 : output an empty set with probability 1
2: Let k ≥ 1. If there exists an f satisfying PS∼Dk−1,T∼Dn

(
SOA0(S ◦ T ) = f

)
≥ K−d,

or if Dk−1 is undefined, then Dk is undefined
3: Else, Dk is defined recursively as follows
4: (i) Randomly sample S0, S1 ∼ Dk−1 and T0, T1 ∼ Dn
5: (ii) Let f0 = SOA0(S0 ◦ T0) and f1 = SOA0(S1 ◦ T1)
6: (iii) If f0 = f1, go back to step (i)
7: (iv) Else, pick x ∈ {x | f0(x) 6= f1(x)} and sample y ∼ [K] uniformly at random
8: (v) If f0(x) 6= y, output S0 ◦ T0 ◦ (x, y) and S1 ◦ T1 ◦ (x, y) otherwise

Let k be such that Dk is well-defined and consider a sample S drawn from Dk. The size of Dk is
k · (n+ 1), and they consist of k · n instances randomly drawn from D and k examples generated in
Item 3(iv) of Algorithm 3. We call these k examples tournament examples. Due to the construction
of Dk, SOA0 always errs in tournament rounds, which means that SOA0 makes at least k mistakes
when run on S ◦ T where S ∼ Dk, T ∼ Dn.

A natural way to obtain a GS learning algorithm G is to run the SOA0 on this carefully chosen sample
S ◦ T . In fact, the output enjoys both global stability in multi-class learning and good generalization
as follows.

Lemma 25 (Global Stability). There exist k ≤ d and a hypothesis f : X → [K] such that

PS∼Dk,T∼Dn

(
SOA0(S ◦ T ) = f

)
≥ K−d.

Proof. Assume for contradiction that Dd is well-defined and for every f ,

PS∼Dk,T∼Dn

(
SOA0(S ◦ T ) = f

)
< K−d.
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In each tournament example (xi, yi), the label yi is drawn uniformly at random from [K]. Accord-
ingly, with probability K−d over S ∼ Dd, all d tournament examples are consistent with the true
labeling function c and thus S ◦ T becomes consistent with c. Since the number of total mistakes of
SOA0 should be no more than d, we can deduce that SOA0(S ◦ T ) = c. This implies that

PS∼Dk,T∼Dn

(
SOA0(S ◦ T ) = c

)
≥ K−d,

which is a contradiction, and hence completes the proof.

Lemma 26 (Generalization). Let k be such that Dk is well-defined. Then for every f such that

PS∼Dk,T∼Dn

(
SOA0(S ◦ T ) = f

)
≥ K−d

satisfies lossD(f) ≤ d logK
n .

Proof. Let f be such hypothesis and let α = lossD(f). We will argue that K−d ≤ (1− α)n. Then
the following result is derived, α ≤ d logK

n using the fact that (1− α)n ≤ e−nα.

By the property of SOA0, SOA0(S ◦ T ) is consistent with T . Thus, if SOA0(S ◦ T ) = f , then it
must be the case that f is consistent with T . By assumption, SOA0(S ◦T ) = f holds with probability
at least K−d and f is consistent with T with probability (1 − α)n where n is the size of T . This
gives the desired inequality.

One challenge associated with the distribution Dk is computational limitation. It may require an
unbounded number of samples from the target distribution D, since during generation of tournament
examples the number of samples drawn from D depends on how many times Item 3(i)-(iii) will be
repeated. To handle this practical issue, we suggest a Monte-Carlo Variant of Dk, D̃k, by setting an
upper bound N of random samples drawn from D as an input parameter. Algorithm 4 summarizes
how we construct the distribution D̃k.

Algorithm 4 Distribution D̃k
1: Let n be the auxiliary sample size and N be an upper bound on the number of samples from D
2: D̃0 : output an empty set with probability 1
3: Let k ≥ 1. D̃k is defined recursively by the following processes
4: (?) Throughout the process, if more than N examples are drawn from D, then output “Fail”
5: (i) Randomly sample S0, S1 ∼ D̃k−1 and T0, T1 ∼ Dn
6: (ii) Let f0 = SOA0(S0 ◦ T0) and f1 = SOA0(S1 ◦ T1)
7: (iii) If f0 = f1, go back to step (i)
8: (iv) Else, pick x ∈ {x | f0(x) 6= f1(x)} and sample y ∼ [K] uniformly at random
9: (v) If f0(x) 6= y, output S0 ◦ T0 ◦ (x, y) and S1 ◦ T1 ◦ (x, y) otherwise

The next step is to specify the upper bound N . The following lemma characterizes the expected
sample complexity of sampling from Dk.
Lemma 27 (Expected sample complexity of sampling fromDk). Let k be such thatDk is well-defined
and Mk be the number of samples from D when generating S ∼ Dk. Then we have EMk ≤ 4k+1 · n.

Proof. Initially, EM0 = 0 since D0 outputs an empty set with probability 1. It suffices to show that
for all 0 < i < k, EMi+1 ≤ 4EMi + 4n to conclude the desired inequality by induction.

Let R be the number of times Item 3(i) was executed during generation of S ∼ Di+1, and R is
distributed geometrically with a success probability θ, where

θ = 1− PS0,S1,T0,T1

(
SOA0(S0 ◦ T0) = SOA0(S1 ◦ T1)

)
= 1−

∑
f

(
PS,T

(
SOA0(S ◦ T ) = f

))2
≥ 1−K−d.

The last inequality holds because i < k and hence Di is well-defined, which implies that
PS,T

(
SOA0(S ◦ T ) = f

)
≤ K−d for all f .
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Let Mi+1 be a random variable expressed as Mi+1 =
∑∞
j=1M

(j)
i+1 where

M
(j)
i+1 =

{
0, if R < j

the number of examples from D in the j-th execution of Item 3(i), if R ≥ j .

Thus, we have

EMi+1 =

∞∑
j=1

EM (j)
i+1 =

∞∑
j=1

(1− θ)j−1 · (2EMi + 2n)

=
1

θ
· (2EMi + 2n) ≤ 4EMi + 4n,

where the last inequality holds since θ ≥ 1−K−d ≥ 1/2 since K ≥ 2 and d ≥ 1.

Equipped with Lemma 25,26, and 27, we are ready to prove Theorem 13.

Theorem 13 (restated). LetH ⊂ [K]X be a MC hypothesis class with Ldim(H) = d. Let α > 0, and
m =

(
(4K)d+1 + 1

)
×[d logKα ]. Then there exists a randomized algorithmG : (X×[K])m → [K]X

such that for a realizable distribution D and an input sample S ∼ Dm, there exists a h such that

P
(
G(S) = h

)
≥ K − 1

(d+ 1)Kd+1
and lossD(h) ≤ α.

Proof. The globally-stable algorithm G is defined in Algorithm 5.

Algorithm 5 Algorithm G

1: Input : target distribution D̃k, auxiliary sample size n = [d logKα ], and the sample complexity
upper bound N = (4K)d+1 · n

2: Draw k ∈ {0, 1, · · · , d} uniformly at random
3: Output : h = SOA0(S ◦ T ), where T ∼ Dn, S ∼ D̃k

The sample complexity of G is |S| + |T | ≤ N + n =
(
(4K)d+1 + 1

)
× [d logKn ]. By Lemma 25

and 26, there exists k? ≤ d and f? such that

PS∼Dk? ,T∼Dn

(
SOA(S ◦ T ) = f?

)
≥ 1

Kd
, lossD(f?) ≤ d logK

n
≤ α.

Let Mk? denote the number of random examples from D during generation of S ∼ Dk? . We obtain
the following inequality from Lemma 27 and Markov’s inequality,

P
(
Mk? > (4K)d+1 · n

)
≤ P

(
Mk? > Kd+1 · 4k

?+1 · n
)
≤ K−(d+1).

Accordingly,

PS∼D̃k? ,T∼Dn

(
SOA0(S ◦ T ) = f?

)
≥ PS∼Dk? ,T∼Dn

(
SOA0(S ◦ T ) = f? and Mk? ≤ (4K)d+1 · n

)
≥ PS∼Dk? ,T∼Dn

(
SOA0(S ◦ T ) = f?

)
− P

(
Mk? > (4K)d+1 · n

)
≥ K−d −K−(d+1) = (K − 1)K−(d+1)

Since k = k? with probability 1
d+1 , G outputs f? with probability at least K−1

(d+1)Kd+1 .

C.2 Globally-stable learning implies private multi-class learning

In this section, we utilize the GS algorithm from the previous section to derive a DP learning algorithm
with a finite sample complexity. Theorem 11 establishes that online multi-class learnability implies
private multi-class learnability, which can be proved by combining Theorem 13 and Theorem 28.
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Theorem 28 (Globally-stable learning implies private multi-class learning). Let H ⊂ [K]X be a
multi-class hypothesis class. Let G : (X × [K])m → [K]X be a randomized algorithm such that for
a realizable distribution D and S ∼ Dm, there exists a hypothesis h such that P

(
G(S) = h

)
≥ η

and lossD(h) ≤ α/2. Then for some n = O(m log(1/ηβδ)
ηε + log(1/ηβ)

αε ), there exists an (ε, δ)-DP

algorithm M which for n i.i.d. samples from D, outputs a hypothesis ĥ such that lossD(ĥ) ≤ α with
probability at least 1− β.

To construct a private learner M , we first introduce standard tools in the DP community such as
Stable Histogram and Generic Private Learner.

Lemma 14 (Stable Histogram, restated). Let X be any data domain. For n ≥ O( log(1/ηβδ)
ηε ), there

exists an (ε, δ)-DP algorithm HIST which with probability at least 1− β, on input S = (x1, · · · , xn)
outputs a list L ∈ X and a sequence of estimates a ∈ [0, 1]|L| such that

1. Every x with FreqS(x) ≥ η appears in L, and

2. For every x ∈ L, the estimate ax satisfies |ax − FreqS(x)| ≤ η,

where FreqS(x) =
∣∣{i ∈ [n] | xi = x}

∣∣/n.

Lemma 29 (Generic Private Learner, [10]). LetH ⊂ [K]X be a collection of multi-class hypotheses.
For n = O( log |H|+log(1/β)

αε ), there exists an (ε, 0)-DP algorithm GENERICLEARNER : (X×[K])n →
H satisfying the following; let D be a distribution over X × [K] such that there exists an h? ∈ H
with lossD(h?) ≤ α. Then on input S ∼ Dn, GENERICLEARNER outputs, with probability at least
1− β, a hypothesis ĥ ∈ H such that lossS(ĥ) ≤ 2α.

Now we are ready to prove Theorem 28.

Proof of Theorem 28. The learning algorithm M is built on top of the Stable Historgram and the
Generic Private Learner as described in Algorithm 6. According to Lemma 14 and 29, we choose
parameters

k = O
( log(1/ηβδ)

ηε

)
, n′ = O

( log(1/ηβ)

αε

)
.

Algorithm 6 Differentially-Private Learner M
1: Let S1, · · · , Sk each consist of i.i.d. samples of size m from D. Run G on each batch of samples

producing h1 = G(S1), · · · , hk = G(Sk)
2: Run the Stable Histogram algorithm HIST on input H = (h1, · · · , hk) using privacy (ε/2, δ)

and accuracy (η/8, β/3), publishing a list L of frequent hypotheses
3: Let S′ consist of n′ i.i.d. samples from D. Run GENERICLEARNER(S′) using L with privacy
ε/2 and accuracy (α/2, β/3) to output a hypothesis ĥ

We show that the algorithm M is (ε, δ)-DP. During the executions of G(S1), · · ·G(Sk), a change to
one entry in a certain Si changes at most one outcome hi ∈ H . Thus, differential privacy for this
step is observed by taking expectations over the coin tosses of all the executions of G. Then the
differential privacy for overall algorithm holds by simple composition of differentially-private HIST
and GENERICLEARNER.

Next, we prove that the algorithm M is accurate. By standard generalization arguments, we have
with probability at least 1− β/3,∣∣FreqH(h)− PS∼Dm

(
G(S) = h

)∣∣ ≤ η

8

for every h ∈ [K]X as long as k ≥ O(log(1/β)/η). Conditioned on this event, by accuracy of
HIST, with probability 1 − β/2, it produces a list L containing h? together with a sequence of
estimates that are accurate to within an additive error η/8. Then, h? appears in L with an estimate
ah? ≥ η − η/8− η/8 = 3η/4.
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Now remove from L every item h with ah ≤ 3η
4 . Since every estimate is accurate within η/8,

h appears in L such that FreqH(h) ≥ 3η
4 −

η
8 = 5η

8 . Since sum of frequencies is less than 1,
the number of list L should be less than 2/η (i.e. |L| ≤ 2/η). This list contains h? such that
lossD(h?) ≤ α. Hence the GENERICLEARNER identifies h? with lossD(h?) ≤ α/2 with probability
at least 1− β/3.

C.3 Extension to the Agnostic setting

Theorem 11 showed that online MC learnability continues to imply private MC learnability in the
realizable setting. A similar result also holds even when the realizability assumption is violated,
which is called agnostic setting.
Corollary 30 (Agnostic setting : Online MC learning implies private MC learning). LetH ⊂ [K]X

be a MC hypothesis class with Ldim(H) = d. Let ε, δ ∈ (0, 1) be privacy parameters and let
α, β ∈ (0, 1/2) be accuracy parameters. For n = Od

( log(1/βδ)
α2ε

)
, there exists (ε, δ)-DP learning

algorithm such that for every distribution D, given an input sample S ∼ Dn, the output hypothesis
f = A(S) satisfies

lossD(f) ≤ min
h∈H

lossD(h) + α

with probability at least 1− β.

Proof. Alon et al. [5, Theorem 6] propose an algorithm,APrivateAgnostic, which transforms a private
learner in the realizable setting to a private learner that can operate in the agnostic setting. The
main idea is based on the standard sub-sampling method, and as a result, the transformed agnostic
learner has a larger sample complexity by a factor of 1/ε. Then Corollary 30 is shown by applying
APrivateAgnostic to the realizable learner used in Theorem 11.

C.4 Proof of Theorem 15

We complete the proof of Theorem 15. The proof for Condition 4 is given in the main body.
Theorem 15 (restated). Let F ⊂ YX be a real-valued function class such that fatγ(F) < ∞ for
every γ > 0. If one of the following conditions holds, then F is privately learnable.

1. Either F or X is finite.

2. The range of F over X is finite (i.e.,
∣∣{f(x) | f ∈ F , x ∈ X}

∣∣ <∞).

3. F has a finite cover with respect to the sup-norm at every scale.

4. F has a finite sequential Pollard Pseudo-dimension.

Proof. 1. If |F| <∞, then for sample complexity n = O( log |F|+log(1/β)
αε ) we directly run the ε-DP

Generic Private Learner to output with probability at least 1 − β, a hypothesis f̂ ∈ F such that
lossS(f̂) ≤ α. Next, assume that X is finite. The finiteness of X does not imply finite |F| because Y
is continuous, but we can discretize F at some scale γ, which gives us a finite MC hypothesis class
[F ]γ . It is private-learnable by ε-DP Generic Private Learner, and then the original class F is also
privately-learnable within accuracy γ.

2. Observe that this regression problem is essentially a MC problem. Furthermore, Ldim(F) by
considering it as a MC problem is bounded above by fatγ(F), where γ is the minimal gap between
consecutive values in the range of F over X . This means that Ldim(F) is finite, and hence by the
argument of Section 5.1, F is privately learnable.

3. Given an accuracy α, F has n finite covers with a radius r < α. We construct a set of representative
function as F ′ = {f1, · · · , fn} ⊂ F by arbitrarily choosing a representative fi from the i-th cover,
and then run ε-DP Generic Private Learner on F ′ to output a hypothesis f̂ ∈ F with a small
population loss.
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